1629348905
alex
alex - command line tool for working with Flutter projects.
It's recommended to install the package globally and use as an executable.
You can install the package from the command line:
with pub:
$ pub global activate alex
with Flutter:
$ flutter pub global activate alex
And follow the instructions (you should add PATH variable on unix systems).
Now you can execute commands with
$ alex
⚠️ Attention! If you have only Flutter installed and doesn't have separate Dart SDK installed, then you haven't pub command. So when you try to run alex you will see something like:
~/Development/flutter/.pub-cache/bin/alex: line 17: pub: command not found
There are more than one solution for this. You can just install seperate Dart SDK if you want.
Or, if you don't want to do it, you can edit specified file (~/Development/flutter/.pub-cache/bin/alex in this example). All you need to change in it - it's use flutter pub instead of pub, so replace pub global run alex:alex "$@" with flutter pub global run alex:alex "$@", save the file, and you are all set.
alex is working in the current directory. So if you want to work with a specific project, you should run the command in project's root directory.
To provide more convinient way to work with project, alex can use some configuration. You can define configuration in your project's pubspec.yaml, section alex, or in separate file alex.yaml.
You can see all configuration options and it's default values in the example config /alex.yaml.
More about specified configuration parameters - in modules descriptions in the Commands section.
// TODO @chessmax: release command description
Work with localization files.
alex l10n extract
alex l10n generate
alex l10n to_xml
Also you can export json localization to xml. Json localization can be used for a backend localization.
alex l10n --from=json --source=/path/to/json/localization/dir
It's for working with translations from Google Play.
You can export xml translations to the project arb translations:
alex l10n from_xml
Also you can export to the Android localization:
alex l10n from_xml --to=anroid
And to the iOS localization:
alex l10n from_xml --to=ios
Localization xml files for iOS should start with ios_ prefix.
When you download and unzip translations from Google Play, you need to import them in project's xml files. You can copy it all manually, but it's very inconvenient. So you can use the command import_xml to do it.
alex l10n import_xml --path=path/to/dir/with/translations
Work with code.
Generate JsonSerializable and other.
alex code gen
Work with pubspec and dependencies.
alex pubspec <command>
или
alex pub <command>
Update specified dependency. It's useful when you want to update dependecy for git.
alex pubspec update
and input package name. Or define it right in a command:
alex pubspec update -dPACKAGE_NAME
Run pub get for all projects/packages in folder (recursively). It's useful when you have multiple packages or project and package in single repository.
alex pubspec get
or
alex pub get
You can install the package from the command line:
$ dart pub global activate alex
The package has the following executables:
$ alex
Run this command:
With Dart:
$ dart pub add alex
With Flutter:
$ flutter pub add alex
This will add a line like this to your package's pubspec.yaml (and run an implicit dart pub get):
dependencies:
alex: ^0.4.2-dev.0
Alternatively, your editor might support dart pub get or flutter pub get. Check the docs for your editor to learn more.
Now in your Dart code, you can use:
import 'package:alex/alex.dart';
Download Details:
Author: Innim
Source Code: https://github.com/Innim/alex
1597014000
Flutter Google cross-platform UI framework has released a new version 1.20 stable.
Flutter is Google’s UI framework to make apps for Android, iOS, Web, Windows, Mac, Linux, and Fuchsia OS. Since the last 2 years, the flutter Framework has already achieved popularity among mobile developers to develop Android and iOS apps. In the last few releases, Flutter also added the support of making web applications and desktop applications.
Last month they introduced the support of the Linux desktop app that can be distributed through Canonical Snap Store(Snapcraft), this enables the developers to publish there Linux desktop app for their users and publish on Snap Store. If you want to learn how to Publish Flutter Desktop app in Snap Store that here is the tutorial.
Flutter 1.20 Framework is built on Google’s made Dart programming language that is a cross-platform language providing native performance, new UI widgets, and other more features for the developer usage.
Here are the few key points of this release:
In this release, they have got multiple performance improvements in the Dart language itself. A new improvement is to reduce the app size in the release versions of the app. Another performance improvement is to reduce junk in the display of app animation by using the warm-up phase.
If your app is junk information during the first run then the Skia Shading Language shader provides for pre-compilation as part of your app’s build. This can speed it up by more than 2x.
Added a better support of mouse cursors for web and desktop flutter app,. Now many widgets will show cursor on top of them or you can specify the type of supported cursor you want.
Autofill was already supported in native applications now its been added to the Flutter SDK. Now prefilled information stored by your OS can be used for autofill in the application. This feature will be available soon on the flutter web.
A new widget for interaction
InteractiveViewer
is a new widget design for common interactions in your app like pan, zoom drag and drop for resizing the widget. Informations on this you can check more on this API documentation where you can try this widget on the DartPad. In this release, drag-drop has more features added like you can know precisely where the drop happened and get the position.
In this new release, there are many pre-existing widgets that were updated to match the latest material guidelines, these updates include better interaction with Slider
and RangeSlider
, DatePicker
with support for date range and time picker with the new style.
pubspec.yaml
formatOther than these widget updates there is some update within the project also like in pubspec.yaml
file format. If you are a flutter plugin publisher then your old pubspec.yaml
is no longer supported to publish a plugin as the older format does not specify for which platform plugin you are making. All existing plugin will continue to work with flutter apps but you should make a plugin update as soon as possible.
Visual Studio code flutter extension got an update in this release. You get a preview of new features where you can analyze that Dev tools in your coding workspace. Enable this feature in your vs code by _dart.previewEmbeddedDevTools_
setting. Dart DevTools menu you can choose your favorite page embed on your code workspace.
The updated the Dev tools comes with the network page that enables network profiling. You can track the timings and other information like status and content type of your** network calls** within your app. You can also monitor gRPC traffic.
Pigeon is a command-line tool that will generate types of safe platform channels without adding additional dependencies. With this instead of manually matching method strings on platform channel and serializing arguments, you can invoke native class and pass nonprimitive data objects by directly calling the Dart
method.
There is still a long list of updates in the new version of Flutter 1.2 that we cannot cover in this blog. You can get more details you can visit the official site to know more. Also, you can subscribe to the Navoki newsletter to get updates on these features and upcoming new updates and lessons. In upcoming new versions, we might see more new features and improvements.
You can get more free Flutter tutorials you can follow these courses:
#dart #developers #flutter #app developed #dart devtools in visual studio code #firebase local emulator suite in flutter #flutter autofill #flutter date picker #flutter desktop linux app build and publish on snapcraft store #flutter pigeon #flutter range slider #flutter slider #flutter time picker #flutter tutorial #flutter widget #google flutter #linux #navoki #pubspec format #setup flutter desktop on windows
1598396940
Flutter is an open-source UI toolkit for mobile developers, so they can use it to build native-looking** Android and iOS** applications from the same code base for both platforms. Flutter is also working to make Flutter apps for Web, PWA (progressive Web-App) and Desktop platform (Windows,macOS,Linux).
Flutter was officially released in December 2018. Since then, it has gone a much stronger flutter community.
There has been much increase in flutter developers, flutter packages, youtube tutorials, blogs, flutter examples apps, official and private events, and more. Flutter is now on top software repos based and trending on GitHub.
What is Flutter? this question comes to many new developer’s mind.
Flutter means flying wings quickly, and lightly but obviously, this doesn’t apply in our SDK.
So Flutter was one of the companies that were acquired by **Google **for around $40 million. That company was based on providing gesture detection and recognition from a standard webcam. But later when the Flutter was going to release in alpha version for developer it’s name was Sky, but since Google already owned Flutter name, so they rename it to Flutter.
Flutter is used in many startup companies nowadays, and even some MNCs are also adopting Flutter as a mobile development framework. Many top famous companies are using their apps in Flutter. Some of them here are
and many more other apps. Mobile development companies also adopted Flutter as a service for their clients. Even I was one of them who developed flutter apps as a freelancer and later as an IT company for mobile apps.
#dart #flutter #uncategorized #flutter framework #flutter jobs #flutter language #flutter meaning #flutter meaning in hindi #google flutter #how does flutter work #what is flutter
1576313814
In this tutorial, I am going to show you some of the Best Flutter development tools available in the market which will help you to make Development Productivity Faster and Build Better Applications. Flutter is a Framework from google for Creating Cross-platform mobile apps.
