Elias  Ortiz

Elias Ortiz

1618831200

Under a Microscope: Exploring Fast and Safe Rust for Biology by Samuel Lim - RustConf 2020

Under a Microscope: Exploring Fast and Safe Rust for Biology by Samuel Lim

Ever wondered what goes on behind the scenes of breakthroughs in understanding proteins, viruses, our own bodies, and more?

Take a deep dive as we journey through some of the workings of computational biology at large, along with its advantages and pitfalls. In this talk, we will see how Rust bridges the biological sciences with safe, performant, and scalable systems, and discuss how you can play a role even as a fresh Rustacean.

#rust

What is GEEK

Buddha Community

Under a Microscope: Exploring Fast and Safe Rust for Biology by Samuel Lim - RustConf 2020
Brain  Crist

Brain Crist

1594753020

Citrix Bugs Allow Unauthenticated Code Injection, Data Theft

Multiple vulnerabilities in the Citrix Application Delivery Controller (ADC) and Gateway would allow code injection, information disclosure and denial of service, the networking vendor announced Tuesday. Four of the bugs are exploitable by an unauthenticated, remote attacker.

The Citrix products (formerly known as NetScaler ADC and Gateway) are used for application-aware traffic management and secure remote access, respectively, and are installed in at least 80,000 companies in 158 countries, according to a December assessment from Positive Technologies.

Other flaws announced Tuesday also affect Citrix SD-WAN WANOP appliances, models 4000-WO, 4100-WO, 5000-WO and 5100-WO.

Attacks on the management interface of the products could result in system compromise by an unauthenticated user on the management network; or system compromise through cross-site scripting (XSS). Attackers could also create a download link for the device which, if downloaded and then executed by an unauthenticated user on the management network, could result in the compromise of a local computer.

“Customers who have configured their systems in accordance with Citrix recommendations [i.e., to have this interface separated from the network and protected by a firewall] have significantly reduced their risk from attacks to the management interface,” according to the vendor.

Threat actors could also mount attacks on Virtual IPs (VIPs). VIPs, among other things, are used to provide users with a unique IP address for communicating with network resources for applications that do not allow multiple connections or users from the same IP address.

The VIP attacks include denial of service against either the Gateway or Authentication virtual servers by an unauthenticated user; or remote port scanning of the internal network by an authenticated Citrix Gateway user.

“Attackers can only discern whether a TLS connection is possible with the port and cannot communicate further with the end devices,” according to the critical Citrix advisory. “Customers who have not enabled either the Gateway or Authentication virtual servers are not at risk from attacks that are applicable to those servers. Other virtual servers e.g. load balancing and content switching virtual servers are not affected by these issues.”

A final vulnerability has been found in Citrix Gateway Plug-in for Linux that would allow a local logged-on user of a Linux system with that plug-in installed to elevate their privileges to an administrator account on that computer, the company said.

#vulnerabilities #adc #citrix #code injection #critical advisory #cve-2020-8187 #cve-2020-8190 #cve-2020-8191 #cve-2020-8193 #cve-2020-8194 #cve-2020-8195 #cve-2020-8196 #cve-2020-8197 #cve-2020-8198 #cve-2020-8199 #denial of service #gateway #information disclosure #patches #security advisory #security bugs

Elias  Ortiz

Elias Ortiz

1618831200

Under a Microscope: Exploring Fast and Safe Rust for Biology by Samuel Lim - RustConf 2020

Under a Microscope: Exploring Fast and Safe Rust for Biology by Samuel Lim

Ever wondered what goes on behind the scenes of breakthroughs in understanding proteins, viruses, our own bodies, and more?

Take a deep dive as we journey through some of the workings of computational biology at large, along with its advantages and pitfalls. In this talk, we will see how Rust bridges the biological sciences with safe, performant, and scalable systems, and discuss how you can play a role even as a fresh Rustacean.

#rust

Serde Rust: Serialization Framework for Rust

Serde

*Serde is a framework for serializing and deserializing Rust data structures efficiently and generically.*

You may be looking for:

Serde in action

Click to show Cargo.toml. Run this code in the playground.

