1627095600
In this Svelte tutorial, we go over handling inputs and binding values.
📚 Installation:
npx degit sveltejs/template my-svelte-project
🖥️ Source code: https://devascend.com/d/github
💡 Have a video request?
Suggest it in the Dev Ascend Discord community server or leave it in the comments below!
🕐 Timestamps:
00:00 Introduction
00:33 Adding an input
1:00 Creating handleInput function
03:06 Creating a two-way bind
#svelte #tutorial #beginners #devascend
#svelte
1653475560
msgpack.php
A pure PHP implementation of the MessagePack serialization format.
The recommended way to install the library is through Composer:
composer require rybakit/msgpack
To pack values you can either use an instance of a Packer
:
$packer = new Packer();
$packed = $packer->pack($value);
or call a static method on the MessagePack
class:
$packed = MessagePack::pack($value);
In the examples above, the method pack
automatically packs a value depending on its type. However, not all PHP types can be uniquely translated to MessagePack types. For example, the MessagePack format defines map
and array
types, which are represented by a single array
type in PHP. By default, the packer will pack a PHP array as a MessagePack array if it has sequential numeric keys, starting from 0
and as a MessagePack map otherwise:
$mpArr1 = $packer->pack([1, 2]); // MP array [1, 2]
$mpArr2 = $packer->pack([0 => 1, 1 => 2]); // MP array [1, 2]
$mpMap1 = $packer->pack([0 => 1, 2 => 3]); // MP map {0: 1, 2: 3}
$mpMap2 = $packer->pack([1 => 2, 2 => 3]); // MP map {1: 2, 2: 3}
$mpMap3 = $packer->pack(['a' => 1, 'b' => 2]); // MP map {a: 1, b: 2}
However, sometimes you need to pack a sequential array as a MessagePack map. To do this, use the packMap
method:
$mpMap = $packer->packMap([1, 2]); // {0: 1, 1: 2}
Here is a list of type-specific packing methods:
$packer->packNil(); // MP nil
$packer->packBool(true); // MP bool
$packer->packInt(42); // MP int
$packer->packFloat(M_PI); // MP float (32 or 64)
$packer->packFloat32(M_PI); // MP float 32
$packer->packFloat64(M_PI); // MP float 64
$packer->packStr('foo'); // MP str
$packer->packBin("\x80"); // MP bin
$packer->packArray([1, 2]); // MP array
$packer->packMap(['a' => 1]); // MP map
$packer->packExt(1, "\xaa"); // MP ext
Check the "Custom types" section below on how to pack custom types.
The Packer
object supports a number of bitmask-based options for fine-tuning the packing process (defaults are in bold):
Name | Description |
---|---|
FORCE_STR | Forces PHP strings to be packed as MessagePack UTF-8 strings |
FORCE_BIN | Forces PHP strings to be packed as MessagePack binary data |
DETECT_STR_BIN | Detects MessagePack str/bin type automatically |
FORCE_ARR | Forces PHP arrays to be packed as MessagePack arrays |
FORCE_MAP | Forces PHP arrays to be packed as MessagePack maps |
DETECT_ARR_MAP | Detects MessagePack array/map type automatically |
FORCE_FLOAT32 | Forces PHP floats to be packed as 32-bits MessagePack floats |
FORCE_FLOAT64 | Forces PHP floats to be packed as 64-bits MessagePack floats |
The type detection mode (
DETECT_STR_BIN
/DETECT_ARR_MAP
) adds some overhead which can be noticed when you pack large (16- and 32-bit) arrays or strings. However, if you know the value type in advance (for example, you only work with UTF-8 strings or/and associative arrays), you can eliminate this overhead by forcing the packer to use the appropriate type, which will save it from running the auto-detection routine. Another option is to explicitly specify the value type. The library provides 2 auxiliary classes for this,Map
andBin
. Check the "Custom types" section below for details.
