Larry  Kessler

Larry Kessler

1616221440

Feature-matching using BRISK

I wanted an app that takes two images and detects the position of the first image in the second, I also didn’t want to use Artificial intelligence.
What I need to do can be summed up in three steps:

  1. find good keypoints (or features) on the first image
  2. do the same on the second image
  3. match the keypoints of the first image to those of the second
    Simple enough won’t you say?! lets see our options
    For a task this simple I didn’t want to use AI, I just started learning AI and I’m a total noob, the next best thing is an algorithm called SIFT!

#computer-science #opencv #python #computer-vision

What is GEEK

Buddha Community

Feature-matching using BRISK
Chloe  Butler

Chloe Butler

1667425440

Pdf2gerb: Perl Script Converts PDF Files to Gerber format

pdf2gerb

Perl script converts PDF files to Gerber format

Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.

The general workflow is as follows:

  1. Design the PCB using your favorite CAD or drawing software.
  2. Print the top and bottom copper and top silk screen layers to a PDF file.
  3. Run Pdf2Gerb on the PDFs to create Gerber and Excellon files.
  4. Use a Gerber viewer to double-check the output against the original PCB design.
  5. Make adjustments as needed.
  6. Submit the files to a PCB manufacturer.

Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).

See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.


pdf2gerb_cfg.pm

#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;

use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)


##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file

use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call

#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software.  \nGerber files MAY CONTAIN ERRORS.  Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG

use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC

use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)

#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1); 

#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
    .010, -.001,  #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
    .031, -.014,  #used for vias
    .041, -.020,  #smallest non-filled plated hole
    .051, -.025,
    .056, -.029,  #useful for IC pins
    .070, -.033,
    .075, -.040,  #heavier leads
#    .090, -.043,  #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
    .100, -.046,
    .115, -.052,
    .130, -.061,
    .140, -.067,
    .150, -.079,
    .175, -.088,
    .190, -.093,
    .200, -.100,
    .220, -.110,
    .160, -.125,  #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
    .090, -.040,  #want a .090 pad option, but use dummy hole size
    .065, -.040, #.065 x .065 rect pad
    .035, -.040, #.035 x .065 rect pad
#traces:
    .001,  #too thin for real traces; use only for board outlines
    .006,  #minimum real trace width; mainly used for text
    .008,  #mainly used for mid-sized text, not traces
    .010,  #minimum recommended trace width for low-current signals
    .012,
    .015,  #moderate low-voltage current
    .020,  #heavier trace for power, ground (even if a lighter one is adequate)
    .025,
    .030,  #heavy-current traces; be careful with these ones!
    .040,
    .050,
    .060,
    .080,
    .100,
    .120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);

#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size:   parsed PDF diameter:      error:
#  .014                .016                +.002
#  .020                .02267              +.00267
#  .025                .026                +.001
#  .029                .03167              +.00267
#  .033                .036                +.003
#  .040                .04267              +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
    HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
    RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
    SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
    RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
    TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
    REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};

#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
    CIRCLE_ADJUST_MINX => 0,
    CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
    CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
    CIRCLE_ADJUST_MAXY => 0,
    SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
    WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
    RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};

#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches

#line join/cap styles:
use constant
{
    CAP_NONE => 0, #butt (none); line is exact length
    CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
    CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
    CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
    
#number of elements in each shape type:
use constant
{
    RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
    LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
    CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
    CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
    rect => RECT_SHAPELEN,
    line => LINE_SHAPELEN,
    curve => CURVE_SHAPELEN,
    circle => CIRCLE_SHAPELEN,
);

#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions

# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?

#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes. 
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes

#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches

# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)

# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time

# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const

use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool

my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time

print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load


#############################################################################################
#junk/experiment:

#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html

#my $caller = "pdf2gerb::";

#sub cfg
#{
#    my $proto = shift;
#    my $class = ref($proto) || $proto;
#    my $settings =
#    {
#        $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
#    };
#    bless($settings, $class);
#    return $settings;
#}

#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;

#print STDERR "read cfg file\n";

#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names

#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }

Download Details:

Author: swannman
Source Code: https://github.com/swannman/pdf2gerb

License: GPL-3.0 license

#perl 

Why Use WordPress? What Can You Do With WordPress?