[dependencies]

# The core APIs, including the Serialize and Deserialize traits. Always
# required when using Serde. The "derive" feature is only required when
# using #[derive(Serialize, Deserialize)] to make Serde work with structs
# and enums defined in your crate.
serde = { version = "1.0", features = ["derive"] }

# Each data format lives in its own crate; the sample code below uses JSON
# but you may be using a different one.
serde_json = "1.0"

 

use serde::{Serialize, Deserialize};

#[derive(Serialize, Deserialize, Debug)]
struct Point {
    x: i32,
    y: i32,
}

fn main() {
    let point = Point { x: 1, y: 2 };

    // Convert the Point to a JSON string.
    let serialized = serde_json::to_string(&point).unwrap();

    // Prints serialized = {"x":1,"y":2}
    println!("serialized = {}", serialized);

    // Convert the JSON string back to a Point.
    let deserialized: Point = serde_json::from_str(&serialized).unwrap();

    // Prints deserialized = Point { x: 1, y: 2 }
    println!("deserialized = {:?}", deserialized);
}

Getting help

Serde is one of the most widely used Rust libraries so any place that Rustaceans congregate will be able to help you out. For chat, consider trying the #rust-questions or #rust-beginners channels of the unofficial community Discord (invite: https://discord.gg/rust-lang-community), the #rust-usage or #beginners channels of the official Rust Project Discord (invite: https://discord.gg/rust-lang), or the #general stream in Zulip. For asynchronous, consider the [rust] tag on StackOverflow, the /r/rust subreddit which has a pinned weekly easy questions post, or the Rust Discourse forum. It's acceptable to file a support issue in this repo but they tend not to get as many eyes as any of the above and may get closed without a response after some time.

Download Details:
Author: serde-rs
Source Code: https://github.com/serde-rs/serde
License: View license

#rust  #rustlang 

Shawn  Durgan

Shawn Durgan

1597068204

Qualcomm Bugs Open 40 Percent of Android Handsets to Attack

Researchers identified serious flaws in Qualcomm’s Snapdragon SoC and the Hexagon architecture that impacts nearly half of Android handsets.

Six serious bugs in Qualcomm’s Snapdragon mobile chipset impact up to 40 percent of Android phones in use, according research released at the DEF CON Safe Mode security conference Friday.

The flaws open up handsets made by Google, Samsung, LG, Xiaomi and OnePlus to DoS and escalation-of-privileges attacks – ultimately giving hackers control of targeted handsets. Slava Makkaveev, a security researcher with Check Point, outlined his discoveryand said while Qualcomm has provided patches for the bug, most OEM handset makers have not yet pushed out the patches.

Click to register!

The faulty Qualcomm component is the mobile chip giant’s Snapdragon SoC and the Hexagon architecture. Hexagon a brand name for Qualcomm’s digital signal processor (DSP), part of the SoC’s microarchitecture. DSP controls the processing of real-time request between the Android user environment and the Snapdragon processor’s firmware – in charge of turning voice, video and services such GPS location sensors into computationally actionable data.

Makkaveev said the DSP flaws can be used to harvest photos, videos, call recordings, real-time microphone data, and GPS and location data. A hacker could also cripple a targeted phone or implant malware that would go undetected.

The six flaws are CVE-2020-11201, CVE-2020-11202, CVE-2020-11206, CVE-2020-11207, CVE-2020-11208 and CVE-2020-11209. Using a fuzzing technique against handsets with the vulnerable chipset, Check Point was able to identify 400 discrete attacks.

The prerequisite for exploiting the vulnerabilities is the target would need to be coaxed into downloading and running a rogue executable.

Qualcomm declined to answer specific questions regarding the bugs and instead issued a statement:

“Providing technologies that support robust security and privacy is a priority for Qualcomm. Regarding the Qualcomm Compute DSP vulnerability disclosed by Check Point, we worked diligently to validate the issue and make appropriate mitigations available to OEMs. We have no evidence it is currently being exploited. We encourage end users to update their devices as patches become available and to only install applications from trusted locations such as the Google Play Store.” – Qualcomm Spokesperson

The flaws were brought to Qualcomm’s attention between February and March. Patches developed by Qualcomm in July. A cursory review of vulnerabilities patched in the July and August Google Android Security Bulletins reveal patches haven’t been yet been pushed to handsets. For that reason, Check Point chose not to reveal technical specifics of the flaws.

What technical details that are available can be found in a DEF CON Safe Mode video posted to online. Here Makkaveev shares some technical specifics.