Examples:
// detect str/bin type and pack PHP 64-bit floats (doubles) to MP 32-bit floats
$packer = new Packer(PackOptions::DETECT_STR_BIN | PackOptions::FORCE_FLOAT32);
// these will throw MessagePack\Exception\InvalidOptionException
$packer = new Packer(PackOptions::FORCE_STR | PackOptions::FORCE_BIN);
$packer = new Packer(PackOptions::FORCE_FLOAT32 | PackOptions::FORCE_FLOAT64);
To unpack data you can either use an instance of a BufferUnpacker
:
$unpacker = new BufferUnpacker();
$unpacker->reset($packed);
$value = $unpacker->unpack();
or call a static method on the MessagePack
class:
$value = MessagePack::unpack($packed);
If the packed data is received in chunks (e.g. when reading from a stream), use the tryUnpack
method, which attempts to unpack data and returns an array of unpacked messages (if any) instead of throwing an InsufficientDataException
:
while ($chunk = ...) {
$unpacker->append($chunk);
if ($messages = $unpacker->tryUnpack()) {
return $messages;
}
}
If you want to unpack from a specific position in a buffer, use seek
:
$unpacker->seek(42); // set position equal to 42 bytes
$unpacker->seek(-8); // set position to 8 bytes before the end of the buffer
To skip bytes from the current position, use skip
:
$unpacker->skip(10); // set position to 10 bytes ahead of the current position
To get the number of remaining (unread) bytes in the buffer:
$unreadBytesCount = $unpacker->getRemainingCount();
To check whether the buffer has unread data:
$hasUnreadBytes = $unpacker->hasRemaining();
If needed, you can remove already read data from the buffer by calling:
$releasedBytesCount = $unpacker->release();
With the read
method you can read raw (packed) data:
$packedData = $unpacker->read(2); // read 2 bytes
Besides the above methods BufferUnpacker
provides type-specific unpacking methods, namely:
$unpacker->unpackNil(); // PHP null
$unpacker->unpackBool(); // PHP bool
$unpacker->unpackInt(); // PHP int
$unpacker->unpackFloat(); // PHP float
$unpacker->unpackStr(); // PHP UTF-8 string
$unpacker->unpackBin(); // PHP binary string
$unpacker->unpackArray(); // PHP sequential array
$unpacker->unpackMap(); // PHP associative array
$unpacker->unpackExt(); // PHP MessagePack\Type\Ext object
The BufferUnpacker
object supports a number of bitmask-based options for fine-tuning the unpacking process (defaults are in bold):
Name | Description |
---|---|
BIGINT_AS_STR | Converts overflowed integers to strings [1] |
BIGINT_AS_GMP | Converts overflowed integers to GMP objects [2] |
BIGINT_AS_DEC | Converts overflowed integers to Decimal\Decimal objects [3] |
1. The binary MessagePack format has unsigned 64-bit as its largest integer data type, but PHP does not support such integers, which means that an overflow can occur during unpacking.
2. Make sure the GMP extension is enabled.
3. Make sure the Decimal extension is enabled.
Examples:
$packedUint64 = "\xcf"."\xff\xff\xff\xff"."\xff\xff\xff\xff";
$unpacker = new BufferUnpacker($packedUint64);
var_dump($unpacker->unpack()); // string(20) "18446744073709551615"
$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_GMP);
var_dump($unpacker->unpack()); // object(GMP) {...}
$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_DEC);
var_dump($unpacker->unpack()); // object(Decimal\Decimal) {...}
In addition to the basic types, the library provides functionality to serialize and deserialize arbitrary types. This can be done in several ways, depending on your use case. Let's take a look at them.
If you need to serialize an instance of one of your classes into one of the basic MessagePack types, the best way to do this is to implement the CanBePacked interface in the class. A good example of such a class is the Map
type class that comes with the library. This type is useful when you want to explicitly specify that a given PHP array should be packed as a MessagePack map without triggering an automatic type detection routine:
$packer = new Packer();
$packedMap = $packer->pack(new Map([1, 2, 3]));
$packedArray = $packer->pack([1, 2, 3]);
More type examples can be found in the src/Type directory.