Flutter is a Google UI Framework for Developers to Create Native applications for Mobile, Web, and Desktop Just in a Single Codebase. Flutter is Used by Millions of Developer Worldwide to create beautiful UI for their applications.we’ll look at some of the Best flutter development tools that can greatly improve your workflow and help you reduce development time.
Okay Without wasting any time. Let’s start in and Discover lots of New & awesome Flutter tools to develop your flutter apps like a legend.
Best Flutter Development Tool
#11. panache
Panache will help you to create beautiful themes for your flutter apps, you can customize colors & shapes in the apps.
Website: https://rxlabz.github.io/panache
#10.Codemagic
Codemagic is another awesome tool that’ll boost your flutter app development process. Cinemagic will test and release your flutter apps without issue & with no configuration. with the help Codemagic, you can automate the whole build process, test and release process of your flutter apps
Website: codemagic.io
#9.Appetize
Appetize is an Online web-based android Emulator and iOS simulator. Appetize will run Native mobile Apps in the browser with HTML and Javascript. which is easy to maintain and tacks.
Website: appetize.io
#8.TestMagic
TestMagic is a Free Companion app just like Codmagic for Fast & Easy testing of your android and iOS builds. Testmagics helps to distribute your builds and Testing android and Ios Apps on real devices as well as provide Feedback to your projects.
Website: testmagic.io
#7. Screenshots
A screenshot is a command-line utility for capturing Screenshots into the status bar placed in the device frame. Screenshots can be integrated into flutter to work transparently into Android and iOS.
Website: https://github.com/mmcc007/screenshots
#6.Supernova
Supernova Recently Introduced Support For Flutter Platform in Flutter interact. Supernova is a tool that helps you to Generate UI Code for Flutter. it’s support for material Design widgets a style manage that can bring the concepts of token and style into a flutter, you can have flutter app running side by side with Supernova and Change happen real-time.
Supernova will save your time by importing your Sketch Or Adobe Xd file, Select flutter as your export platform which will convert UI design into Production-ready Code.
Website: supernova.io
#5. Adobe Plugins For Flutter
Adobe Recently Released Plugins for Adobe Xd in Flutter Interact, which will Generate Code for Creating apps with flutter which is based on UI design in Adobe XD. this is Collaboration Between Google and Adobe that will be Expected to Released Early 2020. So Plugins will be Open Source According to Adobe.
Website: theblog.adobe.com
#flutter development tools #flutter tools #best flutter development tools #best flutter tools #flutter
1593867420
Android Projects with Source Code – Your entry pass into the world of Android
Hello Everyone, welcome to this article, which is going to be really important to all those who’re in dilemma for their projects and the project submissions. This article is also going to help you if you’re an enthusiast looking forward to explore and enhance your Android skills. The reason is that we’re here to provide you the best ideas of Android Project with source code that you can choose as per your choice.
These project ideas are simple suggestions to help you deal with the difficulty of choosing the correct projects. In this article, we’ll see the project ideas from beginners level and later we’ll move on to intermediate to advance.
Before working on real-time projects, it is recommended to create a sample hello world project in android studio and get a flavor of project creation as well as execution: Create your first android project
Android Project: A calculator will be an easy application if you have just learned Android and coding for Java. This Application will simply take the input values and the operation to be performed from the users. After taking the input it’ll return the results to them on the screen. This is a really easy application and doesn’t need use of any particular package.
To make a calculator you’d need Android IDE, Kotlin/Java for coding, and for layout of your application, you’d need XML or JSON. For this, coding would be the same as that in any language, but in the form of an application. Not to forget creating a calculator initially will increase your logical thinking.
Once the user installs the calculator, they’re ready to use it even without the internet. They’ll enter the values, and the application will show them the value after performing the given operations on the entered operands.
Source Code: Simple Calculator Project
Android Project: This is a good project for beginners. A Reminder App can help you set reminders for different events that you have throughout the day. It’ll help you stay updated with all your tasks for the day. It can be useful for all those who are not so good at organizing their plans and forget easily. This would be a simple application just whose task would be just to remind you of something at a particular time.
To make a Reminder App you need to code in Kotlin/Java and design the layout using XML or JSON. For the functionality of the app, you’d need to make use of AlarmManager Class and Notifications in Android.
In this, the user would be able to set reminders and time in the application. Users can schedule reminders that would remind them to drink water again and again throughout the day. Or to remind them of their medications.
Android Project: Another beginner’s level project Idea can be a Quiz Application in android. Here you can provide the users with Quiz on various general knowledge topics. These practices will ensure that you’re able to set the layouts properly and slowly increase your pace of learning the Android application development. In this you’ll learn to use various Layout components at the same time understanding them better.
To make a quiz application you’ll need to code in Java and set layouts using xml or java whichever you prefer. You can also use JSON for the layouts whichever preferable.
In the app, questions would be asked and answers would be shown as multiple choices. The user selects the answer and gets shown on the screen if the answers are correct. In the end the final marks would be shown to the users.
Android Project: Tic-Tac-Toe is a nice game, I guess most of you all are well aware of it. This will be a game for two players. In this android game, users would be putting X and O in the given 9 parts of a box one by one. The first player to arrange X or O in an adjacent line of three wins.
To build this game, you’d need Java and XML for Android Studio. And simply apply the logic on that. This game will have a set of three matches. So, it’ll also have a scoreboard. This scoreboard will show the final result at the end of one complete set.
Upon entering the game they’ll enter their names. And that’s when the game begins. They’ll touch one of the empty boxes present there and get their turn one by one. At the end of the game, there would be a winner declared.
Source Code: Tic Tac Toe Game Project
Android Project: A stopwatch is another simple android project idea that will work the same as a normal handheld timepiece that measures the time elapsed between its activation and deactivation. This application will have three buttons that are: start, stop, and hold.
This application would need to use Java and XML. For this application, we need to set the timer properly as it is initially set to milliseconds, and that should be converted to minutes and then hours properly. The users can use this application and all they’d need to do is, start the stopwatch and then stop it when they are done. They can also pause the timer and continue it again when they like.
Android Project: This is another very simple project idea for you as a beginner. This application as the name suggests will be a To-Do list holding app. It’ll store the users schedules and their upcoming meetings or events. In this application, users will be enabled to write their important notes as well. To make it safe, provide a login page before the user can access it.
So, this app will have a login page, sign-up page, logout system, and the area to write their tasks, events, or important notes. You can build it in android studio using Java and XML at ease. Using XML you can build the user interface as user-friendly as you can. And to store the users’ data, you can use SQLite enabling the users to even delete the data permanently.
Now for users, they will sign up and get access to the write section. Here the users can note down the things and store them permanently. Users can also alter the data or delete them. Finally, they can logout and also, login again and again whenever they like.
Android Project: This app is aimed at the conversion of Roman numbers to their significant decimal number. It’ll help to check the meaning of the roman numbers. Moreover, it will be easy to develop and will help you get your hands on coding and Android.
You need to use Android Studio, Java for coding and XML for interface. The application will take input from the users and convert them to decimal. Once it converts the Roman no. into decimal, it will show the results on the screen.
The users are supposed to just enter the Roman Number and they’ll get the decimal values on the screen. This can be a good android project for final year students.
Android Project: Well, coming to this part that is Virtual Dice or a random no. generator. It is another simple but interesting app for computer science students. The only task that it would need to do would be to generate a number randomly. This can help people who’re often confused between two or more things.
Using a simple random number generator you can actually create something as good as this. All you’d need to do is get you hands-on OnClick listeners. And a good layout would be cherry on the cake.
The user’s task would be to set the range of the numbers and then click on the roll button. And the app will show them a randomly generated number. Isn’t it interesting ? Try soon!
Android Project: This application is very important for you as a beginner as it will let you use your logical thinking and improve your programming skills. This is a scientific calculator that will help the users to do various calculations at ease.
To make this application you’d need to use Android Studio. Here you’d need to use arithmetic logics for the calculations. The user would need to give input to the application that will be in terms of numbers. After that, the user will give the operator as an input. Then the Application will calculate and generate the result on the user screen.
Android Project: An SMS app is another easy but effective idea. It will let you send the SMS to various no. just in the same way as you use the default messaging application in your phone. This project will help you with better understanding of SMSManager in Android.
For this application, you would need to implement Java class SMSManager in Android. For the Layout you can use XML or JSON. Implementing SMSManager into the app is an easy task, so you would love this.