Can you use WordPress for anything other than blogging? To your surprise, yes. WordPress is more than just a blogging tool, and it has helped thousands of websites and web applications to thrive. The use of WordPress powers around 40% of online projects, and today in our blog, we would visit some amazing uses of WordPress other than blogging.
What Is The Use Of WordPress?

WordPress is the most popular website platform in the world. It is the first choice of businesses that want to set a feature-rich and dynamic Content Management System. So, if you ask what WordPress is used for, the answer is – everything. It is a super-flexible, feature-rich and secure platform that offers everything to build unique websites and applications. Let’s start knowing them:

1. Multiple Websites Under A Single Installation
WordPress Multisite allows you to develop multiple sites from a single WordPress installation. You can download WordPress and start building websites you want to launch under a single server. Literally speaking, you can handle hundreds of sites from one single dashboard, which now needs applause.
It is a highly efficient platform that allows you to easily run several websites under the same login credentials. One of the best things about WordPress is the themes it has to offer. You can simply download them and plugin for various sites and save space on sites without losing their speed.

2. WordPress Social Network
WordPress can be used for high-end projects such as Social Media Network. If you don’t have the money and patience to hire a coder and invest months in building a feature-rich social media site, go for WordPress. It is one of the most amazing uses of WordPress. Its stunning CMS is unbeatable. And you can build sites as good as Facebook or Reddit etc. It can just make the process a lot easier.
To set up a social media network, you would have to download a WordPress Plugin called BuddyPress. It would allow you to connect a community page with ease and would provide all the necessary features of a community or social media. It has direct messaging, activity stream, user groups, extended profiles, and so much more. You just have to download and configure it.
If BuddyPress doesn’t meet all your needs, don’t give up on your dreams. You can try out WP Symposium or PeepSo. There are also several themes you can use to build a social network.

3. Create A Forum For Your Brand’s Community
Communities are very important for your business. They help you stay in constant connection with your users and consumers. And allow you to turn them into a loyal customer base. Meanwhile, there are many good technologies that can be used for building a community page – the good old WordPress is still the best.
It is the best community development technology. If you want to build your online community, you need to consider all the amazing features you get with WordPress. Plugins such as BB Press is an open-source, template-driven PHP/ MySQL forum software. It is very simple and doesn’t hamper the experience of the website.
Other tools such as wpFoRo and Asgaros Forum are equally good for creating a community blog. They are lightweight tools that are easy to manage and integrate with your WordPress site easily. However, there is only one tiny problem; you need to have some technical knowledge to build a WordPress Community blog page.

4. Shortcodes
Since we gave you a problem in the previous section, we would also give you a perfect solution for it. You might not know to code, but you have shortcodes. Shortcodes help you execute functions without having to code. It is an easy way to build an amazing website, add new features, customize plugins easily. They are short lines of code, and rather than memorizing multiple lines; you can have zero technical knowledge and start building a feature-rich website or application.
There are also plugins like Shortcoder, Shortcodes Ultimate, and the Basics available on WordPress that can be used, and you would not even have to remember the shortcodes.

5. Build Online Stores
If you still think about why to use WordPress, use it to build an online store. You can start selling your goods online and start selling. It is an affordable technology that helps you build a feature-rich eCommerce store with WordPress.
WooCommerce is an extension of WordPress and is one of the most used eCommerce solutions. WooCommerce holds a 28% share of the global market and is one of the best ways to set up an online store. It allows you to build user-friendly and professional online stores and has thousands of free and paid extensions. Moreover as an open-source platform, and you don’t have to pay for the license.
Apart from WooCommerce, there are Easy Digital Downloads, iThemes Exchange, Shopify eCommerce plugin, and so much more available.

6. Security Features
WordPress takes security very seriously. It offers tons of external solutions that help you in safeguarding your WordPress site. While there is no way to ensure 100% security, it provides regular updates with security patches and provides several plugins to help with backups, two-factor authorization, and more.
By choosing hosting providers like WP Engine, you can improve the security of the website. It helps in threat detection, manage patching and updates, and internal security audits for the customers, and so much more.