As with type objects, type transformers are only responsible for serializing values. They should be used when you need to serialize a value that does not implement the CanBePacked interface. Examples of such values could be instances of built-in or third-party classes that you don't own, or non-objects such as resources.
A transformer class must implement the CanPack interface. To use a transformer, it must first be registered in the packer. Here is an example of how to serialize PHP streams into the MessagePack bin
format type using one of the supplied transformers, StreamTransformer
:
$packer = new Packer(null, [new StreamTransformer()]);
$packedBin = $packer->pack(fopen('/path/to/file', 'r+'));
More type transformer examples can be found in the src/TypeTransformer directory.
In contrast to the cases described above, extensions are intended to handle extension types and are responsible for both serialization and deserialization of values (types).
An extension class must implement the Extension interface. To use an extension, it must first be registered in the packer and the unpacker.
The MessagePack specification divides extension types into two groups: predefined and application-specific. Currently, there is only one predefined type in the specification, Timestamp.
Timestamp
The Timestamp extension type is a predefined type. Support for this type in the library is done through the TimestampExtension
class. This class is responsible for handling Timestamp
objects, which represent the number of seconds and optional adjustment in nanoseconds:
$timestampExtension = new TimestampExtension();
$packer = new Packer();
$packer = $packer->extendWith($timestampExtension);
$unpacker = new BufferUnpacker();
$unpacker = $unpacker->extendWith($timestampExtension);
$packedTimestamp = $packer->pack(Timestamp::now());
$timestamp = $unpacker->reset($packedTimestamp)->unpack();
$seconds = $timestamp->getSeconds();
$nanoseconds = $timestamp->getNanoseconds();
When using the MessagePack
class, the Timestamp extension is already registered:
$packedTimestamp = MessagePack::pack(Timestamp::now());
$timestamp = MessagePack::unpack($packedTimestamp);
Application-specific extensions
In addition, the format can be extended with your own types. For example, to make the built-in PHP DateTime
objects first-class citizens in your code, you can create a corresponding extension, as shown in the example. Please note, that custom extensions have to be registered with a unique extension ID (an integer from 0
to 127
).
More extension examples can be found in the examples/MessagePack directory.
To learn more about how extension types can be useful, check out this article.
If an error occurs during packing/unpacking, a PackingFailedException
or an UnpackingFailedException
will be thrown, respectively. In addition, an InsufficientDataException
can be thrown during unpacking.
An InvalidOptionException
will be thrown in case an invalid option (or a combination of mutually exclusive options) is used.
Run tests as follows:
vendor/bin/phpunit
Also, if you already have Docker installed, you can run the tests in a docker container. First, create a container:
./dockerfile.sh | docker build -t msgpack -
The command above will create a container named msgpack
with PHP 8.1 runtime. You may change the default runtime by defining the PHP_IMAGE
environment variable:
PHP_IMAGE='php:8.0-cli' ./dockerfile.sh | docker build -t msgpack -
See a list of various images here.