The user would be provided with the facility to text to whichever number they wish also, they’d be able to choose the numbers from the contact list. Another thing would be the Textbox, where they’ll enter their message. Once the message is entered they can happily click on the send button.
#android tutorials #android application final year project #android mini projects #android project for beginners #android project ideas #android project ideas for beginners #android projects #android projects for students #android projects with source code #android topics list #intermediate android projects #real-time android projects
1661577180
The following is a collection of tips I find to be useful when working with the Swift language. More content is available on my Twitter account!
Property Wrappers allow developers to wrap properties with specific behaviors, that will be seamlessly triggered whenever the properties are accessed.
While their primary use case is to implement business logic within our apps, it's also possible to use Property Wrappers as debugging tools!
For example, we could build a wrapper called @History
, that would be added to a property while debugging and would keep track of all the values set to this property.
import Foundation
@propertyWrapper
struct History<Value> {
private var value: Value
private(set) var history: [Value] = []
init(wrappedValue: Value) {
self.value = wrappedValue
}
var wrappedValue: Value {
get { value }
set {
history.append(value)
value = newValue
}
}
var projectedValue: Self {
return self
}
}
// We can then decorate our business code
// with the `@History` wrapper
struct User {
@History var name: String = ""
}
var user = User()
// All the existing call sites will still
// compile, without the need for any change
user.name = "John"
user.name = "Jane"
// But now we can also access an history of
// all the previous values!
user.$name.history // ["", "John"]
String
interpolationSwift 5 gave us the possibility to define our own custom String
interpolation methods.
This feature can be used to power many use cases, but there is one that is guaranteed to make sense in most projects: localizing user-facing strings.
import Foundation
extension String.StringInterpolation {
mutating func appendInterpolation(localized key: String, _ args: CVarArg...) {
let localized = String(format: NSLocalizedString(key, comment: ""), arguments: args)
appendLiteral(localized)
}
}
/*
Let's assume that this is the content of our Localizable.strings:
"welcome.screen.greetings" = "Hello %@!";
*/
let userName = "John"
print("\(localized: "welcome.screen.greetings", userName)") // Hello John!
structs
If you’ve always wanted to use some kind of inheritance mechanism for your structs, Swift 5.1 is going to make you very happy!
Using the new KeyPath-based dynamic member lookup, you can implement some pseudo-inheritance, where a type inherits the API of another one 🎉
(However, be careful, I’m definitely not advocating inheritance as a go-to solution 🙃)
import Foundation
protocol Inherits {
associatedtype SuperType
var `super`: SuperType { get }
}
extension Inherits {
subscript<T>(dynamicMember keyPath: KeyPath<SuperType, T>) -> T {
return self.`super`[keyPath: keyPath]
}
}
struct Person {
let name: String
}
@dynamicMemberLookup
struct User: Inherits {
let `super`: Person
let login: String
let password: String
}
let user = User(super: Person(name: "John Appleseed"), login: "Johnny", password: "1234")
user.name // "John Appleseed"
user.login // "Johnny"
NSAttributedString
through a Function BuilderSwift 5.1 introduced Function Builders: a great tool for building custom DSL syntaxes, like SwiftUI. However, one doesn't need to be building a full-fledged DSL in order to leverage them.
For example, it's possible to write a simple Function Builder, whose job will be to compose together individual instances of NSAttributedString
through a nicer syntax than the standard API.
import UIKit
@_functionBuilder
class NSAttributedStringBuilder {
static func buildBlock(_ components: NSAttributedString...) -> NSAttributedString {
let result = NSMutableAttributedString(string: "")
return components.reduce(into: result) { (result, current) in result.append(current) }
}
}
extension NSAttributedString {
class func composing(@NSAttributedStringBuilder _ parts: () -> NSAttributedString) -> NSAttributedString {
return parts()
}
}
let result = NSAttributedString.composing {
NSAttributedString(string: "Hello",
attributes: [.font: UIFont.systemFont(ofSize: 24),
.foregroundColor: UIColor.red])
NSAttributedString(string: " world!",
attributes: [.font: UIFont.systemFont(ofSize: 20),
.foregroundColor: UIColor.orange])
}
switch
and if
as expressionsContrary to other languages, like Kotlin, Swift does not allow switch
and if
to be used as expressions. Meaning that the following code is not valid Swift:
let constant = if condition {
someValue
} else {
someOtherValue
}
A common solution to this problem is to wrap the if
or switch
statement within a closure, that will then be immediately called. While this approach does manage to achieve the desired goal, it makes for a rather poor syntax.
To avoid the ugly trailing ()
and improve on the readability, you can define a resultOf
function, that will serve the exact same purpose, in a more elegant way.
import Foundation
func resultOf<T>(_ code: () -> T) -> T {
return code()
}
let randomInt = Int.random(in: 0...3)
let spelledOut: String = resultOf {
switch randomInt {
case 0:
return "Zero"
case 1:
return "One"
case 2:
return "Two"
case 3:
return "Three"
default:
return "Out of range"
}
}
print(spelledOut)
guard
statementsA guard
statement is a very convenient way for the developer to assert that a condition is met, in order for the execution of the program to keep going.
However, since the body of a guard
statement is meant to be executed when the condition evaluates to false
, the use of the negation (!
) operator within the condition of a guard
statement can make the code hard to read, as it becomes a double negative.
A nice trick to avoid such double negatives is to encapsulate the use of the !
operator within a new property or function, whose name does not include a negative.
import Foundation
extension Collection {
var hasElements: Bool {
return !isEmpty
}
}
let array = Bool.random() ? [1, 2, 3] : []
guard array.hasElements else { fatalError("array was empty") }
print(array)
init
without loosing the compiler-generated oneIt's common knowledge for Swift developers that, when you define a struct
, the compiler is going to automatically generate a memberwise init
for you. That is, unless you also define an init
of your own. Because then, the compiler won't generate any memberwise init
.
Yet, there are many instances where we might enjoy the opportunity to get both. As it turns out, this goal is quite easy to achieve: you just need to define your own init
in an extension
rather than inside the type definition itself.
import Foundation
struct Point {
let x: Int
let y: Int
}
extension Point {
init() {
x = 0
y = 0
}
}
let usingDefaultInit = Point(x: 4, y: 3)
let usingCustomInit = Point()
enum
Swift does not really have an out-of-the-box support of namespaces. One could argue that a Swift module can be seen as a namespace, but creating a dedicated Framework for this sole purpose can legitimately be regarded as overkill.
Some developers have taken the habit to use a struct
which only contains static
fields to implement a namespace. While this does the job, it requires us to remember to implement an empty private
init()
, because it wouldn't make sense for such a struct
to be instantiated.
It's actually possible to take this approach one step further, by replacing the struct
with an enum
. While it might seem weird to have an enum
with no case
, it's actually a very idiomatic way to declare a type that cannot be instantiated.
import Foundation
enum NumberFormatterProvider {
static var currencyFormatter: NumberFormatter {
let formatter = NumberFormatter()
formatter.numberStyle = .currency
formatter.roundingIncrement = 0.01
return formatter
}
static var decimalFormatter: NumberFormatter {
let formatter = NumberFormatter()
formatter.numberStyle = .decimal
formatter.decimalSeparator = ","
return formatter
}
}
NumberFormatterProvider() // ❌ impossible to instantiate by mistake
NumberFormatterProvider.currencyFormatter.string(from: 2.456) // $2.46
NumberFormatterProvider.decimalFormatter.string(from: 2.456) // 2,456
Never
to represent impossible code pathsNever
is quite a peculiar type in the Swift Standard Library: it is defined as an empty enum enum Never { }
.
While this might seem odd at first glance, it actually yields a very interesting property: it makes it a type that cannot be constructed (i.e. it possesses no instances).
This way, Never
can be used as a generic parameter to let the compiler know that a particular feature will not be used.
import Foundation
enum Result<Value, Error> {
case success(value: Value)
case failure(error: Error)
}
func willAlwaysSucceed(_ completion: @escaping ((Result<String, Never>) -> Void)) {
completion(.success(value: "Call was successful"))
}
willAlwaysSucceed( { result in
switch result {
case .success(let value):
print(value)
// the compiler knows that the `failure` case cannot happen
// so it doesn't require us to handle it.
}
})
Decodable
enum
Swift's Codable
framework does a great job at seamlessly decoding entities from a JSON stream. However, when we integrate web-services, we are sometimes left to deal with JSONs that require behaviors that Codable
does not provide out-of-the-box.