Read More

#use of wordpress #use wordpress for business website #use wordpress for website #what is use of wordpress #why use wordpress #why use wordpress to build a website

Anissa  Barrows

Anissa Barrows

1669099573

What Is Face Recognition? Facial Recognition with Python and OpenCV

In this article, we will know what is face recognition and how is different from face detection. We will go briefly over the theory of face recognition and then jump on to the coding section. At the end of this article, you will be able to make a face recognition program for recognizing faces in images as well as on a live webcam feed.

What is Face Detection?

In computer vision, one essential problem we are trying to figure out is to automatically detect objects in an image without human intervention. Face detection can be thought of as such a problem where we detect human faces in an image. There may be slight differences in the faces of humans but overall, it is safe to say that there are certain features that are associated with all the human faces. There are various face detection algorithms but Viola-Jones Algorithm is one of the oldest methods that is also used today and we will use the same later in the article. You can go through the Viola-Jones Algorithm after completing this article as I’ll link it at the end of this article.

Face detection is usually the first step towards many face-related technologies, such as face recognition or verification. However, face detection can have very useful applications. The most successful application of face detection would probably be photo taking. When you take a photo of your friends, the face detection algorithm built into your digital camera detects where the faces are and adjusts the focus accordingly.

For a tutorial on Real-Time Face detection

What is Face Recognition?

face recognition

Now that we are successful in making such algorithms that can detect faces, can we also recognise whose faces are they?

Face recognition is a method of identifying or verifying the identity of an individual using their face. There are various algorithms that can do face recognition but their accuracy might vary. Here I am going to describe how we do face recognition using deep learning.

So now let us understand how we recognise faces using deep learning. We make use of face embedding in which each face is converted into a vector and this technique is called deep metric learning. Let me further divide this process into three simple steps for easy understanding:

Face Detection: The very first task we perform is detecting faces in the image or video stream. Now that we know the exact location/coordinates of face, we extract this face for further processing ahead.
 

Feature Extraction: Now that we have cropped the face out of the image, we extract features from it. Here we are going to use face embeddings to extract the features out of the face. A neural network takes an image of the person’s face as input and outputs a vector which represents the most important features of a face. In machine learning, this vector is called embedding and thus we call this vector as face embedding. Now how does this help in recognizing faces of different persons? 
 

While training the neural network, the network learns to output similar vectors for faces that look similar. For example, if I have multiple images of faces within different timespan, of course, some of the features of my face might change but not up to much extent. So in this case the vectors associated with the faces are similar or in short, they are very close in the vector space. Take a look at the below diagram for a rough idea:

Now after training the network, the network learns to output vectors that are closer to each other(similar) for faces of the same person(looking similar). The above vectors now transform into:

We are not going to train such a network here as it takes a significant amount of data and computation power to train such networks. We will use a pre-trained network trained by Davis King on a dataset of ~3 million images. The network outputs a vector of 128 numbers which represent the most important features of a face.

Now that we know how this network works, let us see how we use this network on our own data. We pass all the images in our data to this pre-trained network to get the respective embeddings and save these embeddings in a file for the next step.

Comparing faces: Now that we have face embeddings for every face in our data saved in a file, the next step is to recognise a new t image that is not in our data. So the first step is to compute the face embedding for the image using the same network we used above and then compare this embedding with the rest of the embeddings we have. We recognise the face if the generated embedding is closer or similar to any other embedding as shown below:

So we passed two images, one of the images is of Vladimir Putin and other of George W. Bush. In our example above, we did not save the embeddings for Putin but we saved the embeddings of Bush. Thus when we compared the two new embeddings with the existing ones, the vector for Bush is closer to the other face embeddings of Bush whereas the face embeddings of Putin are not closer to any other embedding and thus the program cannot recognise him.

