NODE_ENV is undefined even set Up was done properly

I have a util/config.json file like below:

{
"dev": {
    "db": {
        "host": "localhost",
        "user": "root",
        "pass":"*****"
  },

"json_indentation": 4,
"database": "my-app-db-dev"

}
“prod”:{
“db”: {
“host”: “somethingt”,
“user”: “root”,
“pass”:“****”

  },

"json_indentation": 4,
"database": "my-app-db-dev"

}

}

from a util/config.js file, I have exported it to my app.js

const config = require(‘./config.json’)
const environment = process.env.NODE_ENV || ‘dev’

const defaultConfig = config.environment;
console.log(defaultConfig) // shows undefined why?
module.exports = defaultConfig

app.js is like so:

const express = require(‘express’)
const config = require(‘./util/config’)

but it my defaultConfig shows undefined and can’t fetch the data for dev (npm run dev in app.js directory) while I have set the NODE_ENV variable like this in my package.json:

“scripts”: {
“dev”: “set NODE_ENV=dev && nodemon app.js”,
“prod”: “set NODE_ENV=prod && nodemon app.js”
}


#node-js

What is GEEK

Buddha Community

You can try following snippet

const config = require('./config.json')
const environment = process.env.NODE_ENV || 'dev'

const defaultConfig = config[environment];
console.log(defaultConfig)  // shows undefined why?
module.exports = defaultConfig

Hermann  Frami

Hermann Frami

1651383480

A Simple Wrapper Around Amplify AppSync Simulator

This serverless plugin is a wrapper for amplify-appsync-simulator made for testing AppSync APIs built with serverless-appsync-plugin.

Install

npm install serverless-appsync-simulator
# or
yarn add serverless-appsync-simulator

Usage

This plugin relies on your serverless yml file and on the serverless-offline plugin.

plugins:
  - serverless-dynamodb-local # only if you need dynamodb resolvers and you don't have an external dynamodb
  - serverless-appsync-simulator
  - serverless-offline

Note: Order is important serverless-appsync-simulator must go before serverless-offline

To start the simulator, run the following command:

sls offline start

You should see in the logs something like:

...
Serverless: AppSync endpoint: http://localhost:20002/graphql
Serverless: GraphiQl: http://localhost:20002
...

Configuration

Put options under custom.appsync-simulator in your serverless.yml file

| option | default | description | | ------------------------ | -------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------- | | apiKey | 0123456789 | When using API_KEY as authentication type, the key to authenticate to the endpoint. | | port | 20002 | AppSync operations port; if using multiple APIs, the value of this option will be used as a starting point, and each other API will have a port of lastPort + 10 (e.g. 20002, 20012, 20022, etc.) | | wsPort | 20003 | AppSync subscriptions port; if using multiple APIs, the value of this option will be used as a starting point, and each other API will have a port of lastPort + 10 (e.g. 20003, 20013, 20023, etc.) | | location | . (base directory) | Location of the lambda functions handlers. | | refMap | {} | A mapping of resource resolutions for the Ref function | | getAttMap | {} | A mapping of resource resolutions for the GetAtt function | | importValueMap | {} | A mapping of resource resolutions for the ImportValue function | | functions | {} | A mapping of external functions for providing invoke url for external fucntions | | dynamoDb.endpoint | http://localhost:8000 | Dynamodb endpoint. Specify it if you're not using serverless-dynamodb-local. Otherwise, port is taken from dynamodb-local conf | | dynamoDb.region | localhost | Dynamodb region. Specify it if you're connecting to a remote Dynamodb intance. | | dynamoDb.accessKeyId | DEFAULT_ACCESS_KEY | AWS Access Key ID to access DynamoDB | | dynamoDb.secretAccessKey | DEFAULT_SECRET | AWS Secret Key to access DynamoDB | | dynamoDb.sessionToken | DEFAULT_ACCESS_TOKEEN | AWS Session Token to access DynamoDB, only if you have temporary security credentials configured on AWS | | dynamoDb.* | | You can add every configuration accepted by DynamoDB SDK | | rds.dbName | | Name of the database | | rds.dbHost | | Database host | | rds.dbDialect | | Database dialect. Possible values (mysql | postgres) | | rds.dbUsername | | Database username | | rds.dbPassword | | Database password | | rds.dbPort | | Database port | | watch | - *.graphql
- *.vtl | Array of glob patterns to watch for hot-reloading. |

Example:

custom:
  appsync-simulator:
    location: '.webpack/service' # use webpack build directory
    dynamoDb:
      endpoint: 'http://my-custom-dynamo:8000'

Hot-reloading

By default, the simulator will hot-relad when changes to *.graphql or *.vtl files are detected. Changes to *.yml files are not supported (yet? - this is a Serverless Framework limitation). You will need to restart the simulator each time you change yml files.

Hot-reloading relies on watchman. Make sure it is installed on your system.

You can change the files being watched with the watch option, which is then passed to watchman as the match expression.

e.g.

custom:
  appsync-simulator:
    watch:
      - ["match", "handlers/**/*.vtl", "wholename"] # => array is interpreted as the literal match expression
      - "*.graphql"                                 # => string like this is equivalent to `["match", "*.graphql"]`

Or you can opt-out by leaving an empty array or set the option to false

Note: Functions should not require hot-reloading, unless you are using a transpiler or a bundler (such as webpack, babel or typescript), un which case you should delegate hot-reloading to that instead.

Resource CloudFormation functions resolution

This plugin supports some resources resolution from the Ref, Fn::GetAtt and Fn::ImportValue functions in your yaml file. It also supports some other Cfn functions such as Fn::Join, Fb::Sub, etc.

Note: Under the hood, this features relies on the cfn-resolver-lib package. For more info on supported cfn functions, refer to the documentation

Basic usage

You can reference resources in your functions' environment variables (that will be accessible from your lambda functions) or datasource definitions. The plugin will automatically resolve them for you.

provider:
  environment:
    BUCKET_NAME:
      Ref: MyBucket # resolves to `my-bucket-name`

resources:
  Resources:
    MyDbTable:
      Type: AWS::DynamoDB::Table
      Properties:
        TableName: myTable
      ...
    MyBucket:
      Type: AWS::S3::Bucket
      Properties:
        BucketName: my-bucket-name
    ...

# in your appsync config
dataSources:
  - type: AMAZON_DYNAMODB
    name: dynamosource
    config:
      tableName:
        Ref: MyDbTable # resolves to `myTable`

Override (or mock) values

Sometimes, some references cannot be resolved, as they come from an Output from Cloudformation; or you might want to use mocked values in your local environment.

In those cases, you can define (or override) those values using the refMap, getAttMap and importValueMap options.

  • refMap takes a mapping of resource name to value pairs
  • getAttMap takes a mapping of resource name to attribute/values pairs
  • importValueMap takes a mapping of import name to values pairs

Example:

custom:
  appsync-simulator:
    refMap:
      # Override `MyDbTable` resolution from the previous example.
      MyDbTable: 'mock-myTable'
    getAttMap:
      # define ElasticSearchInstance DomainName
      ElasticSearchInstance:
        DomainEndpoint: 'localhost:9200'
    importValueMap:
      other-service-api-url: 'https://other.api.url.com/graphql'

# in your appsync config
dataSources:
  - type: AMAZON_ELASTICSEARCH
    name: elasticsource
    config:
      # endpoint resolves as 'http://localhost:9200'
      endpoint:
        Fn::Join:
          - ''
          - - https://
            - Fn::GetAtt:
                - ElasticSearchInstance
                - DomainEndpoint

Key-value mock notation

In some special cases you will need to use key-value mock nottation. Good example can be case when you need to include serverless stage value (${self:provider.stage}) in the import name.

This notation can be used with all mocks - refMap, getAttMap and importValueMap

provider:
  environment:
    FINISH_ACTIVITY_FUNCTION_ARN:
      Fn::ImportValue: other-service-api-${self:provider.stage}-url

custom:
  serverless-appsync-simulator:
    importValueMap:
      - key: other-service-api-${self:provider.stage}-url
        value: 'https://other.api.url.com/graphql'

Limitations

This plugin only tries to resolve the following parts of the yml tree:

  • provider.environment
  • functions[*].environment
  • custom.appSync

If you have the need of resolving others, feel free to open an issue and explain your use case.