For instance, we might have a string-based or integer-based enum
, and be required to set it to a default value when the data found in the JSON does not match any of its cases.
We might be tempted to implement this via an extensive switch
statement over all the possible cases, but there is a much shorter alternative through the initializer init?(rawValue:)
:
import Foundation
enum State: String, Decodable {
case active
case inactive
case undefined
init(from decoder: Decoder) throws {
let container = try decoder.singleValueContainer()
let decodedString = try container.decode(String.self)
self = State(rawValue: decodedString) ?? .undefined
}
}
let data = """
["active", "inactive", "foo"]
""".data(using: .utf8)!
let decoded = try! JSONDecoder().decode([State].self, from: data)
print(decoded) // [State.active, State.inactive, State.undefined]
Dependency injection boils down to a simple idea: when an object requires a dependency, it shouldn't create it by itself, but instead it should be given a function that does it for him.
Now the great thing with Swift is that, not only can a function take another function as a parameter, but that parameter can also be given a default value.
When you combine both those features, you can end up with a dependency injection pattern that is both lightweight on boilerplate, but also type safe.
import Foundation
protocol Service {
func call() -> String
}
class ProductionService: Service {
func call() -> String {
return "This is the production"
}
}
class MockService: Service {
func call() -> String {
return "This is a mock"
}
}
typealias Provider<T> = () -> T
class Controller {
let service: Service
init(serviceProvider: Provider<Service> = { return ProductionService() }) {
self.service = serviceProvider()
}
func work() {
print(service.call())
}
}
let productionController = Controller()
productionController.work() // prints "This is the production"
let mockedController = Controller(serviceProvider: { return MockService() })
mockedController.work() // prints "This is a mock"
Singletons are pretty bad. They make your architecture rigid and tightly coupled, which then results in your code being hard to test and refactor. Instead of using singletons, your code should rely on dependency injection, which is a much more architecturally sound approach.
But singletons are so easy to use, and dependency injection requires us to do extra-work. So maybe, for simple situations, we could find an in-between solution?
One possible solution is to rely on one of Swift's most know features: protocol-oriented programming. Using a protocol
, we declare and access our dependency. We then store it in a private singleton, and perform the injection through an extension of said protocol
.
This way, our code will indeed be decoupled from its dependency, while at the same time keeping the boilerplate to a minimum.
import Foundation
protocol Formatting {
var formatter: NumberFormatter { get }
}
private let sharedFormatter: NumberFormatter = {
let sharedFormatter = NumberFormatter()
sharedFormatter.numberStyle = .currency
return sharedFormatter
}()
extension Formatting {
var formatter: NumberFormatter { return sharedFormatter }
}
class ViewModel: Formatting {
var displayableAmount: String?
func updateDisplay(to amount: Double) {
displayableAmount = formatter.string(for: amount)
}
}
let viewModel = ViewModel()
viewModel.updateDisplay(to: 42000.45)
viewModel.displayableAmount // "$42,000.45"
[weak self]
and guard
Callbacks are a part of almost all iOS apps, and as frameworks such as RxSwift
keep gaining in popularity, they become ever more present in our codebase.
Seasoned Swift developers are aware of the potential memory leaks that @escaping
callbacks can produce, so they make real sure to always use [weak self]
, whenever they need to use self
inside such a context. And when they need to have self
be non-optional, they then add a guard
statement along.
Consequently, this syntax of a [weak self]
followed by a guard
rapidly tends to appear everywhere in the codebase. The good thing is that, through a little protocol-oriented trick, it's actually possible to get rid of this tedious syntax, without loosing any of its benefits!
import Foundation
import PlaygroundSupport
PlaygroundPage.current.needsIndefiniteExecution = true
protocol Weakifiable: class { }
extension Weakifiable {
func weakify(_ code: @escaping (Self) -> Void) -> () -> Void {
return { [weak self] in
guard let self = self else { return }
code(self)
}
}
func weakify<T>(_ code: @escaping (T, Self) -> Void) -> (T) -> Void {
return { [weak self] arg in
guard let self = self else { return }
code(arg, self)
}
}
}
extension NSObject: Weakifiable { }
class Producer: NSObject {
deinit {
print("deinit Producer")
}
private var handler: (Int) -> Void = { _ in }
func register(handler: @escaping (Int) -> Void) {
self.handler = handler
DispatchQueue.main.asyncAfter(deadline: .now() + 1.0, execute: { self.handler(42) })
}
}
class Consumer: NSObject {
deinit {
print("deinit Consumer")
}
let producer = Producer()
func consume() {
producer.register(handler: weakify { result, strongSelf in
strongSelf.handle(result)
})
}
private func handle(_ result: Int) {
print("🎉 \(result)")
}
}
var consumer: Consumer? = Consumer()
consumer?.consume()
DispatchQueue.main.asyncAfter(deadline: .now() + 2.0, execute: { consumer = nil })
// This code prints:
// 🎉 42
// deinit Consumer
// deinit Producer
Asynchronous functions are a big part of iOS APIs, and most developers are familiar with the challenge they pose when one needs to sequentially call several asynchronous APIs.
This often results in callbacks being nested into one another, a predicament often referred to as callback hell.
Many third-party frameworks are able to tackle this issue, for instance RxSwift or PromiseKit. Yet, for simple instances of the problem, there is no need to use such big guns, as it can actually be solved with simple function composition.
import Foundation
typealias CompletionHandler<Result> = (Result?, Error?) -> Void
infix operator ~>: MultiplicationPrecedence
func ~> <T, U>(_ first: @escaping (CompletionHandler<T>) -> Void, _ second: @escaping (T, CompletionHandler<U>) -> Void) -> (CompletionHandler<U>) -> Void {
return { completion in
first({ firstResult, error in
guard let firstResult = firstResult else { completion(nil, error); return }
second(firstResult, { (secondResult, error) in
completion(secondResult, error)
})
})
}
}
func ~> <T, U>(_ first: @escaping (CompletionHandler<T>) -> Void, _ transform: @escaping (T) -> U) -> (CompletionHandler<U>) -> Void {
return { completion in
first({ result, error in
guard let result = result else { completion(nil, error); return }
completion(transform(result), nil)
})
}
}
func service1(_ completionHandler: CompletionHandler<Int>) {
completionHandler(42, nil)
}
func service2(arg: String, _ completionHandler: CompletionHandler<String>) {
completionHandler("🎉 \(arg)", nil)
}
let chainedServices = service1
~> { int in return String(int / 2) }
~> service2
chainedServices({ result, _ in
guard let result = result else { return }
print(result) // Prints: 🎉 21
})
Asynchronous functions are a great way to deal with future events without blocking a thread. Yet, there are times where we would like them to behave in exactly such a blocking way.
Think about writing unit tests and using mocked network calls. You will need to add complexity to your test in order to deal with asynchronous functions, whereas synchronous ones would be much easier to manage.
Thanks to Swift proficiency in the functional paradigm, it is possible to write a function whose job is to take an asynchronous function and transform it into a synchronous one.
import Foundation
func makeSynchrone<A, B>(_ asyncFunction: @escaping (A, (B) -> Void) -> Void) -> (A) -> B {
return { arg in
let lock = NSRecursiveLock()
var result: B? = nil
asyncFunction(arg) {
result = $0
lock.unlock()
}
lock.lock()
return result!
}
}
func myAsyncFunction(arg: Int, completionHandler: (String) -> Void) {
completionHandler("🎉 \(arg)")
}
let syncFunction = makeSynchrone(myAsyncFunction)
print(syncFunction(42)) // prints 🎉 42
Closures are a great way to interact with generic APIs, for instance APIs that allow to manipulate data structures through the use of generic functions, such as filter()
or sorted()
.
The annoying part is that closures tend to clutter your code with many instances of {
, }
and $0
, which can quickly undermine its readably.
A nice alternative for a cleaner syntax is to use a KeyPath
instead of a closure, along with an operator that will deal with transforming the provided KeyPath
in a closure.
import Foundation
prefix operator ^
prefix func ^ <Element, Attribute>(_ keyPath: KeyPath<Element, Attribute>) -> (Element) -> Attribute {
return { element in element[keyPath: keyPath] }
}
struct MyData {
let int: Int
let string: String
}
let data = [MyData(int: 2, string: "Foo"), MyData(int: 4, string: "Bar")]
data.map(^\.int) // [2, 4]
data.map(^\.string) // ["Foo", "Bar"]
userInfo
Dictionary
Many iOS APIs still rely on a userInfo
Dictionary
to handle use-case specific data. This Dictionary
usually stores untyped values, and is declared as follows: [String: Any]
(or sometimes [AnyHashable: Any]
.