What is OpenCV

In the field of Artificial Intelligence, Computer Vision is one of the most interesting and Challenging tasks. Computer Vision acts like a bridge between Computer Software and visualizations around us. It allows computer software to understand and learn about the visualizations in the surroundings. For Example: Based on the color, shape and size determining the fruit. This task can be very easy for the human brain however in the Computer Vision pipeline, first we gather the data, then we perform the data processing activities and then we train and teach the model to understand how to distinguish between the fruits based on size, shape and color of fruit. 

Currently, various packages are present to perform machine learning, deep learning and computer vision tasks. By far, computer vision is the best module for such complex activities. OpenCV is an open-source library. It is supported by various programming languages such as R, Python. It runs on most of the platforms such as Windows, Linux and MacOS.

To know more about how face recognition works on opencv, check out the free course on face recognition in opencv.

Advantages of OpenCV:

  • OpenCV is an open-source library and is free of cost.
  • As compared to other libraries, it is fast since it is written in C/C++.
  • It works better on System with lesser RAM
  • To supports most of the Operating Systems such as Windows, Linux and MacOS.
  •  

Installation: 

Here we will be focusing on installing OpenCV for python only. We can install OpenCV using pip or conda(for anaconda environment). 

  1. Using pip: 

Using pip, the installation process of openCV can be done by using the following command in the command prompt.

pip install opencv-python

  1. Anaconda:

If you are using anaconda environment, either you can execute the above code in anaconda prompt or you can execute the following code in anaconda prompt.

conda install -c conda-forge opencv

Face Recognition using Python

In this section, we shall implement face recognition using OpenCV and Python. First, let us see the libraries we will need and how to install them:

  • OpenCV
  • dlib
  • Face_recognition

OpenCV is an image and video processing library and is used for image and video analysis, like facial detection, license plate reading, photo editing, advanced robotic vision, optical character recognition, and a whole lot more.
 

The dlib library, maintained by Davis King, contains our implementation of “deep metric learning” which is used to construct our face embeddings used for the actual recognition process.
 

The face_recognition  library, created by Adam Geitgey, wraps around dlib’s facial recognition functionality, and this library is super easy to work with and we will be using this in our code. Remember to install dlib library first before you install face_recognition.
 

To install OpenCV, type in command prompt 
 

pip install opencv-python

I have tried various ways to install dlib on Windows but the easiest of all of them is via Anaconda. First, install Anaconda (here is a guide to install it) and then use this command in your command prompt:
 

conda install -c conda-forge dlib

Next to install face_recognition, type in command prompt

pip install face_recognition

Now that we have all the dependencies installed, let us start coding. We will have to create three files, one will take our dataset and extract face embedding for each face using dlib. Next, we will save these embedding in a file.
 

In the next file we will compare the faces with the existing the recognise faces in images and next we will do the same but recognise faces in live webcam feed
 

Extracting features from Face

First, you need to get a dataset or even create one of you own. Just make sure to arrange all images in folders with each folder containing images of just one person.

Next, save the dataset in a folder the same as you are going to make the file. Now here is the code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

from imutils import paths

import face_recognition

import pickle

import cv2

import os

#get paths of each file in folder named Images

#Images here contains my data(folders of various persons)

imagePaths = list(paths.list_images('Images'))

knownEncodings = []

knownNames = []

# loop over the image paths

for (i, imagePath) in enumerate(imagePaths):

    # extract the person name from the image path

    name = imagePath.split(os.path.sep)[-2]

    # load the input image and convert it from BGR (OpenCV ordering)

    # to dlib ordering (RGB)

    image = cv2.imread(imagePath)

    rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    #Use Face_recognition to locate faces

    boxes = face_recognition.face_locations(rgb,model='hog')

    # compute the facial embedding for the face

    encodings = face_recognition.face_encodings(rgb, boxes)

    # loop over the encodings

    for encoding in encodings:

        knownEncodings.append(encoding)

        knownNames.append(name)

#save emcodings along with their names in dictionary data

data = {"encodings": knownEncodings, "names": knownNames}

#use pickle to save data into a file for later use

f = open("face_enc", "wb")

f.write(pickle.dumps(data))

f.close()

Now that we have stored the embedding in a file named “face_enc”, we can use them to recognise faces in images or live video stream.