For now, the supported resources to be automatically resovled by Ref: are:

  • DynamoDb tables
  • S3 Buckets

Feel free to open a PR or an issue to extend them as well.

External functions

When a function is not defined withing the current serverless file you can still call it by providing an invoke url which should point to a REST method. Make sure you specify "get" or "post" for the method. Default is "get", but you probably want "post".

custom:
  appsync-simulator:
    functions:
      addUser:
        url: http://localhost:3016/2015-03-31/functions/addUser/invocations
        method: post
      addPost:
        url: https://jsonplaceholder.typicode.com/posts
        method: post

Supported Resolver types

This plugin supports resolvers implemented by amplify-appsync-simulator, as well as custom resolvers.

From Aws Amplify:

  • NONE
  • AWS_LAMBDA
  • AMAZON_DYNAMODB
  • PIPELINE

Implemented by this plugin

  • AMAZON_ELASTIC_SEARCH
  • HTTP
  • RELATIONAL_DATABASE

Relational Database

Sample VTL for a create mutation

#set( $cols = [] )
#set( $vals = [] )
#foreach( $entry in $ctx.args.input.keySet() )
  #set( $regex = "([a-z])([A-Z]+)")
  #set( $replacement = "$1_$2")
  #set( $toSnake = $entry.replaceAll($regex, $replacement).toLowerCase() )
  #set( $discard = $cols.add("$toSnake") )
  #if( $util.isBoolean($ctx.args.input[$entry]) )
      #if( $ctx.args.input[$entry] )
        #set( $discard = $vals.add("1") )
      #else
        #set( $discard = $vals.add("0") )
      #end
  #else
      #set( $discard = $vals.add("'$ctx.args.input[$entry]'") )
  #end
#end
#set( $valStr = $vals.toString().replace("[","(").replace("]",")") )
#set( $colStr = $cols.toString().replace("[","(").replace("]",")") )
#if ( $valStr.substring(0, 1) != '(' )
  #set( $valStr = "($valStr)" )
#end
#if ( $colStr.substring(0, 1) != '(' )
  #set( $colStr = "($colStr)" )
#end
{
  "version": "2018-05-29",
  "statements":   ["INSERT INTO <name-of-table> $colStr VALUES $valStr", "SELECT * FROM    <name-of-table> ORDER BY id DESC LIMIT 1"]
}

Sample VTL for an update mutation

#set( $update = "" )
#set( $equals = "=" )
#foreach( $entry in $ctx.args.input.keySet() )
  #set( $cur = $ctx.args.input[$entry] )
  #set( $regex = "([a-z])([A-Z]+)")
  #set( $replacement = "$1_$2")
  #set( $toSnake = $entry.replaceAll($regex, $replacement).toLowerCase() )
  #if( $util.isBoolean($cur) )
      #if( $cur )
        #set ( $cur = "1" )
      #else
        #set ( $cur = "0" )
      #end
  #end
  #if ( $util.isNullOrEmpty($update) )
      #set($update = "$toSnake$equals'$cur'" )
  #else
      #set($update = "$update,$toSnake$equals'$cur'" )
  #end
#end
{
  "version": "2018-05-29",
  "statements":   ["UPDATE <name-of-table> SET $update WHERE id=$ctx.args.input.id", "SELECT * FROM <name-of-table> WHERE id=$ctx.args.input.id"]
}

Sample resolver for delete mutation

{
  "version": "2018-05-29",
  "statements":   ["UPDATE <name-of-table> set deleted_at=NOW() WHERE id=$ctx.args.id", "SELECT * FROM <name-of-table> WHERE id=$ctx.args.id"]
}

Sample mutation response VTL with support for handling AWSDateTime

#set ( $index = -1)
#set ( $result = $util.parseJson($ctx.result) )
#set ( $meta = $result.sqlStatementResults[1].columnMetadata)
#foreach ($column in $meta)
    #set ($index = $index + 1)
    #if ( $column["typeName"] == "timestamptz" )
        #set ($time = $result["sqlStatementResults"][1]["records"][0][$index]["stringValue"] )
        #set ( $nowEpochMillis = $util.time.parseFormattedToEpochMilliSeconds("$time.substring(0,19)+0000", "yyyy-MM-dd HH:mm:ssZ") )
        #set ( $isoDateTime = $util.time.epochMilliSecondsToISO8601($nowEpochMillis) )
        $util.qr( $result["sqlStatementResults"][1]["records"][0][$index].put("stringValue", "$isoDateTime") )
    #end
#end
#set ( $res = $util.parseJson($util.rds.toJsonString($util.toJson($result)))[1][0] )
#set ( $response = {} )
#foreach($mapKey in $res.keySet())
    #set ( $s = $mapKey.split("_") )
    #set ( $camelCase="" )
    #set ( $isFirst=true )
    #foreach($entry in $s)
        #if ( $isFirst )
          #set ( $first = $entry.substring(0,1) )
        #else
          #set ( $first = $entry.substring(0,1).toUpperCase() )
        #end
        #set ( $isFirst=false )
        #set ( $stringLength = $entry.length() )
        #set ( $remaining = $entry.substring(1, $stringLength) )
        #set ( $camelCase = "$camelCase$first$remaining" )
    #end
    $util.qr( $response.put("$camelCase", $res[$mapKey]) )
#end
$utils.toJson($response)

Using Variable Map

Variable map support is limited and does not differentiate numbers and strings data types, please inject them directly if needed.

Will be escaped properly: null, true, and false values.

{
  "version": "2018-05-29",
  "statements":   [
    "UPDATE <name-of-table> set deleted_at=NOW() WHERE id=:ID",
    "SELECT * FROM <name-of-table> WHERE id=:ID and unix_timestamp > $ctx.args.newerThan"
  ],
  variableMap: {
    ":ID": $ctx.args.id,
##    ":TIMESTAMP": $ctx.args.newerThan -- This will be handled as a string!!!
  }
}

Requires

Author: Serverless-appsync
Source Code: https://github.com/serverless-appsync/serverless-appsync-simulator 
License: MIT License

#serverless #sync #graphql 

Hermann  Frami

Hermann Frami

1651319520

Serverless APIGateway Service Proxy

Serverless APIGateway Service Proxy

This Serverless Framework plugin supports the AWS service proxy integration feature of API Gateway. You can directly connect API Gateway to AWS services without Lambda.

Install

Run serverless plugin install in your Serverless project.

serverless plugin install -n serverless-apigateway-service-proxy

Supported AWS services

Here is a services list which this plugin supports for now. But will expand to other services in the feature. Please pull request if you are intersted in it.

  • Kinesis Streams
  • SQS
  • S3
  • SNS
  • DynamoDB
  • EventBridge

How to use

Define settings of the AWS services you want to integrate under custom > apiGatewayServiceProxies and run serverless deploy.

Kinesis

Sample syntax for Kinesis proxy in serverless.yml.

custom:
  apiGatewayServiceProxies:
    - kinesis: # partitionkey is set apigateway requestid by default
        path: /kinesis
        method: post
        streamName: { Ref: 'YourStream' }
        cors: true
    - kinesis:
        path: /kinesis
        method: post
        partitionKey: 'hardcordedkey' # use static partitionkey
        streamName: { Ref: 'YourStream' }
        cors: true
    - kinesis:
        path: /kinesis/{myKey} # use path parameter
        method: post
        partitionKey:
          pathParam: myKey
        streamName: { Ref: 'YourStream' }
        cors: true
    - kinesis:
        path: /kinesis
        method: post
        partitionKey:
          bodyParam: data.myKey # use body parameter
        streamName: { Ref: 'YourStream' }
        cors: true
    - kinesis:
        path: /kinesis
        method: post
        partitionKey:
          queryStringParam: myKey # use query string param
        streamName: { Ref: 'YourStream' }
        cors: true
    - kinesis: # PutRecords
        path: /kinesis
        method: post
        action: PutRecords
        streamName: { Ref: 'YourStream' }
        cors: true

resources:
  Resources:
    YourStream:
      Type: AWS::Kinesis::Stream
      Properties:
        ShardCount: 1

Sample request after deploying.

curl https://xxxxxxx.execute-api.us-east-1.amazonaws.com/dev/kinesis -d '{"message": "some data"}'  -H 'Content-Type:application/json'

SQS

Sample syntax for SQS proxy in serverless.yml.