Retrieving data from such a structure will involve some conditional casting (via the as?
operator), which is prone to both errors and repetitions. Yet, by introducing a custom subscript
, it's possible to encapsulate all the tedious logic, and end-up with an easier and more robust API.
import Foundation
typealias TypedUserInfoKey<T> = (key: String, type: T.Type)
extension Dictionary where Key == String, Value == Any {
subscript<T>(_ typedKey: TypedUserInfoKey<T>) -> T? {
return self[typedKey.key] as? T
}
}
let userInfo: [String : Any] = ["Foo": 4, "Bar": "forty-two"]
let integerTypedKey = TypedUserInfoKey(key: "Foo", type: Int.self)
let intValue = userInfo[integerTypedKey] // returns 4
type(of: intValue) // returns Int?
let stringTypedKey = TypedUserInfoKey(key: "Bar", type: String.self)
let stringValue = userInfo[stringTypedKey] // returns "forty-two"
type(of: stringValue) // returns String?
MVVM is a great pattern to separate business logic from presentation logic. The main challenge to make it work, is to define a mechanism for the presentation layer to be notified of model updates.
RxSwift is a perfect choice to solve such a problem. Yet, some developers don't feel confortable with leveraging a third-party library for such a central part of their architecture.
For those situation, it's possible to define a lightweight Variable
type, that will make the MVVM pattern very easy to use!
import Foundation
class Variable<Value> {
var value: Value {
didSet {
onUpdate?(value)
}
}
var onUpdate: ((Value) -> Void)? {
didSet {
onUpdate?(value)
}
}
init(_ value: Value, _ onUpdate: ((Value) -> Void)? = nil) {
self.value = value
self.onUpdate = onUpdate
self.onUpdate?(value)
}
}
let variable: Variable<String?> = Variable(nil)
variable.onUpdate = { data in
if let data = data {
print(data)
}
}
variable.value = "Foo"
variable.value = "Bar"
// prints:
// Foo
// Bar
typealias
to its fullestThe keyword typealias
allows developers to give a new name to an already existing type. For instance, Swift defines Void
as a typealias
of ()
, the empty tuple.
But a less known feature of this mechanism is that it allows to assign concrete types for generic parameters, or to rename them. This can help make the semantics of generic types much clearer, when used in specific use cases.
import Foundation
enum Either<Left, Right> {
case left(Left)
case right(Right)
}
typealias Result<Value> = Either<Value, Error>
typealias IntOrString = Either<Int, String>
forEach
Iterating through objects via the forEach(_:)
method is a great alternative to the classic for
loop, as it allows our code to be completely oblivious of the iteration logic. One limitation, however, is that forEach(_:)
does not allow to stop the iteration midway.
Taking inspiration from the Objective-C implementation, we can write an overload that will allow the developer to stop the iteration, if needed.
import Foundation
extension Sequence {
func forEach(_ body: (Element, _ stop: inout Bool) throws -> Void) rethrows {
var stop = false
for element in self {
try body(element, &stop)
if stop {
return
}
}
}
}
["Foo", "Bar", "FooBar"].forEach { element, stop in
print(element)
stop = (element == "Bar")
}
// Prints:
// Foo
// Bar
reduce()
Functional programing is a great way to simplify a codebase. For instance, reduce
is an alternative to the classic for
loop, without most the boilerplate. Unfortunately, simplicity often comes at the price of performance.
Consider that you want to remove duplicate values from a Sequence
. While reduce()
is a perfectly fine way to express this computation, the performance will be sub optimal, because of all the unnecessary Array
copying that will happen every time its closure gets called.
That's when reduce(into:_:)
comes into play. This version of reduce
leverages the capacities of copy-on-write type (such as Array
or Dictionnary
) in order to avoid unnecessary copying, which results in a great performance boost.
import Foundation
func time(averagedExecutions: Int = 1, _ code: () -> Void) {
let start = Date()
for _ in 0..<averagedExecutions { code() }
let end = Date()
let duration = end.timeIntervalSince(start) / Double(averagedExecutions)
print("time: \(duration)")
}
let data = (1...1_000).map { _ in Int(arc4random_uniform(256)) }
// runs in 0.63s
time {
let noDuplicates: [Int] = data.reduce([], { $0.contains($1) ? $0 : $0 + [$1] })
}
// runs in 0.15s
time {
let noDuplicates: [Int] = data.reduce(into: [], { if !$0.contains($1) { $0.append($1) } } )
}
UI components such as UITableView
and UICollectionView
rely on reuse identifiers in order to efficiently recycle the views they display. Often, those reuse identifiers take the form of a static hardcoded String
, that will be used for every instance of their class.
Through protocol-oriented programing, it's possible to avoid those hardcoded values, and instead use the name of the type as a reuse identifier.
import Foundation
import UIKit
protocol Reusable {
static var reuseIdentifier: String { get }
}
extension Reusable {
static var reuseIdentifier: String {
return String(describing: self)
}
}
extension UITableViewCell: Reusable { }
extension UITableView {
func register<T: UITableViewCell>(_ class: T.Type) {
register(`class`, forCellReuseIdentifier: T.reuseIdentifier)
}
func dequeueReusableCell<T: UITableViewCell>(for indexPath: IndexPath) -> T {
return dequeueReusableCell(withIdentifier: T.reuseIdentifier, for: indexPath) as! T
}
}
class MyCell: UITableViewCell { }
let tableView = UITableView()
tableView.register(MyCell.self)
let myCell: MyCell = tableView.dequeueReusableCell(for: [0, 0])
The C language has a construct called union
, that allows a single variable to hold values from different types. While Swift does not provide such a construct, it provides enums with associated values, which allows us to define a type called Either
that implements a union
of two types.
import Foundation
enum Either<A, B> {
case left(A)
case right(B)
func either(ifLeft: ((A) -> Void)? = nil, ifRight: ((B) -> Void)? = nil) {
switch self {
case let .left(a):
ifLeft?(a)
case let .right(b):
ifRight?(b)
}
}
}
extension Bool { static func random() -> Bool { return arc4random_uniform(2) == 0 } }
var intOrString: Either<Int, String> = Bool.random() ? .left(2) : .right("Foo")
intOrString.either(ifLeft: { print($0 + 1) }, ifRight: { print($0 + "Bar") })
If you're interested by this kind of data structure, I strongly recommend that you learn more about Algebraic Data Types.
Most of the time, when we create a .xib
file, we give it the same name as its associated class. From that, if we later refactor our code and rename such a class, we run the risk of forgetting to rename the associated .xib
.
While the error will often be easy to catch, if the .xib
is used in a remote section of its app, it might go unnoticed for sometime. Fortunately it's possible to build custom test predicates that will assert that 1) for a given class, there exists a .nib
with the same name in a given Bundle
, 2) for all the .nib
in a given Bundle
, there exists a class with the same name.
import XCTest
public func XCTAssertClassHasNib(_ class: AnyClass, bundle: Bundle, file: StaticString = #file, line: UInt = #line) {
let associatedNibURL = bundle.url(forResource: String(describing: `class`), withExtension: "nib")
XCTAssertNotNil(associatedNibURL, "Class \"\(`class`)\" has no associated nib file", file: file, line: line)
}
public func XCTAssertNibHaveClasses(_ bundle: Bundle, file: StaticString = #file, line: UInt = #line) {
guard let bundleName = bundle.infoDictionary?["CFBundleName"] as? String,
let basePath = bundle.resourcePath,
let enumerator = FileManager.default.enumerator(at: URL(fileURLWithPath: basePath),
includingPropertiesForKeys: nil,
options: [.skipsHiddenFiles, .skipsSubdirectoryDescendants]) else { return }
var nibFilesURLs = [URL]()
for case let fileURL as URL in enumerator {
if fileURL.pathExtension.uppercased() == "NIB" {
nibFilesURLs.append(fileURL)
}
}
nibFilesURLs.map { $0.lastPathComponent }
.compactMap { $0.split(separator: ".").first }
.map { String($0) }
.forEach {
let associatedClass: AnyClass? = bundle.classNamed("\(bundleName).\($0)")
XCTAssertNotNil(associatedClass, "File \"\($0).nib\" has no associated class", file: file, line: line)
}
}
XCTAssertClassHasNib(MyFirstTableViewCell.self, bundle: Bundle(for: AppDelegate.self))
XCTAssertClassHasNib(MySecondTableViewCell.self, bundle: Bundle(for: AppDelegate.self))
XCTAssertNibHaveClasses(Bundle(for: AppDelegate.self))
Many thanks Benjamin Lavialle for coming up with the idea behind the second test predicate.