Then run the unit tests:
docker run --rm -v $PWD:/msgpack -w /msgpack msgpack
To ensure that the unpacking works correctly with malformed/semi-malformed data, you can use a testing technique called Fuzzing. The library ships with a help file (target) for PHP-Fuzzer and can be used as follows:
php-fuzzer fuzz tests/fuzz_buffer_unpacker.php
To check performance, run:
php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php
Example output
Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000
=============================================
Test/Target Packer BufferUnpacker
---------------------------------------------
nil .................. 0.0030 ........ 0.0139
false ................ 0.0037 ........ 0.0144
true ................. 0.0040 ........ 0.0137
7-bit uint #1 ........ 0.0052 ........ 0.0120
7-bit uint #2 ........ 0.0059 ........ 0.0114
7-bit uint #3 ........ 0.0061 ........ 0.0119
5-bit sint #1 ........ 0.0067 ........ 0.0126
5-bit sint #2 ........ 0.0064 ........ 0.0132
5-bit sint #3 ........ 0.0066 ........ 0.0135
8-bit uint #1 ........ 0.0078 ........ 0.0200
8-bit uint #2 ........ 0.0077 ........ 0.0212
8-bit uint #3 ........ 0.0086 ........ 0.0203
16-bit uint #1 ....... 0.0111 ........ 0.0271
16-bit uint #2 ....... 0.0115 ........ 0.0260
16-bit uint #3 ....... 0.0103 ........ 0.0273
32-bit uint #1 ....... 0.0116 ........ 0.0326
32-bit uint #2 ....... 0.0118 ........ 0.0332
32-bit uint #3 ....... 0.0127 ........ 0.0325
64-bit uint #1 ....... 0.0140 ........ 0.0277
64-bit uint #2 ....... 0.0134 ........ 0.0294
64-bit uint #3 ....... 0.0134 ........ 0.0281
8-bit int #1 ......... 0.0086 ........ 0.0241
8-bit int #2 ......... 0.0089 ........ 0.0225
8-bit int #3 ......... 0.0085 ........ 0.0229
16-bit int #1 ........ 0.0118 ........ 0.0280
16-bit int #2 ........ 0.0121 ........ 0.0270
16-bit int #3 ........ 0.0109 ........ 0.0274
32-bit int #1 ........ 0.0128 ........ 0.0346
32-bit int #2 ........ 0.0118 ........ 0.0339
32-bit int #3 ........ 0.0135 ........ 0.0368
64-bit int #1 ........ 0.0138 ........ 0.0276
64-bit int #2 ........ 0.0132 ........ 0.0286
64-bit int #3 ........ 0.0137 ........ 0.0274
64-bit int #4 ........ 0.0180 ........ 0.0285
64-bit float #1 ...... 0.0134 ........ 0.0284
64-bit float #2 ...... 0.0125 ........ 0.0275
64-bit float #3 ...... 0.0126 ........ 0.0283
fix string #1 ........ 0.0035 ........ 0.0133
fix string #2 ........ 0.0094 ........ 0.0216
fix string #3 ........ 0.0094 ........ 0.0222
fix string #4 ........ 0.0091 ........ 0.0241
8-bit string #1 ...... 0.0122 ........ 0.0301
8-bit string #2 ...... 0.0118 ........ 0.0304
8-bit string #3 ...... 0.0119 ........ 0.0315
16-bit string #1 ..... 0.0150 ........ 0.0388
16-bit string #2 ..... 0.1545 ........ 0.1665
32-bit string ........ 0.1570 ........ 0.1756
wide char string #1 .. 0.0091 ........ 0.0236
wide char string #2 .. 0.0122 ........ 0.0313
8-bit binary #1 ...... 0.0100 ........ 0.0302
8-bit binary #2 ...... 0.0123 ........ 0.0324
8-bit binary #3 ...... 0.0126 ........ 0.0327
16-bit binary ........ 0.0168 ........ 0.0372
32-bit binary ........ 0.1588 ........ 0.1754
fix array #1 ......... 0.0042 ........ 0.0131
fix array #2 ......... 0.0294 ........ 0.0367
fix array #3 ......... 0.0412 ........ 0.0472
16-bit array #1 ...... 0.1378 ........ 0.1596