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /sqs
        method: post
        queueName: { 'Fn::GetAtt': ['SQSQueue', 'QueueName'] }
        cors: true

resources:
  Resources:
    SQSQueue:
      Type: 'AWS::SQS::Queue'

Sample request after deploying.

curl https://xxxxxx.execute-api.us-east-1.amazonaws.com/dev/sqs -d '{"message": "testtest"}' -H 'Content-Type:application/json'

Customizing request parameters

If you'd like to pass additional data to the integration request, you can do so by including your custom API Gateway request parameters in serverless.yml like so:

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /queue
        method: post
        queueName: !GetAtt MyQueue.QueueName
        cors: true

        requestParameters:
          'integration.request.querystring.MessageAttribute.1.Name': "'cognitoIdentityId'"
          'integration.request.querystring.MessageAttribute.1.Value.StringValue': 'context.identity.cognitoIdentityId'
          'integration.request.querystring.MessageAttribute.1.Value.DataType': "'String'"
          'integration.request.querystring.MessageAttribute.2.Name': "'cognitoAuthenticationProvider'"
          'integration.request.querystring.MessageAttribute.2.Value.StringValue': 'context.identity.cognitoAuthenticationProvider'
          'integration.request.querystring.MessageAttribute.2.Value.DataType': "'String'"

The alternative way to pass MessageAttribute parameters is via a request body mapping template.

Customizing request body mapping templates

See the SQS section under Customizing request body mapping templates

Customizing responses

Simplified response template customization

You can get a simple customization of the responses by providing a template for the possible responses. The template is assumed to be application/json.

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /queue
        method: post
        queueName: !GetAtt MyQueue.QueueName
        cors: true
        response:
          template:
            # `success` is used when the integration response is 200
            success: |-
              { "message: "accepted" }
            # `clientError` is used when the integration response is 400
            clientError: |-
              { "message": "there is an error in your request" }
            # `serverError` is used when the integration response is 500
            serverError: |-
              { "message": "there was an error handling your request" }

Full response customization

If you want more control over the integration response, you can provide an array of objects for the response value:

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /queue
        method: post
        queueName: !GetAtt MyQueue.QueueName
        cors: true
        response:
          - statusCode: 200
            selectionPattern: '2\\d{2}'
            responseParameters: {}
            responseTemplates:
              application/json: |-
                { "message": "accepted" }

The object keys correspond to the API Gateway integration response object.

S3

Sample syntax for S3 proxy in serverless.yml.

custom:
  apiGatewayServiceProxies:
    - s3:
        path: /s3
        method: post
        action: PutObject
        bucket:
          Ref: S3Bucket
        key: static-key.json # use static key
        cors: true

    - s3:
        path: /s3/{myKey} # use path param
        method: get
        action: GetObject
        bucket:
          Ref: S3Bucket
        key:
          pathParam: myKey
        cors: true

    - s3:
        path: /s3
        method: delete
        action: DeleteObject
        bucket:
          Ref: S3Bucket
        key:
          queryStringParam: key # use query string param
        cors: true

resources:
  Resources:
    S3Bucket:
      Type: 'AWS::S3::Bucket'

Sample request after deploying.

curl https://xxxxxx.execute-api.us-east-1.amazonaws.com/dev/s3 -d '{"message": "testtest"}' -H 'Content-Type:application/json'

Customizing request parameters

Similar to the SQS support, you can customize the default request parameters serverless.yml like so:

custom:
  apiGatewayServiceProxies:
    - s3:
        path: /s3
        method: post
        action: PutObject
        bucket:
          Ref: S3Bucket
        cors: true

        requestParameters:
          # if requestParameters has a 'integration.request.path.object' property you should remove the key setting
          'integration.request.path.object': 'context.requestId'
          'integration.request.header.cache-control': "'public, max-age=31536000, immutable'"

Customizing request templates

If you'd like use custom API Gateway request templates, you can do so like so:

custom:
  apiGatewayServiceProxies:
    - s3:
        path: /s3
        method: get
        action: GetObject
        bucket:
          Ref: S3Bucket
        request:
          template:
            application/json: |
              #set ($specialStuff = $context.request.header.x-special)
              #set ($context.requestOverride.path.object = $specialStuff.replaceAll('_', '-'))
              {}

Note that if the client does not provide a Content-Type header in the request, ApiGateway defaults to application/json.

Customize the Path Override in API Gateway

Added the new customization parameter that lets the user set a custom Path Override in API Gateway other than the {bucket}/{object} This parameter is optional and if not set, will fall back to {bucket}/{object} The Path Override will add {bucket}/ automatically in front

Please keep in mind, that key or path.object still needs to be set at the moment (maybe this will be made optional later on with this)

Usage (With 2 Path Parameters (folder and file and a fixed file extension)):

custom:
  apiGatewayServiceProxies:
    - s3:
        path: /s3/{folder}/{file}
        method: get
        action: GetObject
        pathOverride: '{folder}/{file}.xml'
        bucket:
          Ref: S3Bucket
        cors: true

        requestParameters:
          # if requestParameters has a 'integration.request.path.object' property you should remove the key setting
          'integration.request.path.folder': 'method.request.path.folder'
          'integration.request.path.file': 'method.request.path.file'
          'integration.request.path.object': 'context.requestId'
          'integration.request.header.cache-control': "'public, max-age=31536000, immutable'"

This will result in API Gateway setting the Path Override attribute to {bucket}/{folder}/{file}.xml So for example if you navigate to the API Gatway endpoint /language/en it will fetch the file in S3 from {bucket}/language/en.xml

Can use greedy, for deeper Folders

The forementioned example can also be shortened by a greedy approach. Thanks to @taylorreece for mentioning this.

custom:
  apiGatewayServiceProxies:
    - s3:
        path: /s3/{myPath+}
        method: get
        action: GetObject
        pathOverride: '{myPath}.xml'
        bucket:
          Ref: S3Bucket
        cors: true

        requestParameters:
          # if requestParameters has a 'integration.request.path.object' property you should remove the key setting
          'integration.request.path.myPath': 'method.request.path.myPath'
          'integration.request.path.object': 'context.requestId'
          'integration.request.header.cache-control': "'public, max-age=31536000, immutable'"

This will translate for example /s3/a/b/c to a/b/c.xml

Customizing responses

You can get a simple customization of the responses by providing a template for the possible responses. The template is assumed to be application/json.

custom:
  apiGatewayServiceProxies:
    - s3:
        path: /s3
        method: post
        action: PutObject
        bucket:
          Ref: S3Bucket
        key: static-key.json
        response:
          template:
            # `success` is used when the integration response is 200
            success: |-
              { "message: "accepted" }
            # `clientError` is used when the integration response is 400
            clientError: |-
              { "message": "there is an error in your request" }
            # `serverError` is used when the integration response is 500
            serverError: |-
              { "message": "there was an error handling your request" }

SNS

Sample syntax for SNS proxy in serverless.yml.

custom:
  apiGatewayServiceProxies:
    - sns:
        path: /sns
        method: post
        topicName: { 'Fn::GetAtt': ['SNSTopic', 'TopicName'] }
        cors: true

resources:
  Resources:
    SNSTopic:
      Type: AWS::SNS::Topic

Sample request after deploying.

curl https://xxxxxx.execute-api.us-east-1.amazonaws.com/dev/sns -d '{"message": "testtest"}' -H 'Content-Type:application/json'

Customizing responses

Simplified response template customization

You can get a simple customization of the responses by providing a template for the possible responses. The template is assumed to be application/json.

custom:
  apiGatewayServiceProxies:
    - sns:
        path: /sns
        method: post
        topicName: { 'Fn::GetAtt': ['SNSTopic', 'TopicName'] }
        cors: true
        response:
          template:
            # `success` is used when the integration response is 200
            success: |-
              { "message: "accepted" }
            # `clientError` is used when the integration response is 400
            clientError: |-
              { "message": "there is an error in your request" }
            # `serverError` is used when the integration response is 500
            serverError: |-
              { "message": "there was an error handling your request" }

Full response customization

If you want more control over the integration response, you can provide an array of objects for the response value:

custom:
  apiGatewayServiceProxies:
    - sns:
        path: /sns
        method: post
        topicName: { 'Fn::GetAtt': ['SNSTopic', 'TopicName'] }
        cors: true
        response:
          - statusCode: 200
            selectionPattern: '2\d{2}'
            responseParameters: {}
            responseTemplates:
              application/json: |-
                { "message": "accepted" }

The object keys correspond to the API Gateway integration response object.