Seasoned Swift developers know it: a protocol with associated type (PAT) "can only be used as a generic constraint because it has Self or associated type requirements". When we really need to use a PAT to type a variable, the goto workaround is to use a type-erased wrapper.
While this solution works perfectly, it requires a fair amount of boilerplate code. In instances where we are only interested in exposing one particular function of the PAT, a shorter approach using function types is possible.
import Foundation
import UIKit
protocol Configurable {
associatedtype Model
func configure(with model: Model)
}
typealias Configurator<Model> = (Model) -> ()
extension UILabel: Configurable {
func configure(with model: String) {
self.text = model
}
}
let label = UILabel()
let configurator: Configurator<String> = label.configure
configurator("Foo")
label.text // "Foo"
UIKit
exposes a very powerful and simple API to perform view animations. However, this API can become a little bit quirky to use when we want to perform animations sequentially, because it involves nesting closure within one another, which produces notoriously hard to maintain code.
Nonetheless, it's possible to define a rather simple class, that will expose a really nicer API for this particular use case 👌
import Foundation
import UIKit
class AnimationSequence {
typealias Animations = () -> Void
private let current: Animations
private let duration: TimeInterval
private var next: AnimationSequence? = nil
init(animations: @escaping Animations, duration: TimeInterval) {
self.current = animations
self.duration = duration
}
@discardableResult func append(animations: @escaping Animations, duration: TimeInterval) -> AnimationSequence {
var lastAnimation = self
while let nextAnimation = lastAnimation.next {
lastAnimation = nextAnimation
}
lastAnimation.next = AnimationSequence(animations: animations, duration: duration)
return self
}
func run() {
UIView.animate(withDuration: duration, animations: current, completion: { finished in
if finished, let next = self.next {
next.run()
}
})
}
}
var firstView = UIView()
var secondView = UIView()
firstView.alpha = 0
secondView.alpha = 0
AnimationSequence(animations: { firstView.alpha = 1.0 }, duration: 1)
.append(animations: { secondView.alpha = 1.0 }, duration: 0.5)
.append(animations: { firstView.alpha = 0.0 }, duration: 2.0)
.run()
Debouncing is a very useful tool when dealing with UI inputs. Consider a search bar, whose content is used to query an API. It wouldn't make sense to perform a request for every character the user is typing, because as soon as a new character is entered, the result of the previous request has become irrelevant.
Instead, our code will perform much better if we "debounce" the API call, meaning that we will wait until some delay has passed, without the input being modified, before actually performing the call.
import Foundation
func debounced(delay: TimeInterval, queue: DispatchQueue = .main, action: @escaping (() -> Void)) -> () -> Void {
var workItem: DispatchWorkItem?
return {
workItem?.cancel()
workItem = DispatchWorkItem(block: action)
queue.asyncAfter(deadline: .now() + delay, execute: workItem!)
}
}
let debouncedPrint = debounced(delay: 1.0) { print("Action performed!") }
debouncedPrint()
debouncedPrint()
debouncedPrint()
// After a 1 second delay, this gets
// printed only once to the console:
// Action performed!
Optional
booleansWhen we need to apply the standard boolean operators to Optional
booleans, we often end up with a syntax unnecessarily crowded with unwrapping operations. By taking a cue from the world of three-valued logics, we can define a couple operators that make working with Bool?
values much nicer.
import Foundation
func && (lhs: Bool?, rhs: Bool?) -> Bool? {
switch (lhs, rhs) {
case (false, _), (_, false):
return false
case let (unwrapLhs?, unwrapRhs?):
return unwrapLhs && unwrapRhs
default:
return nil
}
}
func || (lhs: Bool?, rhs: Bool?) -> Bool? {
switch (lhs, rhs) {
case (true, _), (_, true):
return true
case let (unwrapLhs?, unwrapRhs?):
return unwrapLhs || unwrapRhs
default:
return nil
}
}
false && nil // false
true && nil // nil
[true, nil, false].reduce(true, &&) // false
nil || true // true
nil || false // nil
[true, nil, false].reduce(false, ||) // true
Sequence
Transforming a Sequence
in order to remove all the duplicate values it contains is a classic use case. To implement it, one could be tempted to transform the Sequence
into a Set
, then back to an Array
. The downside with this approach is that it will not preserve the order of the sequence, which can definitely be a dealbreaker. Using reduce()
it is possible to provide a concise implementation that preserves ordering:
import Foundation
extension Sequence where Element: Equatable {
func duplicatesRemoved() -> [Element] {
return reduce([], { $0.contains($1) ? $0 : $0 + [$1] })
}
}
let data = [2, 5, 2, 3, 6, 5, 2]
data.duplicatesRemoved() // [2, 5, 3, 6]
Optional strings are very common in Swift code, for instance many objects from UIKit
expose the text they display as a String?
. Many times you will need to manipulate this data as an unwrapped String
, with a default value set to the empty string for nil
cases.
While the nil-coalescing operator (e.g. ??
) is a perfectly fine way to a achieve this goal, defining a computed variable like orEmpty
can help a lot in cleaning the syntax.
import Foundation
import UIKit
extension Optional where Wrapped == String {
var orEmpty: String {
switch self {
case .some(let value):
return value
case .none:
return ""
}
}
}
func doesNotWorkWithOptionalString(_ param: String) {
// do something with `param`
}
let label = UILabel()
label.text = "This is some text."
doesNotWorkWithOptionalString(label.text.orEmpty)
Every seasoned iOS developers knows it: objects from UIKit
can only be accessed from the main thread. Any attempt to access them from a background thread is a guaranteed crash.
Still, running a costly computation on the background, and then using it to update the UI can be a common pattern.
In such cases you can rely on asyncUI
to encapsulate all the boilerplate code.
import Foundation
import UIKit
func asyncUI<T>(_ computation: @autoclosure @escaping () -> T, qos: DispatchQoS.QoSClass = .userInitiated, _ completion: @escaping (T) -> Void) {
DispatchQueue.global(qos: qos).async {
let value = computation()
DispatchQueue.main.async {
completion(value)
}
}
}
let label = UILabel()
func costlyComputation() -> Int { return (0..<10_000).reduce(0, +) }
asyncUI(costlyComputation()) { value in
label.text = "\(value)"
}
A debug view, from which any controller of an app can be instantiated and pushed on the navigation stack, has the potential to bring some real value to a development process. A requirement to build such a view is to have a list of all the classes from a given Bundle
that inherit from UIViewController
. With the following extension
, retrieving this list becomes a piece of cake 🍰
import Foundation
import UIKit
import ObjectiveC
extension Bundle {
func viewControllerTypes() -> [UIViewController.Type] {
guard let bundlePath = self.executablePath else { return [] }
var size: UInt32 = 0
var rawClassNames: UnsafeMutablePointer<UnsafePointer<Int8>>!
var parsedClassNames = [String]()
rawClassNames = objc_copyClassNamesForImage(bundlePath, &size)
for index in 0..<size {
let className = rawClassNames[Int(index)]
if let name = NSString.init(utf8String:className) as String?,
NSClassFromString(name) is UIViewController.Type {
parsedClassNames.append(name)
}
}
return parsedClassNames
.sorted()
.compactMap { NSClassFromString($0) as? UIViewController.Type }
}
}
// Fetch all view controller types in UIKit
Bundle(for: UIViewController.self).viewControllerTypes()
I share the credit for this tip with Benoît Caron.
Update As it turns out, map
is actually a really bad name for this function, because it does not preserve composition of transformations, a property that is required to fit the definition of a real map
function.