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.1865 ........ 0.2283
fix map #1 ........... 0.0725 ........ 0.1048
fix map #2 ........... 0.0319 ........ 0.0405
fix map #3 ........... 0.0356 ........ 0.0665
fix map #4 ........... 0.0465 ........ 0.0497
16-bit map #1 ........ 0.2540 ........ 0.3028
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.2372 ........ 0.2710
fixext 1 ............. 0.0283 ........ 0.0358
fixext 2 ............. 0.0291 ........ 0.0371
fixext 4 ............. 0.0302 ........ 0.0355
fixext 8 ............. 0.0288 ........ 0.0384
fixext 16 ............ 0.0293 ........ 0.0359
8-bit ext ............ 0.0302 ........ 0.0439
16-bit ext ........... 0.0334 ........ 0.0499
32-bit ext ........... 0.1845 ........ 0.1888
32-bit timestamp #1 .. 0.0337 ........ 0.0547
32-bit timestamp #2 .. 0.0335 ........ 0.0560
64-bit timestamp #1 .. 0.0371 ........ 0.0575
64-bit timestamp #2 .. 0.0374 ........ 0.0542
64-bit timestamp #3 .. 0.0356 ........ 0.0533
96-bit timestamp #1 .. 0.0362 ........ 0.0699
96-bit timestamp #2 .. 0.0381 ........ 0.0701
96-bit timestamp #3 .. 0.0367 ........ 0.0687
=============================================
Total 2.7618 4.0820
Skipped 4 4
Failed 0 0
Ignored 0 0
With JIT:
php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php
Example output
Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000
=============================================
Test/Target Packer BufferUnpacker
---------------------------------------------
nil .................. 0.0005 ........ 0.0054
false ................ 0.0004 ........ 0.0059
true ................. 0.0004 ........ 0.0059
7-bit uint #1 ........ 0.0010 ........ 0.0047
7-bit uint #2 ........ 0.0010 ........ 0.0046
7-bit uint #3 ........ 0.0010 ........ 0.0046
5-bit sint #1 ........ 0.0025 ........ 0.0046
5-bit sint #2 ........ 0.0023 ........ 0.0046
5-bit sint #3 ........ 0.0024 ........ 0.0045
8-bit uint #1 ........ 0.0043 ........ 0.0081
8-bit uint #2 ........ 0.0043 ........ 0.0079
8-bit uint #3 ........ 0.0041 ........ 0.0080
16-bit uint #1 ....... 0.0064 ........ 0.0095
16-bit uint #2 ....... 0.0064 ........ 0.0091
16-bit uint #3 ....... 0.0064 ........ 0.0094
32-bit uint #1 ....... 0.0085 ........ 0.0114
32-bit uint #2 ....... 0.0077 ........ 0.0122
32-bit uint #3 ....... 0.0077 ........ 0.0120
64-bit uint #1 ....... 0.0085 ........ 0.0159
64-bit uint #2 ....... 0.0086 ........ 0.0157
64-bit uint #3 ....... 0.0086 ........ 0.0158
8-bit int #1 ......... 0.0042 ........ 0.0080
8-bit int #2 ......... 0.0042 ........ 0.0080
8-bit int #3 ......... 0.0042 ........ 0.0081
16-bit int #1 ........ 0.0065 ........ 0.0095
16-bit int #2 ........ 0.0065 ........ 0.0090
16-bit int #3 ........ 0.0056 ........ 0.0085
32-bit int #1 ........ 0.0067 ........ 0.0107
32-bit int #2 ........ 0.0066 ........ 0.0106
32-bit int #3 ........ 0.0063 ........ 0.0104
64-bit int #1 ........ 0.0072 ........ 0.0162
64-bit int #2 ........ 0.0073 ........ 0.0174
64-bit int #3 ........ 0.0072 ........ 0.0164
64-bit int #4 ........ 0.0077 ........ 0.0161
64-bit float #1 ...... 0.0053 ........ 0.0135
64-bit float #2 ...... 0.0053 ........ 0.0135
64-bit float #3 ...... 0.0052 ........ 0.0135
fix string #1 ....... -0.0002 ........ 0.0044
fix string #2 ........ 0.0035 ........ 0.0067