Face Recognition in Live webcam Feed

Here is the script to recognise faces on a live webcam feed:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

import face_recognition

import imutils

import pickle

import time

import cv2

import os

#find path of xml file containing haarcascade file

cascPathface = os.path.dirname(

 cv2.__file__) + "/data/haarcascade_frontalface_alt2.xml"

# load the harcaascade in the cascade classifier

faceCascade = cv2.CascadeClassifier(cascPathface)

# load the known faces and embeddings saved in last file

data = pickle.loads(open('face_enc', "rb").read())

print("Streaming started")

video_capture = cv2.VideoCapture(0)

# loop over frames from the video file stream

while True:

    # grab the frame from the threaded video stream

    ret, frame = video_capture.read()

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    faces = faceCascade.detectMultiScale(gray,

                                         scaleFactor=1.1,

                                         minNeighbors=5,

                                         minSize=(60, 60),

                                         flags=cv2.CASCADE_SCALE_IMAGE)

    # convert the input frame from BGR to RGB

    rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

    # the facial embeddings for face in input

    encodings = face_recognition.face_encodings(rgb)

    names = []

    # loop over the facial embeddings incase

    # we have multiple embeddings for multiple fcaes

    for encoding in encodings:

       #Compare encodings with encodings in data["encodings"]

       #Matches contain array with boolean values and True for the embeddings it matches closely

       #and False for rest

        matches = face_recognition.compare_faces(data["encodings"],

         encoding)

        #set name =inknown if no encoding matches

        name = "Unknown"

        # check to see if we have found a match

        if True in matches:

            #Find positions at which we get True and store them

            matchedIdxs = [i for (i, b) in enumerate(matches) if b]

            counts = {}

            # loop over the matched indexes and maintain a count for

            # each recognized face face

            for i in matchedIdxs:

                #Check the names at respective indexes we stored in matchedIdxs

                name = data["names"][i]

                #increase count for the name we got

                counts[name] = counts.get(name, 0) + 1

            #set name which has highest count

            name = max(counts, key=counts.get)

        # update the list of names

        names.append(name)

        # loop over the recognized faces

        for ((x, y, w, h), name) in zip(faces, names):

            # rescale the face coordinates

            # draw the predicted face name on the image

            cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)

            cv2.putText(frame, name, (x, y), cv2.FONT_HERSHEY_SIMPLEX,

             0.75, (0, 255, 0), 2)

    cv2.imshow("Frame", frame)

    if cv2.waitKey(1) & 0xFF == ord('q'):

        break

video_capture.release()

cv2.destroyAllWindows()

https://www.youtube.com/watch?v=fLnGdkZxRkg

Although in the example above we have used haar cascade to detect faces, you can also use face_recognition.face_locations to detect a face as we did in the previous script

Face Recognition in Images

The script for detecting and recognising faces in images is almost similar to what you saw above. Try it yourself and if you can’t take a look at the code below:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

import face_recognition

import imutils

import pickle

import time

import cv2

import os

#find path of xml file containing haarcascade file

cascPathface = os.path.dirname(

 cv2.__file__) + "/data/haarcascade_frontalface_alt2.xml"

# load the harcaascade in the cascade classifier

faceCascade = cv2.CascadeClassifier(cascPathface)

# load the known faces and embeddings saved in last file

data = pickle.loads(open('face_enc', "rb").read())

#Find path to the image you want to detect face and pass it here

image = cv2.imread(Path-to-img)

rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

#convert image to Greyscale for haarcascade

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

faces = faceCascade.detectMultiScale(gray,

                                     scaleFactor=1.1,

                                     minNeighbors=5,

                                     minSize=(60, 60),

                                     flags=cv2.CASCADE_SCALE_IMAGE)

# the facial embeddings for face in input

encodings = face_recognition.face_encodings(rgb)

names = []

# loop over the facial embeddings incase

# we have multiple embeddings for multiple fcaes

for encoding in encodings:

    #Compare encodings with encodings in data["encodings"]