Surprisingly enough, the standard library doesn't define a map()
function for dictionaries that allows to map both keys
and values
into a new Dictionary
. Nevertheless, such a function can be helpful, for instance when converting data across different frameworks.
import Foundation
extension Dictionary {
func map<T: Hashable, U>(_ transform: (Key, Value) throws -> (T, U)) rethrows -> [T: U] {
var result: [T: U] = [:]
for (key, value) in self {
let (transformedKey, transformedValue) = try transform(key, value)
result[transformedKey] = transformedValue
}
return result
}
}
let data = [0: 5, 1: 6, 2: 7]
data.map { ("\($0)", $1 * $1) } // ["2": 49, "0": 25, "1": 36]
nil
valuesSwift provides the function compactMap()
, that can be used to remove nil
values from a Sequence
of optionals when calling it with an argument that just returns its parameter (i.e. compactMap { $0 }
). Still, for such use cases it would be nice to get rid of the trailing closure.
The implementation isn't as straightforward as your usual extension
, but once it has been written, the call site definitely gets cleaner 👌
import Foundation
protocol OptionalConvertible {
associatedtype Wrapped
func asOptional() -> Wrapped?
}
extension Optional: OptionalConvertible {
func asOptional() -> Wrapped? {
return self
}
}
extension Sequence where Element: OptionalConvertible {
func compacted() -> [Element.Wrapped] {
return compactMap { $0.asOptional() }
}
}
let data = [nil, 1, 2, nil, 3, 5, nil, 8, nil]
data.compacted() // [1, 2, 3, 5, 8]
It might happen that your code has to deal with values that come with an expiration date. In a game, it could be a score multiplier that will only last for 30 seconds. Or it could be an authentication token for an API, with a 15 minutes lifespan. In both instances you can rely on the type Expirable
to encapsulate the expiration logic.
import Foundation
struct Expirable<T> {
private var innerValue: T
private(set) var expirationDate: Date
var value: T? {
return hasExpired() ? nil : innerValue
}
init(value: T, expirationDate: Date) {
self.innerValue = value
self.expirationDate = expirationDate
}
init(value: T, duration: Double) {
self.innerValue = value
self.expirationDate = Date().addingTimeInterval(duration)
}
func hasExpired() -> Bool {
return expirationDate < Date()
}
}
let expirable = Expirable(value: 42, duration: 3)
sleep(2)
expirable.value // 42
sleep(2)
expirable.value // nil
I share the credit for this tip with Benoît Caron.
map()
Almost all Apple devices able to run Swift code are powered by a multi-core CPU, consequently making a good use of parallelism is a great way to improve code performance. map()
is a perfect candidate for such an optimization, because it is almost trivial to define a parallel implementation.
import Foundation
extension Array {
func parallelMap<T>(_ transform: (Element) -> T) -> [T] {
let res = UnsafeMutablePointer<T>.allocate(capacity: count)
DispatchQueue.concurrentPerform(iterations: count) { i in
res[i] = transform(self[i])
}
let finalResult = Array<T>(UnsafeBufferPointer(start: res, count: count))
res.deallocate(capacity: count)
return finalResult
}
}
let array = (0..<1_000).map { $0 }
func work(_ n: Int) -> Int {
return (0..<n).reduce(0, +)
}
array.parallelMap { work($0) }
🚨 Make sure to only use parallelMap()
when the transform
function actually performs some costly computations. Otherwise performances will be systematically slower than using map()
, because of the multithreading overhead.
During development of a feature that performs some heavy computations, it can be helpful to measure just how much time a chunk of code takes to run. The time()
function is a nice tool for this purpose, because of how simple it is to add and then to remove when it is no longer needed.
import Foundation
func time(averagedExecutions: Int = 1, _ code: () -> Void) {
let start = Date()
for _ in 0..<averagedExecutions { code() }
let end = Date()
let duration = end.timeIntervalSince(start) / Double(averagedExecutions)
print("time: \(duration)")
}
time {
(0...10_000).map { $0 * $0 }
}
// time: 0.183973908424377
Concurrency is definitely one of those topics were the right encapsulation bears the potential to make your life so much easier. For instance, with this piece of code you can easily launch two computations in parallel, and have the results returned in a tuple.
import Foundation
func parallel<T, U>(_ left: @autoclosure () -> T, _ right: @autoclosure () -> U) -> (T, U) {
var leftRes: T?
var rightRes: U?
DispatchQueue.concurrentPerform(iterations: 2, execute: { id in
if id == 0 {
leftRes = left()
} else {
rightRes = right()
}
})
return (leftRes!, rightRes!)
}
let values = (1...100_000).map { $0 }
let results = parallel(values.map { $0 * $0 }, values.reduce(0, +))
Swift exposes three special variables #file
, #line
and #function
, that are respectively set to the name of the current file, line and function. Those variables become very useful when writing custom logging functions or test predicates.
import Foundation
func log(_ message: String, _ file: String = #file, _ line: Int = #line, _ function: String = #function) {
print("[\(file):\(line)] \(function) - \(message)")
}
func foo() {
log("Hello world!")
}
foo() // [MyPlayground.playground:8] foo() - Hello world!
Swift 4.1 has introduced a new feature called Conditional Conformance, which allows a type to implement a protocol only when its generic type also does.
With this addition it becomes easy to let Optional
implement Comparable
only when Wrapped
also implements Comparable
:
import Foundation
extension Optional: Comparable where Wrapped: Comparable {
public static func < (lhs: Optional, rhs: Optional) -> Bool {
switch (lhs, rhs) {
case let (lhs?, rhs?):
return lhs < rhs
case (nil, _?):
return true // anything is greater than nil
case (_?, nil):
return false // nil in smaller than anything
case (nil, nil):
return true // nil is not smaller than itself
}
}
}
let data: [Int?] = [8, 4, 3, nil, 12, 4, 2, nil, -5]
data.sorted() // [nil, nil, Optional(-5), Optional(2), Optional(3), Optional(4), Optional(4), Optional(8), Optional(12)]
Any attempt to access an Array
beyond its bounds will result in a crash. While it's possible to write conditions such as if index < array.count { array[index] }
in order to prevent such crashes, this approach will rapidly become cumbersome.
A great thing is that this condition can be encapsulated in a custom subscript
that will work on any Collection
:
import Foundation
extension Collection {
subscript (safe index: Index) -> Element? {
return indices.contains(index) ? self[index] : nil
}
}
let data = [1, 3, 4]
data[safe: 1] // Optional(3)
data[safe: 10] // nil
Subscripting a string with a range can be very cumbersome in Swift 4. Let's face it, no one wants to write lines like someString[index(startIndex, offsetBy: 0)..<index(startIndex, offsetBy: 10)]
on a regular basis.
Luckily, with the addition of one clever extension, strings can be sliced as easily as arrays 🎉
import Foundation
extension String {
public subscript(value: CountableClosedRange<Int>) -> Substring {
get {
return self[index(startIndex, offsetBy: value.lowerBound)...index(startIndex, offsetBy: value.upperBound)]
}
}
public subscript(value: CountableRange<Int>) -> Substring {
get {
return self[index(startIndex, offsetBy: value.lowerBound)..<index(startIndex, offsetBy: value.upperBound)]
}
}
public subscript(value: PartialRangeUpTo<Int>) -> Substring {
get {
return self[..<index(startIndex, offsetBy: value.upperBound)]
}
}
public subscript(value: PartialRangeThrough<Int>) -> Substring {
get {
return self[...index(startIndex, offsetBy: value.upperBound)]
}
}
public subscript(value: PartialRangeFrom<Int>) -> Substring {
get {
return self[index(startIndex, offsetBy: value.lowerBound)...]
}
}
}
let data = "This is a string!"
data[..<4] // "This"
data[5..<9] // "is a"
data[10...] // "string!"
By using a KeyPath
along with a generic type, a very clean and concise syntax for sorting data can be implemented:
import Foundation
extension Sequence {
func sorted<T: Comparable>(by attribute: KeyPath<Element, T>) -> [Element] {
return sorted(by: { $0[keyPath: attribute] < $1[keyPath: attribute] })
}
}
let data = ["Some", "words", "of", "different", "lengths"]
data.sorted(by: \.count) // ["of", "Some", "words", "lengths", "different"]
If you like this syntax, make sure to checkout KeyPathKit!