#hacks #mobile security #vulnerabilities #cve-2020-11201 #cve-2020-11202 #cve-2020-11206 #cve-2020-11207 #cve-2020-11208 #cve-2020-11209 #def con safe mode #digital signal processor #dos #dsp #escalation of privileges attack #google #hexagon architecture #lg #oneplus #qualcomm #samsung #snapdragon #soc #xiaomi

Awesome  Rust

Awesome Rust

1654894080

Serde JSON: JSON Support for Serde Framework

Serde JSON

Serde is a framework for serializing and deserializing Rust data structures efficiently and generically.

[dependencies]
serde_json = "1.0"

You may be looking for:

JSON is a ubiquitous open-standard format that uses human-readable text to transmit data objects consisting of key-value pairs.

{
    "name": "John Doe",
    "age": 43,
    "address": {
        "street": "10 Downing Street",
        "city": "London"
    },
    "phones": [
        "+44 1234567",
        "+44 2345678"
    ]
}

There are three common ways that you might find yourself needing to work with JSON data in Rust.

  • As text data. An unprocessed string of JSON data that you receive on an HTTP endpoint, read from a file, or prepare to send to a remote server.
  • As an untyped or loosely typed representation. Maybe you want to check that some JSON data is valid before passing it on, but without knowing the structure of what it contains. Or you want to do very basic manipulations like insert a key in a particular spot.
  • As a strongly typed Rust data structure. When you expect all or most of your data to conform to a particular structure and want to get real work done without JSON's loosey-goosey nature tripping you up.

Serde JSON provides efficient, flexible, safe ways of converting data between each of these representations.

Operating on untyped JSON values

Any valid JSON data can be manipulated in the following recursive enum representation. This data structure is serde_json::Value.

enum Value {
    Null,
    Bool(bool),
    Number(Number),
    String(String),
    Array(Vec<Value>),
    Object(Map<String, Value>),
}

A string of JSON data can be parsed into a serde_json::Value by the serde_json::from_str function. There is also from_slice for parsing from a byte slice &[u8] and from_reader for parsing from any io::Read like a File or a TCP stream.

use serde_json::{Result, Value};

fn untyped_example() -> Result<()> {
    // Some JSON input data as a &str. Maybe this comes from the user.
    let data = r#"
        {
            "name": "John Doe",
            "age": 43,
            "phones": [
                "+44 1234567",
                "+44 2345678"
            ]
        }"#;

    // Parse the string of data into serde_json::Value.
    let v: Value = serde_json::from_str(data)?;

    // Access parts of the data by indexing with square brackets.
    println!("Please call {} at the number {}", v["name"], v["phones"][0]);

    Ok(())
}

The result of square bracket indexing like v["name"] is a borrow of the data at that index, so the type is &Value. A JSON map can be indexed with string keys, while a JSON array can be indexed with integer keys. If the type of the data is not right for the type with which it is being indexed, or if a map does not contain the key being indexed, or if the index into a vector is out of bounds, the returned element is Value::Null.

When a Value is printed, it is printed as a JSON string. So in the code above, the output looks like Please call "John Doe" at the number "+44 1234567". The quotation marks appear because v["name"] is a &Value containing a JSON string and its JSON representation is "John Doe". Printing as a plain string without quotation marks involves converting from a JSON string to a Rust string with as_str() or avoiding the use of Value as described in the following section.

The Value representation is sufficient for very basic tasks but can be tedious to work with for anything more significant. Error handling is verbose to implement correctly, for example imagine trying to detect the presence of unrecognized fields in the input data. The compiler is powerless to help you when you make a mistake, for example imagine typoing v["name"] as v["nmae"] in one of the dozens of places it is used in your code.

Parsing JSON as strongly typed data structures

Serde provides a powerful way of mapping JSON data into Rust data structures largely automatically.

use serde::{Deserialize, Serialize};
use serde_json::Result;

#[derive(Serialize, Deserialize)]
struct Person {
    name: String,
    age: u8,
    phones: Vec<String>,
}

fn typed_example() -> Result<()> {
    // Some JSON input data as a &str. Maybe this comes from the user.
    let data = r#"
        {
            "name": "John Doe",
            "age": 43,
            "phones": [
                "+44 1234567",
                "+44 2345678"
            ]
        }"#;

    // Parse the string of data into a Person object. This is exactly the
    // same function as the one that produced serde_json::Value above, but
    // now we are asking it for a Person as output.
    let p: Person = serde_json::from_str(data)?;

    // Do things just like with any other Rust data structure.
    println!("Please call {} at the number {}", p.name, p.phones[0]);

    Ok(())
}

This is the same serde_json::from_str function as before, but this time we assign the return value to a variable of type Person so Serde will automatically interpret the input data as a Person and produce informative error messages if the layout does not conform to what a Person is expected to look like.