    #Matches contain array with boolean values and True for the embeddings it matches closely

    #and False for rest

    matches = face_recognition.compare_faces(data["encodings"],

    encoding)

    #set name =inknown if no encoding matches

    name = "Unknown"

    # check to see if we have found a match

    if True in matches:

        #Find positions at which we get True and store them

        matchedIdxs = [i for (i, b) in enumerate(matches) if b]

        counts = {}

        # loop over the matched indexes and maintain a count for

        # each recognized face face

        for i in matchedIdxs:

            #Check the names at respective indexes we stored in matchedIdxs

            name = data["names"][i]

            #increase count for the name we got

            counts[name] = counts.get(name, 0) + 1

            #set name which has highest count

            name = max(counts, key=counts.get)

        # update the list of names

        names.append(name)

        # loop over the recognized faces

        for ((x, y, w, h), name) in zip(faces, names):

            # rescale the face coordinates

            # draw the predicted face name on the image

            cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)

            cv2.putText(image, name, (x, y), cv2.FONT_HERSHEY_SIMPLEX,

             0.75, (0, 255, 0), 2)

    cv2.imshow("Frame", image)

    cv2.waitKey(0)

Output:

InputOutput

This brings us to the end of this article where we learned about face recognition.

You can also upskill with Great Learning’s PGP Artificial Intelligence and Machine Learning Course. The course offers mentorship from industry leaders, and you will also have the opportunity to work on real-time industry-relevant projects.


Original article source at: https://www.mygreatlearning.com

#python #opencv 

Nat  Grady

Nat Grady

1660108440

Wordcloud2: R interface to Wordcloud for Data Visualization

wordcloud2

R interface to wordcloud for data visualization. Timdream's wordcloud2.js is used in this package.

Original description

Installation

devtools::install_github("lchiffon/wordcloud2")

knitr and shiny is support in wordcloud2 package.

Example

library(wordcloud2)
wordcloud2(demoFreq, size = 1,shape = 'star')

1

wordcloud2(demoFreq, size = 2, minRotation = -pi/2, maxRotation = -pi/2)

1

wordcloud2(demoFreq, size = 2, minRotation = -pi/6, maxRotation = -pi/6,
  rotateRatio = 1)

1

Chinese version

## Sys.setlocale("LC_CTYPE","eng")
wordcloud2(demoFreqC, size = 2, fontFamily = "微软雅黑",
           color = "random-light", backgroundColor = "grey")

1

Example of successfully deploying interactivate clickable wordcloud with special shape on R-shiny

Thanks JacobXPX's contribution to this feature:

Thanks AdamSpannbauer for pointing out the issues.

Additional features are added or modified:

hover information display are fixed, refering AdeelK93's previous work, thanks!

multiple wordclouds which seperatedly click are supported.

clickedWordInputId is changed to be automatically generated by: paste0(outputId, "_clicked_word")).

See sample below for more details:

library(shiny)
library(wordcloud2)
shinyApp(
  ui=shinyUI(fluidPage(
    #using default clicked word input id
    wordcloud2Output("my_wc", width = "50%", height = "400px"),
    #using custom clicked word input id
    wordcloud2Output("my_wc2", width = "50%", height = "400px"),
    
    verbatimTextOutput("print"),
    verbatimTextOutput("print2")
  )),
  server=shinyServer(function(input,output,session){
    
    figPath = system.file("examples/a.png",package = "wordcloud2")
    
    output$my_wc  = renderWordcloud2(wordcloud2(data = demoFreq, figPath = figPath, size = 0.4,color = "blue"))
    output$my_wc2 = renderWordcloud2(wordcloud2(demoFreq))
    
    #using default clicked word input id
    output$print  = renderPrint(input$my_wc_clicked_word)
    #using custom clicked word input id
    output$print2 = renderPrint(input$my_wc2_clicked_word)
  })
)

run the above code and click refresh, it will work.