By capturing a local variable in a returned closure, it is possible to manufacture cache-efficient versions of pure functions. Be careful though, this trick only works with non-recursive function!
import Foundation
func cached<In: Hashable, Out>(_ f: @escaping (In) -> Out) -> (In) -> Out {
var cache = [In: Out]()
return { (input: In) -> Out in
if let cachedValue = cache[input] {
return cachedValue
} else {
let result = f(input)
cache[input] = result
return result
}
}
}
let cachedCos = cached { (x: Double) in cos(x) }
cachedCos(.pi * 2) // value of cos for 2π is now cached
When distinguishing between complex boolean conditions, using a switch
statement along with pattern matching can be more readable than the classic series of if {} else if {}
.
import Foundation
let expr1: Bool
let expr2: Bool
let expr3: Bool
if expr1 && !expr3 {
functionA()
} else if !expr2 && expr3 {
functionB()
} else if expr1 && !expr2 && expr3 {
functionC()
}
switch (expr1, expr2, expr3) {
case (true, _, false):
functionA()
case (_, false, true):
functionB()
case (true, false, true):
functionC()
default:
break
}
Using map()
on a range makes it easy to generate an array of data.
import Foundation
func randomInt() -> Int { return Int(arc4random()) }
let randomArray = (1...10).map { _ in randomInt() }
Using @autoclosure
enables the compiler to automatically wrap an argument within a closure, thus allowing for a very clean syntax at call sites.
import UIKit
extension UIView {
class func animate(withDuration duration: TimeInterval, _ animations: @escaping @autoclosure () -> Void) {
UIView.animate(withDuration: duration, animations: animations)
}
}
let view = UIView()
UIView.animate(withDuration: 0.3, view.backgroundColor = .orange)
When working with RxSwift, it's very easy to observe both the current and previous value of an observable sequence by simply introducing a shift using skip()
.
import RxSwift
let values = Observable.of(4, 8, 15, 16, 23, 42)
let newAndOld = Observable.zip(values, values.skip(1)) { (previous: $0, current: $1) }
.subscribe(onNext: { pair in
print("current: \(pair.current) - previous: \(pair.previous)")
})
//current: 8 - previous: 4
//current: 15 - previous: 8
//current: 16 - previous: 15
//current: 23 - previous: 16
//current: 42 - previous: 23
Using protocols such as ExpressibleByStringLiteral
it is possible to provide an init
that will be automatically when a literal value is provided, allowing for nice and short syntax. This can be very helpful when writing mock or test data.
import Foundation
extension URL: ExpressibleByStringLiteral {
public init(stringLiteral value: String) {
self.init(string: value)!
}
}
let url: URL = "http://www.google.fr"
NSURLConnection.canHandle(URLRequest(url: "http://www.google.fr"))
Through some clever use of Swift private
visibility it is possible to define a container that holds any untrusted value (such as a user input) from which the only way to retrieve the value is by making it successfully pass a validation test.
import Foundation
struct Untrusted<T> {
private(set) var value: T
}
protocol Validator {
associatedtype T
static func validation(value: T) -> Bool
}
extension Validator {
static func validate(untrusted: Untrusted<T>) -> T? {
if self.validation(value: untrusted.value) {
return untrusted.value
} else {
return nil
}
}
}
struct FrenchPhoneNumberValidator: Validator {
static func validation(value: String) -> Bool {
return (value.count) == 10 && CharacterSet(charactersIn: value).isSubset(of: CharacterSet.decimalDigits)
}
}
let validInput = Untrusted(value: "0122334455")
let invalidInput = Untrusted(value: "0123")
FrenchPhoneNumberValidator.validate(untrusted: validInput) // returns "0122334455"
FrenchPhoneNumberValidator.validate(untrusted: invalidInput) // returns nil
With the addition of keypaths in Swift 4, it is now possible to easily implement the builder pattern, that allows the developer to clearly separate the code that initializes a value from the code that uses it, without the burden of defining a factory method.
import UIKit
protocol With {}
extension With where Self: AnyObject {
@discardableResult
func with<T>(_ property: ReferenceWritableKeyPath<Self, T>, setTo value: T) -> Self {
self[keyPath: property] = value
return self
}
}
extension UIView: With {}
let view = UIView()
let label = UILabel()
.with(\.textColor, setTo: .red)
.with(\.text, setTo: "Foo")
.with(\.textAlignment, setTo: .right)
.with(\.layer.cornerRadius, setTo: 5)
view.addSubview(label)
🚨 The Swift compiler does not perform OS availability checks on properties referenced by keypaths. Any attempt to use a KeyPath
for an unavailable property will result in a runtime crash.
I share the credit for this tip with Marion Curtil.
When a type stores values for the sole purpose of parametrizing its functions, it’s then possible to not store the values but directly the function, with no discernable difference at the call site.
import Foundation
struct MaxValidator {
let max: Int
let strictComparison: Bool
func isValid(_ value: Int) -> Bool {
return self.strictComparison ? value < self.max : value <= self.max
}
}
struct MaxValidator2 {
var isValid: (_ value: Int) -> Bool
init(max: Int, strictComparison: Bool) {
self.isValid = strictComparison ? { $0 < max } : { $0 <= max }
}
}
MaxValidator(max: 5, strictComparison: true).isValid(5) // false
MaxValidator2(max: 5, strictComparison: false).isValid(5) // true
Functions are first-class citizen types in Swift, so it is perfectly legal to define operators for them.
import Foundation
let firstRange = { (0...3).contains($0) }
let secondRange = { (5...6).contains($0) }
func ||(_ lhs: @escaping (Int) -> Bool, _ rhs: @escaping (Int) -> Bool) -> (Int) -> Bool {
return { value in
return lhs(value) || rhs(value)
}
}
(firstRange || secondRange)(2) // true
(firstRange || secondRange)(4) // false
(firstRange || secondRange)(6) // true
Typealiases are great to express function signatures in a more comprehensive manner, which then enables us to easily define functions that operate on them, resulting in a nice way to write and use some powerful API.
import Foundation
typealias RangeSet = (Int) -> Bool
func union(_ left: @escaping RangeSet, _ right: @escaping RangeSet) -> RangeSet {
return { left($0) || right($0) }
}
let firstRange = { (0...3).contains($0) }
let secondRange = { (5...6).contains($0) }
let unionRange = union(firstRange, secondRange)
unionRange(2) // true
unionRange(4) // false
By returning a closure that captures a local variable, it's possible to encapsulate a mutable state within a function.
import Foundation
func counterFactory() -> () -> Int {
var counter = 0
return {
counter += 1
return counter
}
}
let counter = counterFactory()
counter() // returns 1
counter() // returns 2
⚠️ Since Swift 4.2,
allCases
can now be synthesized at compile-time by simply conforming to the protocolCaseIterable
. The implementation below should no longer be used in production code.
Through some clever leveraging of how enums are stored in memory, it is possible to generate an array that contains all the possible cases of an enum. This can prove particularly useful when writing unit tests that consume random data.
import Foundation
enum MyEnum { case first; case second; case third; case fourth }
protocol EnumCollection: Hashable {
static var allCases: [Self] { get }
}
extension EnumCollection {
public static var allCases: [Self] {
var i = 0
return Array(AnyIterator {
let next = withUnsafePointer(to: &i) {
$0.withMemoryRebound(to: Self.self, capacity: 1) { $0.pointee }
}
if next.hashValue != i { return nil }
i += 1
return next
})
}
}
extension MyEnum: EnumCollection { }
MyEnum.allCases // [.first, .second, .third, .fourth]
The if-let syntax is a great way to deal with optional values in a safe manner, but at times it can prove to be just a little bit to cumbersome. In such cases, using the Optional.map()
function is a nice way to achieve a shorter code while retaining safeness and readability.
import UIKit
let date: Date? = Date() // or could be nil, doesn't matter
let formatter = DateFormatter()
let label = UILabel()
if let safeDate = date {
label.text = formatter.string(from: safeDate)
}
label.text = date.map { return formatter.string(from: $0) }
label.text = date.map(formatter.string(from:)) // even shorter, tough less readable
📣 NEW 📣 Swift Tips are now available on YouTube 👇
Summary
String
interpolationstructs
NSAttributedString
through a Function Builderswitch
and if
as expressionsguard
statementsinit
without loosing the compiler-generated oneenum
Never
to represent impossible code pathsDecodable
enum
[weak self]
and guard
userInfo
Dictionary
typealias
to its fullestforEach
reduce()
Optional
booleansSequence
nil
valuesmap()
Tips
Author: vincent-pradeilles
Source code: https://github.com/vincent-pradeilles/swift-tips
License: MIT license
#swift