Content Handling and Pass Through Behaviour customization

If you want to work with binary fata, you can not specify contentHandling and PassThrough inside the request object.

custom:
  apiGatewayServiceProxies:
    - sns:
        path: /sns
        method: post
        topicName: { 'Fn::GetAtt': ['SNSTopic', 'TopicName'] }
        request:
          contentHandling: CONVERT_TO_TEXT
          passThrough: WHEN_NO_TEMPLATES

The allowed values correspond with the API Gateway Method integration for ContentHandling and PassthroughBehavior

DynamoDB

Sample syntax for DynamoDB proxy in serverless.yml. Currently, the supported DynamoDB Operations are PutItem, GetItem and DeleteItem.

custom:
  apiGatewayServiceProxies:
    - dynamodb:
        path: /dynamodb/{id}/{sort}
        method: put
        tableName: { Ref: 'YourTable' }
        hashKey: # set pathParam or queryStringParam as a partitionkey.
          pathParam: id
          attributeType: S
        rangeKey: # required if also using sort key. set pathParam or queryStringParam.
          pathParam: sort
          attributeType: S
        action: PutItem # specify action to the table what you want
        condition: attribute_not_exists(Id) # optional Condition Expressions parameter for the table
        cors: true
    - dynamodb:
        path: /dynamodb
        method: get
        tableName: { Ref: 'YourTable' }
        hashKey:
          queryStringParam: id # use query string parameter
          attributeType: S
        rangeKey:
          queryStringParam: sort
          attributeType: S
        action: GetItem
        cors: true
    - dynamodb:
        path: /dynamodb/{id}
        method: delete
        tableName: { Ref: 'YourTable' }
        hashKey:
          pathParam: id
          attributeType: S
        action: DeleteItem
        cors: true

resources:
  Resources:
    YourTable:
      Type: AWS::DynamoDB::Table
      Properties:
        TableName: YourTable
        AttributeDefinitions:
          - AttributeName: id
            AttributeType: S
          - AttributeName: sort
            AttributeType: S
        KeySchema:
          - AttributeName: id
            KeyType: HASH
          - AttributeName: sort
            KeyType: RANGE
        ProvisionedThroughput:
          ReadCapacityUnits: 1
          WriteCapacityUnits: 1

Sample request after deploying.

curl -XPUT https://xxxxxxx.execute-api.us-east-1.amazonaws.com/dev/dynamodb/<hashKey>/<sortkey> \
 -d '{"name":{"S":"john"},"address":{"S":"xxxxx"}}' \
 -H 'Content-Type:application/json'

EventBridge

Sample syntax for EventBridge proxy in serverless.yml.

custom:
  apiGatewayServiceProxies:
    - eventbridge:  # source and detailType are hardcoded; detail defaults to POST body
        path: /eventbridge
        method: post
        source: 'hardcoded_source'
        detailType: 'hardcoded_detailType'
        eventBusName: { Ref: 'YourBusName' }
        cors: true
    - eventbridge:  # source and detailType as path parameters
        path: /eventbridge/{detailTypeKey}/{sourceKey}
        method: post
        detailType:
          pathParam: detailTypeKey
        source:
          pathParam: sourceKey
        eventBusName: { Ref: 'YourBusName' }
        cors: true
    - eventbridge:  # source, detail, and detailType as body parameters
        path: /eventbridge/{detailTypeKey}/{sourceKey}
        method: post
        detailType:
          bodyParam: data.detailType
        source:
          bodyParam: data.source
        detail:
          bodyParam: data.detail
        eventBusName: { Ref: 'YourBusName' }
        cors: true

resources:
  Resources:
    YourBus:
      Type: AWS::Events::EventBus
      Properties:
        Name: YourEventBus

Sample request after deploying.

curl https://xxxxxxx.execute-api.us-east-1.amazonaws.com/dev/eventbridge -d '{"message": "some data"}'  -H 'Content-Type:application/json'

Common API Gateway features

Enabling CORS

To set CORS configurations for your HTTP endpoints, simply modify your event configurations as follows:

custom:
  apiGatewayServiceProxies:
    - kinesis:
        path: /kinesis
        method: post
        streamName: { Ref: 'YourStream' }
        cors: true

Setting cors to true assumes a default configuration which is equivalent to:

custom:
  apiGatewayServiceProxies:
    - kinesis:
        path: /kinesis
        method: post
        streamName: { Ref: 'YourStream' }
        cors:
          origin: '*'
          headers:
            - Content-Type
            - X-Amz-Date
            - Authorization
            - X-Api-Key
            - X-Amz-Security-Token
            - X-Amz-User-Agent
          allowCredentials: false

Configuring the cors property sets Access-Control-Allow-Origin, Access-Control-Allow-Headers, Access-Control-Allow-Methods,Access-Control-Allow-Credentials headers in the CORS preflight response. To enable the Access-Control-Max-Age preflight response header, set the maxAge property in the cors object:

custom:
  apiGatewayServiceProxies:
    - kinesis:
        path: /kinesis
        method: post
        streamName: { Ref: 'YourStream' }
        cors:
          origin: '*'
          maxAge: 86400

If you are using CloudFront or another CDN for your API Gateway, you may want to setup a Cache-Control header to allow for OPTIONS request to be cached to avoid the additional hop.

To enable the Cache-Control header on preflight response, set the cacheControl property in the cors object:

custom:
  apiGatewayServiceProxies:
    - kinesis:
        path: /kinesis
        method: post
        streamName: { Ref: 'YourStream' }
        cors:
          origin: '*'
          headers:
            - Content-Type
            - X-Amz-Date
            - Authorization
            - X-Api-Key
            - X-Amz-Security-Token
            - X-Amz-User-Agent
          allowCredentials: false
          cacheControl: 'max-age=600, s-maxage=600, proxy-revalidate' # Caches on browser and proxy for 10 minutes and doesnt allow proxy to serve out of date content

Adding Authorization

You can pass in any supported authorization type:

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /sqs
        method: post
        queueName: { 'Fn::GetAtt': ['SQSQueue', 'QueueName'] }
        cors: true

        # optional - defaults to 'NONE'
        authorizationType: 'AWS_IAM' # can be one of ['NONE', 'AWS_IAM', 'CUSTOM', 'COGNITO_USER_POOLS']

        # when using 'CUSTOM' authorization type, one should specify authorizerId
        # authorizerId: { Ref: 'AuthorizerLogicalId' }
        # when using 'COGNITO_USER_POOLS' authorization type, one can specify a list of authorization scopes
        # authorizationScopes: ['scope1','scope2']

resources:
  Resources:
    SQSQueue:
      Type: 'AWS::SQS::Queue'

Source: AWS::ApiGateway::Method docs

Enabling API Token Authentication

You can indicate whether the method requires clients to submit a valid API key using private flag:

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /sqs
        method: post
        queueName: { 'Fn::GetAtt': ['SQSQueue', 'QueueName'] }
        cors: true
        private: true

resources:
  Resources:
    SQSQueue:
      Type: 'AWS::SQS::Queue'

which is the same syntax used in Serverless framework.

Source: Serverless: Setting API keys for your Rest API

Source: AWS::ApiGateway::Method docs

Using a Custom IAM Role

By default, the plugin will generate a role with the required permissions for each service type that is configured.