1

contributors

Download Details:

Author: Lchiffon
Source Code: https://github.com/Lchiffon/wordcloud2 

#r #datavisualization 

Josefa  Corwin

Josefa Corwin

1659736920

Mailboxer: A Rails Gem to Send Messages inside A Web Application

Mailboxer

This project is based on the need for a private message system for ging / social_stream. Instead of creating our core message system heavily dependent on our development, we are trying to implement a generic and potent messaging gem.

After looking for a good gem to use we noticed the lack of messaging gems and functionality in them. Mailboxer tries to fill this void delivering a powerful and flexible message system. It supports the use of conversations with two or more participants, sending notifications to recipients (intended to be used as system notifications “Your picture has new comments”, “John Doe has updated his document”, etc.), and emailing the messageable model (if configured to do so). It has a complete implementation of a Mailbox object for each messageable with inbox, sentbox and trash.

The gem is constantly growing and improving its functionality. As it is used with our parallel development ging / social_stream we are finding and fixing bugs continously. If you want some functionality not supported yet or marked as TODO, you can create an issue to ask for it. It will be great feedback for us, and we will know what you may find useful in the gem.

Mailboxer was born from the great, but outdated, code from lpsergi / acts_as_messageable.

We are now working to make exhaustive documentation and some wiki pages in order to make it even easier to use the gem to its full potential. Please, give us some time if you find something missing or ask for it. You can also find us on the Gitter room for this repo. Join us there to talk.

Installation

Add to your Gemfile:

gem 'mailboxer'

Then run:

$ bundle install

Run install script:

$ rails g mailboxer:install

And don't forget to migrate your database:

$ rake db:migrate

You can also generate email views:

$ rails g mailboxer:views

Upgrading

If upgrading from 0.11.0 to 0.12.0, run the following generators:

$ rails generate mailboxer:namespacing_compatibility
$ rails generate mailboxer:install -s

Then, migrate your database:

$ rake db:migrate

Requirements & Settings

Emails

We are now adding support for sending emails when a Notification or a Message is sent to one or more recipients. You should modify the mailboxer initializer (/config/initializer/mailboxer.rb) to edit these settings:

Mailboxer.setup do |config|
  #Enables or disables email sending for Notifications and Messages
  config.uses_emails = true
  #Configures the default `from` address for the email sent for Messages and Notifications of Mailboxer
  config.default_from = "no-reply@dit.upm.es"
  ...
end

You can change the way in which emails are delivered by specifying a custom implementation of notification and message mailers:

Mailboxer.setup do |config|
  config.notification_mailer = CustomNotificationMailer
  config.message_mailer = CustomMessageMailer
  ...
end

If you have subclassed the Mailboxer::Notification class, you can specify the mailers using a member method:

class NewDocumentNotification < Mailboxer::Notification
  def mailer_class
    NewDocumentNotificationMailer
  end
end

class NewCommentNotification < Mailboxer::Notification
  def mailer_class
    NewDocumentNotificationMailer
  end
end

Otherwise, the mailer class will be determined by appending 'Mailer' to the mailable class name.

User identities

Users must have an identity defined by a name and an email. We must ensure that Messageable models have some specific methods. These methods are:

#Returning any kind of identification you want for the model
def name
  return "You should add method :name in your Messageable model"
end
#Returning the email address of the model if an email should be sent for this object (Message or Notification).
#If no mail has to be sent, return nil.
def mailboxer_email(object)
  #Check if an email should be sent for that object
  #if true
  return "define_email@on_your.model"
  #if false
  #return nil
end

These names are explicit enough to avoid colliding with other methods, but as long as you need to change them you can do it by using mailboxer initializer (/config/initializer/mailboxer.rb). Just add or uncomment the following lines:

Mailboxer.setup do |config|
  # ...
  #Configures the methods needed by mailboxer
  config.email_method = :mailboxer_email
  config.name_method = :name
  config.notify_method = :notify
  # ...
end

You may change whatever you want or need. For example:

config.email_method = :notification_email
config.name_method = :display_name
config.notify_method = :notify_mailboxer

Will use the method notification_email(object) instead of mailboxer_email(object), display_name for name and notify_mailboxer for notify.