fix string #3 ........ 0.0035 ........ 0.0077
fix string #4 ........ 0.0033 ........ 0.0078
8-bit string #1 ...... 0.0059 ........ 0.0110
8-bit string #2 ...... 0.0063 ........ 0.0121
8-bit string #3 ...... 0.0064 ........ 0.0124
16-bit string #1 ..... 0.0099 ........ 0.0146
16-bit string #2 ..... 0.1522 ........ 0.1474
32-bit string ........ 0.1511 ........ 0.1483
wide char string #1 .. 0.0039 ........ 0.0084
wide char string #2 .. 0.0073 ........ 0.0123
8-bit binary #1 ...... 0.0040 ........ 0.0112
8-bit binary #2 ...... 0.0075 ........ 0.0123
8-bit binary #3 ...... 0.0077 ........ 0.0129
16-bit binary ........ 0.0096 ........ 0.0145
32-bit binary ........ 0.1535 ........ 0.1479
fix array #1 ......... 0.0008 ........ 0.0061
fix array #2 ......... 0.0121 ........ 0.0165
fix array #3 ......... 0.0193 ........ 0.0222
16-bit array #1 ...... 0.0607 ........ 0.0479
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.0749 ........ 0.0824
fix map #1 ........... 0.0329 ........ 0.0431
fix map #2 ........... 0.0161 ........ 0.0189
fix map #3 ........... 0.0205 ........ 0.0262
fix map #4 ........... 0.0252 ........ 0.0205
16-bit map #1 ........ 0.1016 ........ 0.0927
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.1096 ........ 0.1030
fixext 1 ............. 0.0157 ........ 0.0161
fixext 2 ............. 0.0175 ........ 0.0183
fixext 4 ............. 0.0156 ........ 0.0185
fixext 8 ............. 0.0163 ........ 0.0184
fixext 16 ............ 0.0164 ........ 0.0182
8-bit ext ............ 0.0158 ........ 0.0207
16-bit ext ........... 0.0203 ........ 0.0219
32-bit ext ........... 0.1614 ........ 0.1539
32-bit timestamp #1 .. 0.0195 ........ 0.0249
32-bit timestamp #2 .. 0.0188 ........ 0.0260
64-bit timestamp #1 .. 0.0207 ........ 0.0281
64-bit timestamp #2 .. 0.0212 ........ 0.0291
64-bit timestamp #3 .. 0.0207 ........ 0.0295
96-bit timestamp #1 .. 0.0222 ........ 0.0358
96-bit timestamp #2 .. 0.0228 ........ 0.0353
96-bit timestamp #3 .. 0.0210 ........ 0.0319
=============================================
Total 1.6432 1.9674
Skipped 4 4
Failed 0 0
Ignored 0 0
You may change default benchmark settings by defining the following environment variables:
Name | Default |
---|---|
MP_BENCH_TARGETS | pure_p,pure_u , see a list of available targets |
MP_BENCH_ITERATIONS | 100_000 |
MP_BENCH_DURATION | not set |
MP_BENCH_ROUNDS | 3 |
MP_BENCH_TESTS | -@slow , see a list of available tests |
For example:
export MP_BENCH_TARGETS=pure_p
export MP_BENCH_ITERATIONS=1000000
export MP_BENCH_ROUNDS=5
# a comma separated list of test names
export MP_BENCH_TESTS='complex array, complex map'
# or a group name
# export MP_BENCH_TESTS='-@slow' // @pecl_comp
# or a regexp
# export MP_BENCH_TESTS='/complex (array|map)/'
Another example, benchmarking both the library and the PECL extension:
MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php
Example output
Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000
===========================================================================
Test/Target Packer BufferUnpacker msgpack_pack msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0031 ........ 0.0141 ...... 0.0055 ........ 0.0064
false ................ 0.0039 ........ 0.0154 ...... 0.0056 ........ 0.0053