You can configure your own role by setting the roleArn attribute:

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /sqs
        method: post
        queueName: { 'Fn::GetAtt': ['SQSQueue', 'QueueName'] }
        cors: true
        roleArn: # Optional. A default role is created when not configured
          Fn::GetAtt: [CustomS3Role, Arn]

resources:
  Resources:
    SQSQueue:
      Type: 'AWS::SQS::Queue'
    CustomS3Role:
      # Custom Role definition
      Type: 'AWS::IAM::Role'

Customizing API Gateway parameters

The plugin allows one to specify which parameters the API Gateway method accepts.

A common use case is to pass custom data to the integration request:

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /sqs
        method: post
        queueName: { 'Fn::GetAtt': ['SqsQueue', 'QueueName'] }
        cors: true
        acceptParameters:
          'method.request.header.Custom-Header': true
        requestParameters:
          'integration.request.querystring.MessageAttribute.1.Name': "'custom-Header'"
          'integration.request.querystring.MessageAttribute.1.Value.StringValue': 'method.request.header.Custom-Header'
          'integration.request.querystring.MessageAttribute.1.Value.DataType': "'String'"
resources:
  Resources:
    SqsQueue:
      Type: 'AWS::SQS::Queue'

Any published SQS message will have the Custom-Header value added as a message attribute.

Customizing request body mapping templates

Kinesis

If you'd like to add content types or customize the default templates, you can do so by including your custom API Gateway request mapping template in serverless.yml like so:

# Required for using Fn::Sub
plugins:
  - serverless-cloudformation-sub-variables

custom:
  apiGatewayServiceProxies:
    - kinesis:
        path: /kinesis
        method: post
        streamName: { Ref: 'MyStream' }
        request:
          template:
            text/plain:
              Fn::Sub:
                - |
                  #set($msgBody = $util.parseJson($input.body))
                  #set($msgId = $msgBody.MessageId)
                  {
                      "Data": "$util.base64Encode($input.body)",
                      "PartitionKey": "$msgId",
                      "StreamName": "#{MyStreamArn}"
                  }
                - MyStreamArn:
                    Fn::GetAtt: [MyStream, Arn]

It is important that the mapping template will return a valid application/json string

Source: How to connect SNS to Kinesis for cross-account delivery via API Gateway

SQS

Customizing SQS request templates requires us to force all requests to use an application/x-www-form-urlencoded style body. The plugin sets the Content-Type header to application/x-www-form-urlencoded for you, but API Gateway will still look for the template under the application/json request template type, so that is where you need to configure you request body in serverless.yml:

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /{version}/event/receiver
        method: post
        queueName: { 'Fn::GetAtt': ['SqsQueue', 'QueueName'] }
        request:
          template:
            application/json: |-
              #set ($body = $util.parseJson($input.body))
              Action=SendMessage##
              &MessageGroupId=$util.urlEncode($body.event_type)##
              &MessageDeduplicationId=$util.urlEncode($body.event_id)##
              &MessageAttribute.1.Name=$util.urlEncode("X-Custom-Signature")##
              &MessageAttribute.1.Value.DataType=String##
              &MessageAttribute.1.Value.StringValue=$util.urlEncode($input.params("X-Custom-Signature"))##
              &MessageBody=$util.urlEncode($input.body)

Note that the ## at the end of each line is an empty comment. In VTL this has the effect of stripping the newline from the end of the line (as it is commented out), which makes API Gateway read all the lines in the template as one line.

Be careful when mixing additional requestParameters into your SQS endpoint as you may overwrite the integration.request.header.Content-Type and stop the request template from being parsed correctly. You may also unintentionally create conflicts between parameters passed using requestParameters and those in your request template. Typically you should only use the request template if you need to manipulate the incoming request body in some way.

Your custom template must also set the Action and MessageBody parameters, as these will not be added for you by the plugin.

When using a custom request body, headers sent by a client will no longer be passed through to the SQS queue (PassthroughBehavior is automatically set to NEVER). You will need to pass through headers sent by the client explicitly in the request body. Also, any custom querystring parameters in the requestParameters array will be ignored. These also need to be added via the custom request body.

SNS

Similar to the Kinesis support, you can customize the default request mapping templates in serverless.yml like so:

# Required for using Fn::Sub
plugins:
  - serverless-cloudformation-sub-variables

custom:
  apiGatewayServiceProxies:
    - kinesis:
        path: /sns
        method: post
        topicName: { 'Fn::GetAtt': ['SNSTopic', 'TopicName'] }
        request:
          template:
            application/json:
              Fn::Sub:
                - "Action=Publish&Message=$util.urlEncode('This is a fixed message')&TopicArn=$util.urlEncode('#{MyTopicArn}')"
                - MyTopicArn: { Ref: MyTopic }

It is important that the mapping template will return a valid application/x-www-form-urlencoded string

Source: Connect AWS API Gateway directly to SNS using a service integration

Custom response body mapping templates

You can customize the response body by providing mapping templates for success, server errors (5xx) and client errors (4xx).

Templates must be in JSON format. If a template isn't provided, the integration response will be returned as-is to the client.

Kinesis Example

custom:
  apiGatewayServiceProxies:
    - kinesis:
        path: /kinesis
        method: post
        streamName: { Ref: 'MyStream' }
        response:
          template:
            success: |
              {
                "success": true
              }
            serverError: |
              {
                "success": false,
                "errorMessage": "Server Error"
              }
            clientError: |
              {
                "success": false,
                "errorMessage": "Client Error"
              }

Author: Serverless-operations
Source Code: https://github.com/serverless-operations/serverless-apigateway-service-proxy 
License: 

#serverless #api #aws 

Lawson  Wehner

Lawson Wehner

1672833558

How to Use Bash Set Command

Bash has many environment variables for various purposes. The set command of Bash is used to modify or display the different attributes and parameters of the shell environment. This command has many options to perform the different types of tasks. The uses of set command for various purposes are described in this tutorial.

Syntax

set [options] [arguments]

This command can be used with different types of options and arguments for different purposes. If no option or argument is used with this command, the shell variables are printed. The minus sign (-) is used with the command’s option to enable that option and the plus sign (+) is used with the command’s option to disable that option.

Exit Values of Set Command

Three exit values can be returned by this command which are mentioned in the following:

  1. Zero (0) is returned to complete the task successfully.
  2. One (1) is returned if a failure occurs for any invalid argument.
  3. One (1) is returned if a failure occurs for a missing argument.

Different Options of Set Command

The purposes of the most commonly used options of the set command are described in this part of the tutorial.

OptionPurpose
-aIt defines those variables or functions which are created or modified or exported.
-bIt informs the job termination.
-BTo do the task of the brace expansion.
-CIt disables the overwriting feature of the existing file.
-eIt exits for non-zero exit status value.
-fIt disables the filename generation task.
-hIt saves the location of the command where it has been used.
-mIt enables job control.
-nIt reads the commands.
-tIt exits from the command after executing a single command.
-uIt traces the unset variables.
-vIt prints the shell input lines.
-xIt displays the commands and their attributes sequentially. It is mainly used to debug the script.

Different Examples of the Set Command

The uses of set command with different options are shown in this part of this tutorial.

Example 1: Using the Set Command with -a Option

Create a Bash file with the following script that enables the “set –a” command and initialize three variables named $v1, $v2, and $v3. These variables can be accessed after executing the script.

#!/bin/bash
#Enable -a option to read the values of the variables
set -a
#Initialize three variables
v1=78
v2=50
v3=35

Run the script using the following command:

$ bash set1.bash

Read the values of the variable using the “echo” command:

$ echo $v1 $v2 $v3

The following output appears after executing the previous commands:

Example 2: Using the Set Command with -C Option

Run the “cat” command to create a text file named testfile.txt. Next, run the “set –C” command to disable the overwriting feature. Next, run the “cat” command again to overwrite the file to check whether the overwriting feature is disabled or not.

$ cat > testfile.txt
$ set -C
$ cat > testfile.txt

The following output appears after executing the previous commands:

Example 3: Using the Set Command with -x Option

Create a Bash file with the following script that declares a numeric array of 6 elements. The values of the array are printed using for loop.