Any type that implements Serde's Deserialize trait can be deserialized this way. This includes built-in Rust standard library types like Vec<T> and HashMap<K, V>, as well as any structs or enums annotated with #[derive(Deserialize)].

Once we have p of type Person, our IDE and the Rust compiler can help us use it correctly like they do for any other Rust code. The IDE can autocomplete field names to prevent typos, which was impossible in the serde_json::Value representation. And the Rust compiler can check that when we write p.phones[0], then p.phones is guaranteed to be a Vec<String> so indexing into it makes sense and produces a String.

The necessary setup for using Serde's derive macros is explained on the Using derive page of the Serde site.

Constructing JSON values

Serde JSON provides a json! macro to build serde_json::Value objects with very natural JSON syntax.

use serde_json::json;

fn main() {
    // The type of `john` is `serde_json::Value`
    let john = json!({
        "name": "John Doe",
        "age": 43,
        "phones": [
            "+44 1234567",
            "+44 2345678"
        ]
    });

    println!("first phone number: {}", john["phones"][0]);

    // Convert to a string of JSON and print it out
    println!("{}", john.to_string());
}

The Value::to_string() function converts a serde_json::Value into a String of JSON text.

One neat thing about the json! macro is that variables and expressions can be interpolated directly into the JSON value as you are building it. Serde will check at compile time that the value you are interpolating is able to be represented as JSON.

let full_name = "John Doe";
let age_last_year = 42;

// The type of `john` is `serde_json::Value`
let john = json!({
    "name": full_name,
    "age": age_last_year + 1,
    "phones": [
        format!("+44 {}", random_phone())
    ]
});

This is amazingly convenient, but we have the problem we had before with Value: the IDE and Rust compiler cannot help us if we get it wrong. Serde JSON provides a better way of serializing strongly-typed data structures into JSON text.

Creating JSON by serializing data structures

A data structure can be converted to a JSON string by serde_json::to_string. There is also serde_json::to_vec which serializes to a Vec<u8> and serde_json::to_writer which serializes to any io::Write such as a File or a TCP stream.

use serde::{Deserialize, Serialize};
use serde_json::Result;

#[derive(Serialize, Deserialize)]
struct Address {
    street: String,
    city: String,
}

fn print_an_address() -> Result<()> {
    // Some data structure.
    let address = Address {
        street: "10 Downing Street".to_owned(),
        city: "London".to_owned(),
    };

    // Serialize it to a JSON string.
    let j = serde_json::to_string(&address)?;

    // Print, write to a file, or send to an HTTP server.
    println!("{}", j);

    Ok(())
}

Any type that implements Serde's Serialize trait can be serialized this way. This includes built-in Rust standard library types like Vec<T> and HashMap<K, V>, as well as any structs or enums annotated with #[derive(Serialize)].

Performance

It is fast. You should expect in the ballpark of 500 to 1000 megabytes per second deserialization and 600 to 900 megabytes per second serialization, depending on the characteristics of your data. This is competitive with the fastest C and C++ JSON libraries or even 30% faster for many use cases. Benchmarks live in the serde-rs/json-benchmark repo.

Getting help

Serde is one of the most widely used Rust libraries, so any place that Rustaceans congregate will be able to help you out. For chat, consider trying the #rust-questions or #rust-beginners channels of the unofficial community Discord (invite: https://discord.gg/rust-lang-community), the #rust-usage or #beginners channels of the official Rust Project Discord (invite: https://discord.gg/rust-lang), or the #general stream in Zulip. For asynchronous, consider the [rust] tag on StackOverflow, the /r/rust subreddit which has a pinned weekly easy questions post, or the Rust Discourse forum. It's acceptable to file a support issue in this repo, but they tend not to get as many eyes as any of the above and may get closed without a response after some time.

No-std support

As long as there is a memory allocator, it is possible to use serde_json without the rest of the Rust standard library. This is supported on Rust 1.36+. Disable the default "std" feature and enable the "alloc" feature:

[dependencies]
serde_json = { version = "1.0", default-features = false, features = ["alloc"] }

For JSON support in Serde without a memory allocator, please see the serde-json-core crate.

Link: https://crates.io/crates/serde_json

#rust  #rustlang  #encode   #json