Using default or custom method names, if your model doesn't implement them, Mailboxer will use dummy methods so as to notify you of missing methods rather than crashing.

Preparing your models

In your model:

class User < ActiveRecord::Base
  acts_as_messageable
end

You are not limited to the User model. You can use Mailboxer in any other model and use it in several different models. If you have ducks and cylons in your application and you want to exchange messages as if they were the same, just add acts_as_messageable to each one and you will be able to send duck-duck, duck-cylon, cylon-duck and cylon-cylon messages. Of course, you can extend it for as many classes as you need.

Example:

class Duck < ActiveRecord::Base
  acts_as_messageable
end
class Cylon < ActiveRecord::Base
  acts_as_messageable
end

Mailboxer API

Warning for version 0.8.0

Version 0.8.0 sees Messageable#read and Messageable#unread renamed to mark_as_(un)read, and Receipt#read and Receipt#unread to is_(un)read. This may break existing applications, but read is a reserved name for Active Record, and the best pratice in this case is simply avoid using it.

How can I send a message?

#alfa wants to send a message to beta
alfa.send_message(beta, "Body", "subject")

How can I read the messages of a conversation?

As a messageable, what you receive are receipts, which are associated with the message itself. You should retrieve your receipts for the conversation and get the message associated with them.

This is done this way because receipts save the information about the relation between messageable and the messages: is it read?, is it trashed?, etc.

#alfa gets the last conversation (chronologically, the first in the inbox)
conversation = alfa.mailbox.inbox.first

#alfa gets it receipts chronologically ordered.
receipts = conversation.receipts_for alfa

#using the receipts (i.e. in the view)
receipts.each do |receipt|
  ...
  message = receipt.message
  read = receipt.is_unread? #or message.is_unread?(alfa)
  ...
end

How can I reply to a message?

#alfa wants to reply to all in a conversation
#using a receipt
alfa.reply_to_all(receipt, "Reply body")

#using a conversation
alfa.reply_to_conversation(conversation, "Reply body")
#alfa wants to reply to the sender of a message (and ONLY the sender)
#using a receipt
alfa.reply_to_sender(receipt, "Reply body")

How can I delete a message from trash?

#delete conversations forever for one receipt (still in database)
receipt.mark_as_deleted

#you can mark conversation as deleted for one participant
conversation.mark_as_deleted participant

#Mark the object as deleted for messageable
#Object can be:
  #* A Receipt
  #* A Conversation
  #* A Notification
  #* A Message
  #* An array with any of them
alfa.mark_as_deleted conversation

# get available message for specific user
conversation.messages_for(alfa)

How can I retrieve my conversations?

#alfa wants to retrieve all his conversations
alfa.mailbox.conversations

#A wants to retrieve his inbox
alfa.mailbox.inbox

#A wants to retrieve his sent conversations
alfa.mailbox.sentbox

#alfa wants to retrieve his trashed conversations
alfa.mailbox.trash

How can I paginate conversations?

You can use Kaminari to paginate the conversations as normal. Please, make sure you use the last version as mailboxer uses select('DISTINCT conversations.*') which was not respected before Kaminari 0.12.4 according to its changelog. Working correctly on Kaminari 0.13.0.

#Paginating all conversations using :page parameter and 9 per page
conversations = alfa.mailbox.conversations.page(params[:page]).per(9)

#Paginating received conversations using :page parameter and 9 per page
conversations = alfa.mailbox.inbox.page(params[:page]).per(9)

#Paginating sent conversations using :page parameter and 9 per page
conversations = alfa.mailbox.sentbox.page(params[:page]).per(9)

#Paginating trashed conversations using :page parameter and 9 per page
conversations = alfa.mailbox.trash.page(params[:page]).per(9)

You can take a look at the full documentation for Mailboxer in rubydoc.info.

Do you want to test Mailboxer?

Thanks to Roman Kushnir (@RKushnir) you can test Mailboxer with this sample app.

I need a GUI!

If you need a GUI you should take a look at these links:

Contributors


Author: mailboxer
Source code: https://github.com/mailboxer/mailboxer
License: MIT license

#ruby  #ruby-on-rails