#!/bin/bash
#Declare an array
arr=(67 3 90 56 2 80)
#iterate the array values
for value in ${arr[@]}
do
   echo $value
done

Execute the previous script by the following command:

$ bash set3.bash

Enable the debugging option using the following command:

$ set -x

The following output appears after executing the provided commands:

Example 4: Using the Set Command with -e Option

Create a Bash file with the following script that reads a file using the “cat” command before and after using the “set –e” command.

#!/bin/bash
#Read a non-existing file without setting set -e
cat myfile.txt
echo "Reading a file..."
#Set the set command with -e option
set -e
#Read a non-existing file after setting set -e
cat myfile.txt
echo "Reading a file..."

The following output appears after executing the provided commands. The first error message is shown because the file does not exist in the current location. The next message is then printed. But after executing the “set –e” command, the execution stops after displaying the error message.

Example 5: Using the Set Command with -u Option

Create a Bash file with the following script that initializes a variable but prints the initialized and uninitialized variable before and after using the “set –u” command.

#!/bin/bash
#Assign value to a variable
strvar="Bash Programming"
printf "$strvar $intvar\n"
#Set the set command with -u option
set -u
#Assign value to a variable
strvar="Bash Programming"
printf "\n$strvar $intvar\n"

The following output appears after executing the previous script. Here, the error is printed for the uninitialized variable:

Example 6: Using the Set Command with -f Option

Run the following command to print the list of all text files of the current location:

$ ls *.txt

Run the following command to disable the globbing:

$ set –f

Run the following command again to print the list of all text files of the current location:

$ ls *.txt

The following output appears after executing the previous script. Based on the output, the “ls *.txt” command did not work after setting “set –f” command:

Example 7: Split the String Using the Set Command with Variable

Create a Bash file with the following script that splits the string value based on the space using the “set – variable” command. The split values are printed later.

#!/bin/bash
#Define a string variable
myvar="Learn bash programming"
#Set the set command without option and with variable
set -- $myvar
#Print the split value
printf "$1\n$2\n$3\n"

The following output appears after executing the previous script. The string value is divided into three parts based on the space that is printed:

Conclusion

The uses of the different options of the “set” command are shown in this tutorial using multiple examples to know the basic uses of this command.

Original article source at: https://linuxhint.com/

#bash #set #command 

Anissa  Barrows

Anissa Barrows

1669099573

What Is Face Recognition? Facial Recognition with Python and OpenCV

In this article, we will know what is face recognition and how is different from face detection. We will go briefly over the theory of face recognition and then jump on to the coding section. At the end of this article, you will be able to make a face recognition program for recognizing faces in images as well as on a live webcam feed.

What is Face Detection?

In computer vision, one essential problem we are trying to figure out is to automatically detect objects in an image without human intervention. Face detection can be thought of as such a problem where we detect human faces in an image. There may be slight differences in the faces of humans but overall, it is safe to say that there are certain features that are associated with all the human faces. There are various face detection algorithms but Viola-Jones Algorithm is one of the oldest methods that is also used today and we will use the same later in the article. You can go through the Viola-Jones Algorithm after completing this article as I’ll link it at the end of this article.

Face detection is usually the first step towards many face-related technologies, such as face recognition or verification. However, face detection can have very useful applications. The most successful application of face detection would probably be photo taking. When you take a photo of your friends, the face detection algorithm built into your digital camera detects where the faces are and adjusts the focus accordingly.

For a tutorial on Real-Time Face detection

What is Face Recognition?

face recognition

Now that we are successful in making such algorithms that can detect faces, can we also recognise whose faces are they?

Face recognition is a method of identifying or verifying the identity of an individual using their face. There are various algorithms that can do face recognition but their accuracy might vary. Here I am going to describe how we do face recognition using deep learning.

So now let us understand how we recognise faces using deep learning. We make use of face embedding in which each face is converted into a vector and this technique is called deep metric learning. Let me further divide this process into three simple steps for easy understanding:

Face Detection: The very first task we perform is detecting faces in the image or video stream. Now that we know the exact location/coordinates of face, we extract this face for further processing ahead.
 

Feature Extraction: Now that we have cropped the face out of the image, we extract features from it. Here we are going to use face embeddings to extract the features out of the face. A neural network takes an image of the person’s face as input and outputs a vector which represents the most important features of a face. In machine learning, this vector is called embedding and thus we call this vector as face embedding. Now how does this help in recognizing faces of different persons? 
 

While training the neural network, the network learns to output similar vectors for faces that look similar. For example, if I have multiple images of faces within different timespan, of course, some of the features of my face might change but not up to much extent. So in this case the vectors associated with the faces are similar or in short, they are very close in the vector space. Take a look at the below diagram for a rough idea:

Now after training the network, the network learns to output vectors that are closer to each other(similar) for faces of the same person(looking similar). The above vectors now transform into:

We are not going to train such a network here as it takes a significant amount of data and computation power to train such networks. We will use a pre-trained network trained by Davis King on a dataset of ~3 million images. The network outputs a vector of 128 numbers which represent the most important features of a face.

Now that we know how this network works, let us see how we use this network on our own data. We pass all the images in our data to this pre-trained network to get the respective embeddings and save these embeddings in a file for the next step.

Comparing faces: Now that we have face embeddings for every face in our data saved in a file, the next step is to recognise a new t image that is not in our data. So the first step is to compute the face embedding for the image using the same network we used above and then compare this embedding with the rest of the embeddings we have. We recognise the face if the generated embedding is closer or similar to any other embedding as shown below:

So we passed two images, one of the images is of Vladimir Putin and other of George W. Bush. In our example above, we did not save the embeddings for Putin but we saved the embeddings of Bush. Thus when we compared the two new embeddings with the existing ones, the vector for Bush is closer to the other face embeddings of Bush whereas the face embeddings of Putin are not closer to any other embedding and thus the program cannot recognise him.

What is OpenCV

In the field of Artificial Intelligence, Computer Vision is one of the most interesting and Challenging tasks. Computer Vision acts like a bridge between Computer Software and visualizations around us. It allows computer software to understand and learn about the visualizations in the surroundings. For Example: Based on the color, shape and size determining the fruit. This task can be very easy for the human brain however in the Computer Vision pipeline, first we gather the data, then we perform the data processing activities and then we train and teach the model to understand how to distinguish between the fruits based on size, shape and color of fruit. 

Currently, various packages are present to perform machine learning, deep learning and computer vision tasks. By far, computer vision is the best module for such complex activities. OpenCV is an open-source library. It is supported by various programming languages such as R, Python. It runs on most of the platforms such as Windows, Linux and MacOS.

To know more about how face recognition works on opencv, check out the free course on face recognition in opencv.

Advantages of OpenCV:

  • OpenCV is an open-source library and is free of cost.
  • As compared to other libraries, it is fast since it is written in C/C++.
  • It works better on System with lesser RAM
  • To supports most of the Operating Systems such as Windows, Linux and MacOS.
  •  

Installation: 

Here we will be focusing on installing OpenCV for python only. We can install OpenCV using pip or conda(for anaconda environment). 

  1. Using pip: 

Using pip, the installation process of openCV can be done by using the following command in the command prompt.

pip install opencv-python

  1. Anaconda:

If you are using anaconda environment, either you can execute the above code in anaconda prompt or you can execute the following code in anaconda prompt.

conda install -c conda-forge opencv

Face Recognition using Python

In this section, we shall implement face recognition using OpenCV and Python. First, let us see the libraries we will need and how to install them:

  • OpenCV
  • dlib
  • Face_recognition

OpenCV is an image and video processing library and is used for image and video analysis, like facial detection, license plate reading, photo editing, advanced robotic vision, optical character recognition, and a whole lot more.
 

The dlib library, maintained by Davis King, contains our implementation of “deep metric learning” which is used to construct our face embeddings used for the actual recognition process.
 

The face_recognition  library, created by Adam Geitgey, wraps around dlib’s facial recognition functionality, and this library is super easy to work with and we will be using this in our code. Remember to install dlib library first before you install face_recognition.
 

To install OpenCV, type in command prompt 
 

pip install opencv-python

I have tried various ways to install dlib on Windows but the easiest of all of them is via Anaconda. First, install Anaconda (here is a guide to install it) and then use this command in your command prompt:
 

conda install -c conda-forge dlib

Next to install face_recognition, type in command prompt

pip install face_recognition

Now that we have all the dependencies installed, let us start coding. We will have to create three files, one will take our dataset and extract face embedding for each face using dlib. Next, we will save these embedding in a file.
 

In the next file we will compare the faces with the existing the recognise faces in images and next we will do the same but recognise faces in live webcam feed
 

Extracting features from Face

First, you need to get a dataset or even create one of you own. Just make sure to arrange all images in folders with each folder containing images of just one person.

Next, save the dataset in a folder the same as you are going to make the file. Now here is the code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

from imutils import paths

import face_recognition

import pickle

import cv2

import os

#get paths of each file in folder named Images

#Images here contains my data(folders of various persons)

imagePaths = list(paths.list_images('Images'))

knownEncodings = []

knownNames = []

# loop over the image paths

for (i, imagePath) in enumerate(imagePaths):

    # extract the person name from the image path

    name = imagePath.split(os.path.sep)[-2]

    # load the input image and convert it from BGR (OpenCV ordering)

    # to dlib ordering (RGB)

    image = cv2.imread(imagePath)

    rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    #Use Face_recognition to locate faces

    boxes = face_recognition.face_locations(rgb,model='hog')

    # compute the facial embedding for the face

    encodings = face_recognition.face_encodings(rgb, boxes)

    # loop over the encodings

    for encoding in encodings:

        knownEncodings.append(encoding)

        knownNames.append(name)

#save emcodings along with their names in dictionary data

data = {"encodings": knownEncodings, "names": knownNames}

#use pickle to save data into a file for later use

f = open("face_enc", "wb")

f.write(pickle.dumps(data))

f.close()

Now that we have stored the embedding in a file named “face_enc”, we can use them to recognise faces in images or live video stream.

Face Recognition in Live webcam Feed

Here is the script to recognise faces on a live webcam feed:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

import face_recognition

import imutils

import pickle

import time

import cv2

import os

#find path of xml file containing haarcascade file

cascPathface = os.path.dirname(

 cv2.__file__) + "/data/haarcascade_frontalface_alt2.xml"

# load the harcaascade in the cascade classifier

faceCascade = cv2.CascadeClassifier(cascPathface)

# load the known faces and embeddings saved in last file

data = pickle.loads(open('face_enc', "rb").read())

print("Streaming started")

video_capture = cv2.VideoCapture(0)

# loop over frames from the video file stream

while True:

    # grab the frame from the threaded video stream

    ret, frame = video_capture.read()

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    faces = faceCascade.detectMultiScale(gray,

                                         scaleFactor=1.1,

                                         minNeighbors=5,

                                         minSize=(60, 60),

                                         flags=cv2.CASCADE_SCALE_IMAGE)

    # convert the input frame from BGR to RGB

    rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

    # the facial embeddings for face in input

    encodings = face_recognition.face_encodings(rgb)

    names = []

    # loop over the facial embeddings incase

    # we have multiple embeddings for multiple fcaes

    for encoding in encodings:

       #Compare encodings with encodings in data["encodings"]

       #Matches contain array with boolean values and True for the embeddings it matches closely

       #and False for rest

        matches = face_recognition.compare_faces(data["encodings"],

         encoding)

        #set name =inknown if no encoding matches

        name = "Unknown"

        # check to see if we have found a match

        if True in matches:

            #Find positions at which we get True and store them

            matchedIdxs = [i for (i, b) in enumerate(matches) if b]

            counts = {}

            # loop over the matched indexes and maintain a count for

            # each recognized face face

            for i in matchedIdxs:

                #Check the names at respective indexes we stored in matchedIdxs

                name = data["names"][i]

                #increase count for the name we got

                counts[name] = counts.get(name, 0) + 1

            #set name which has highest count

            name = max(counts, key=counts.get)

        # update the list of names

        names.append(name)

        # loop over the recognized faces

        for ((x, y, w, h), name) in zip(faces, names):

            # rescale the face coordinates

            # draw the predicted face name on the image

            cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)

            cv2.putText(frame, name, (x, y), cv2.FONT_HERSHEY_SIMPLEX,

             0.75, (0, 255, 0), 2)

    cv2.imshow("Frame", frame)

    if cv2.waitKey(1) & 0xFF == ord('q'):

        break

video_capture.release()

cv2.destroyAllWindows()

https://www.youtube.com/watch?v=fLnGdkZxRkg

Although in the example above we have used haar cascade to detect faces, you can also use face_recognition.face_locations to detect a face as we did in the previous script

Face Recognition in Images

The script for detecting and recognising faces in images is almost similar to what you saw above. Try it yourself and if you can’t take a look at the code below:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

import face_recognition

import imutils

import pickle

import time

import cv2

import os

#find path of xml file containing haarcascade file

cascPathface = os.path.dirname(

 cv2.__file__) + "/data/haarcascade_frontalface_alt2.xml"

# load the harcaascade in the cascade classifier

faceCascade = cv2.CascadeClassifier(cascPathface)

# load the known faces and embeddings saved in last file

data = pickle.loads(open('face_enc', "rb").read())

#Find path to the image you want to detect face and pass it here

image = cv2.imread(Path-to-img)

rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

#convert image to Greyscale for haarcascade

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

faces = faceCascade.detectMultiScale(gray,

                                     scaleFactor=1.1,

                                     minNeighbors=5,

                                     minSize=(60, 60),

                                     flags=cv2.CASCADE_SCALE_IMAGE)

# the facial embeddings for face in input

encodings = face_recognition.face_encodings(rgb)

names = []

# loop over the facial embeddings incase

# we have multiple embeddings for multiple fcaes

for encoding in encodings:

    #Compare encodings with encodings in data["encodings"]

    #Matches contain array with boolean values and True for the embeddings it matches closely

    #and False for rest

    matches = face_recognition.compare_faces(data["encodings"],

    encoding)

    #set name =inknown if no encoding matches

    name = "Unknown"

    # check to see if we have found a match

    if True in matches:

        #Find positions at which we get True and store them

        matchedIdxs = [i for (i, b) in enumerate(matches) if b]

        counts = {}

        # loop over the matched indexes and maintain a count for

        # each recognized face face

        for i in matchedIdxs:

            #Check the names at respective indexes we stored in matchedIdxs

            name = data["names"][i]

            #increase count for the name we got

            counts[name] = counts.get(name, 0) + 1

            #set name which has highest count

            name = max(counts, key=counts.get)

        # update the list of names

        names.append(name)

        # loop over the recognized faces

        for ((x, y, w, h), name) in zip(faces, names):

            # rescale the face coordinates

            # draw the predicted face name on the image

            cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)

            cv2.putText(image, name, (x, y), cv2.FONT_HERSHEY_SIMPLEX,

             0.75, (0, 255, 0), 2)

    cv2.imshow("Frame", image)

    cv2.waitKey(0)

Output:

InputOutput

This brings us to the end of this article where we learned about face recognition.

You can also upskill with Great Learning’s PGP Artificial Intelligence and Machine Learning Course. The course offers mentorship from industry leaders, and you will also have the opportunity to work on real-time industry-relevant projects.


Original article source at: https://www.mygreatlearning.com

#python #opencv 

Dylan  Iqbal

Dylan Iqbal

1561523460

Matplotlib Cheat Sheet: Plotting in Python

This Matplotlib cheat sheet introduces you to the basics that you need to plot your data with Python and includes code samples.

Data visualization and storytelling with your data are essential skills that every data scientist needs to communicate insights gained from analyses effectively to any audience out there. 

For most beginners, the first package that they use to get in touch with data visualization and storytelling is, naturally, Matplotlib: it is a Python 2D plotting library that enables users to make publication-quality figures. But, what might be even more convincing is the fact that other packages, such as Pandas, intend to build more plotting integration with Matplotlib as time goes on.

However, what might slow down beginners is the fact that this package is pretty extensive. There is so much that you can do with it and it might be hard to still keep a structure when you're learning how to work with Matplotlib.   

DataCamp has created a Matplotlib cheat sheet for those who might already know how to use the package to their advantage to make beautiful plots in Python, but that still want to keep a one-page reference handy. Of course, for those who don't know how to work with Matplotlib, this might be the extra push be convinced and to finally get started with data visualization in Python. 

You'll see that this cheat sheet presents you with the six basic steps that you can go through to make beautiful plots. 

Check out the infographic by clicking on the button below:

Python Matplotlib cheat sheet

With this handy reference, you'll familiarize yourself in no time with the basics of Matplotlib: you'll learn how you can prepare your data, create a new plot, use some basic plotting routines to your advantage, add customizations to your plots, and save, show and close the plots that you make.

What might have looked difficult before will definitely be more clear once you start using this cheat sheet! Use it in combination with the Matplotlib Gallery, the documentation.

Matplotlib 

Matplotlib is a Python 2D plotting library which produces publication-quality figures in a variety of hardcopy formats and interactive environments across platforms.

Prepare the Data 

1D Data 

>>> import numpy as np
>>> x = np.linspace(0, 10, 100)
>>> y = np.cos(x)
>>> z = np.sin(x)

2D Data or Images 

>>> data = 2 * np.random.random((10, 10))
>>> data2 = 3 * np.random.random((10, 10))
>>> Y, X = np.mgrid[-3:3:100j, -3:3:100j]
>>> U = 1 X** 2 + Y
>>> V = 1 + X Y**2
>>> from matplotlib.cbook import get_sample_data
>>> img = np.load(get_sample_data('axes_grid/bivariate_normal.npy'))

Create Plot

>>> import matplotlib.pyplot as plt

Figure 

>>> fig = plt.figure()
>>> fig2 = plt.figure(figsize=plt.figaspect(2.0))

Axes 

>>> fig.add_axes()
>>> ax1 = fig.add_subplot(221) #row-col-num
>>> ax3 = fig.add_subplot(212)
>>> fig3, axes = plt.subplots(nrows=2,ncols=2)
>>> fig4, axes2 = plt.subplots(ncols=3)

Save Plot 

>>> plt.savefig('foo.png') #Save figures
>>> plt.savefig('foo.png',  transparent=True) #Save transparent figures

Show Plot

>>> plt.show()

Plotting Routines 

1D Data 

>>> fig, ax = plt.subplots()
>>> lines = ax.plot(x,y) #Draw points with lines or markers connecting them
>>> ax.scatter(x,y) #Draw unconnected points, scaled or colored
>>> axes[0,0].bar([1,2,3],[3,4,5]) #Plot vertical rectangles (constant width)
>>> axes[1,0].barh([0.5,1,2.5],[0,1,2]) #Plot horiontal rectangles (constant height)
>>> axes[1,1].axhline(0.45) #Draw a horizontal line across axes
>>> axes[0,1].axvline(0.65) #Draw a vertical line across axes
>>> ax.fill(x,y,color='blue') #Draw filled polygons
>>> ax.fill_between(x,y,color='yellow') #Fill between y values and 0

2D Data 

>>> fig, ax = plt.subplots()
>>> im = ax.imshow(img, #Colormapped or RGB arrays
      cmap= 'gist_earth', 
      interpolation= 'nearest',
      vmin=-2,
      vmax=2)
>>> axes2[0].pcolor(data2) #Pseudocolor plot of 2D array
>>> axes2[0].pcolormesh(data) #Pseudocolor plot of 2D array
>>> CS = plt.contour(Y,X,U) #Plot contours
>>> axes2[2].contourf(data1) #Plot filled contours
>>> axes2[2]= ax.clabel(CS) #Label a contour plot

Vector Fields 

>>> axes[0,1].arrow(0,0,0.5,0.5) #Add an arrow to the axes
>>> axes[1,1].quiver(y,z) #Plot a 2D field of arrows
>>> axes[0,1].streamplot(X,Y,U,V) #Plot a 2D field of arrows

Data Distributions 

>>> ax1.hist(y) #Plot a histogram
>>> ax3.boxplot(y) #Make a box and whisker plot
>>> ax3.violinplot(z)  #Make a violin plot

Plot Anatomy & Workflow 

Plot Anatomy 

 y-axis      

                           x-axis 

Workflow 

The basic steps to creating plots with matplotlib are:

1 Prepare Data
2 Create Plot
3 Plot
4 Customized Plot
5 Save Plot
6 Show Plot

>>> import matplotlib.pyplot as plt
>>> x = [1,2,3,4]  #Step 1
>>> y = [10,20,25,30] 
>>> fig = plt.figure() #Step 2
>>> ax = fig.add_subplot(111) #Step 3
>>> ax.plot(x, y, color= 'lightblue', linewidth=3)  #Step 3, 4
>>> ax.scatter([2,4,6],
          [5,15,25],
          color= 'darkgreen',
          marker= '^' )
>>> ax.set_xlim(1, 6.5)
>>> plt.savefig('foo.png' ) #Step 5
>>> plt.show() #Step 6

Close and Clear 

>>> plt.cla()  #Clear an axis
>>> plt.clf(). #Clear the entire figure
>>> plt.close(). #Close a window

Plotting Customize Plot 

Colors, Color Bars & Color Maps 

>>> plt.plot(x, x, x, x**2, x, x** 3)
>>> ax.plot(x, y, alpha = 0.4)
>>> ax.plot(x, y, c= 'k')
>>> fig.colorbar(im, orientation= 'horizontal')
>>> im = ax.imshow(img,
            cmap= 'seismic' )

Markers 

>>> fig, ax = plt.subplots()
>>> ax.scatter(x,y,marker= ".")
>>> ax.plot(x,y,marker= "o")

Linestyles 

>>> plt.plot(x,y,linewidth=4.0)
>>> plt.plot(x,y,ls= 'solid') 
>>> plt.plot(x,y,ls= '--') 
>>> plt.plot(x,y,'--' ,x**2,y**2,'-.' ) 
>>> plt.setp(lines,color= 'r',linewidth=4.0)

Text & Annotations 

>>> ax.text(1,
           -2.1, 
           'Example Graph', 
            style= 'italic' )
>>> ax.annotate("Sine", 
xy=(8, 0),
xycoords= 'data', 
xytext=(10.5, 0),
textcoords= 'data', 
arrowprops=dict(arrowstyle= "->", 
connectionstyle="arc3"),)

Mathtext 

>>> plt.title(r '$sigma_i=15$', fontsize=20)

Limits, Legends and Layouts 

Limits & Autoscaling 

>>> ax.margins(x=0.0,y=0.1) #Add padding to a plot
>>> ax.axis('equal')  #Set the aspect ratio of the plot to 1
>>> ax.set(xlim=[0,10.5],ylim=[-1.5,1.5])  #Set limits for x-and y-axis
>>> ax.set_xlim(0,10.5) #Set limits for x-axis

Legends 

>>> ax.set(title= 'An Example Axes',  #Set a title and x-and y-axis labels
            ylabel= 'Y-Axis', 
            xlabel= 'X-Axis')
>>> ax.legend(loc= 'best')  #No overlapping plot elements

Ticks 

>>> ax.xaxis.set(ticks=range(1,5),  #Manually set x-ticks
             ticklabels=[3,100, 12,"foo" ])
>>> ax.tick_params(axis= 'y', #Make y-ticks longer and go in and out
             direction= 'inout', 
              length=10)

Subplot Spacing 

>>> fig3.subplots_adjust(wspace=0.5,   #Adjust the spacing between subplots
             hspace=0.3,
             left=0.125,
             right=0.9,
             top=0.9,
             bottom=0.1)
>>> fig.tight_layout() #Fit subplot(s) in to the figure area

Axis Spines 

>>> ax1.spines[ 'top'].set_visible(False) #Make the top axis line for a plot invisible
>>> ax1.spines['bottom' ].set_position(( 'outward',10))  #Move the bottom axis line outward

Have this Cheat Sheet at your fingertips

Original article source at https://www.datacamp.com

#matplotlib #cheatsheet #python