true ................. 0.0038 ........ 0.0139 ...... 0.0056 ........ 0.0044
7-bit uint #1 ........ 0.0061 ........ 0.0110 ...... 0.0059 ........ 0.0046
7-bit uint #2 ........ 0.0065 ........ 0.0119 ...... 0.0042 ........ 0.0029
7-bit uint #3 ........ 0.0054 ........ 0.0117 ...... 0.0045 ........ 0.0025
5-bit sint #1 ........ 0.0047 ........ 0.0103 ...... 0.0038 ........ 0.0022
5-bit sint #2 ........ 0.0048 ........ 0.0117 ...... 0.0038 ........ 0.0022
5-bit sint #3 ........ 0.0046 ........ 0.0102 ...... 0.0038 ........ 0.0023
8-bit uint #1 ........ 0.0063 ........ 0.0174 ...... 0.0039 ........ 0.0031
8-bit uint #2 ........ 0.0063 ........ 0.0167 ...... 0.0040 ........ 0.0029
8-bit uint #3 ........ 0.0063 ........ 0.0168 ...... 0.0039 ........ 0.0030
16-bit uint #1 ....... 0.0092 ........ 0.0222 ...... 0.0049 ........ 0.0030
16-bit uint #2 ....... 0.0096 ........ 0.0227 ...... 0.0042 ........ 0.0046
16-bit uint #3 ....... 0.0123 ........ 0.0274 ...... 0.0059 ........ 0.0051
32-bit uint #1 ....... 0.0136 ........ 0.0331 ...... 0.0060 ........ 0.0048
32-bit uint #2 ....... 0.0130 ........ 0.0336 ...... 0.0070 ........ 0.0048
32-bit uint #3 ....... 0.0127 ........ 0.0329 ...... 0.0051 ........ 0.0048
64-bit uint #1 ....... 0.0126 ........ 0.0268 ...... 0.0055 ........ 0.0049
64-bit uint #2 ....... 0.0135 ........ 0.0281 ...... 0.0052 ........ 0.0046
64-bit uint #3 ....... 0.0131 ........ 0.0274 ...... 0.0069 ........ 0.0044
8-bit int #1 ......... 0.0077 ........ 0.0236 ...... 0.0058 ........ 0.0044
8-bit int #2 ......... 0.0087 ........ 0.0244 ...... 0.0058 ........ 0.0048
8-bit int #3 ......... 0.0084 ........ 0.0241 ...... 0.0055 ........ 0.0049
16-bit int #1 ........ 0.0112 ........ 0.0271 ...... 0.0048 ........ 0.0045
16-bit int #2 ........ 0.0124 ........ 0.0292 ...... 0.0057 ........ 0.0049
16-bit int #3 ........ 0.0118 ........ 0.0270 ...... 0.0058 ........ 0.0050
32-bit int #1 ........ 0.0137 ........ 0.0366 ...... 0.0058 ........ 0.0051
32-bit int #2 ........ 0.0133 ........ 0.0366 ...... 0.0056 ........ 0.0049
32-bit int #3 ........ 0.0129 ........ 0.0350 ...... 0.0052 ........ 0.0048
64-bit int #1 ........ 0.0145 ........ 0.0254 ...... 0.0034 ........ 0.0025
64-bit int #2 ........ 0.0097 ........ 0.0214 ...... 0.0034 ........ 0.0025
64-bit int #3 ........ 0.0096 ........ 0.0287 ...... 0.0059 ........ 0.0050
64-bit int #4 ........ 0.0143 ........ 0.0277 ...... 0.0059 ........ 0.0046
64-bit float #1 ...... 0.0134 ........ 0.0281 ...... 0.0057 ........ 0.0052
64-bit float #2 ...... 0.0141 ........ 0.0281 ...... 0.0057 ........ 0.0050
64-bit float #3 ...... 0.0144 ........ 0.0282 ...... 0.0057 ........ 0.0050
fix string #1 ........ 0.0036 ........ 0.0143 ...... 0.0066 ........ 0.0053
fix string #2 ........ 0.0107 ........ 0.0222 ...... 0.0065 ........ 0.0068
fix string #3 ........ 0.0116 ........ 0.0245 ...... 0.0063 ........ 0.0069
fix string #4 ........ 0.0105 ........ 0.0253 ...... 0.0083 ........ 0.0077
8-bit string #1 ...... 0.0126 ........ 0.0318 ...... 0.0075 ........ 0.0088
8-bit string #2 ...... 0.0121 ........ 0.0295 ...... 0.0076 ........ 0.0086
8-bit string #3 ...... 0.0125 ........ 0.0293 ...... 0.0130 ........ 0.0093
16-bit string #1 ..... 0.0159 ........ 0.0368 ...... 0.0117 ........ 0.0086
16-bit string #2 ..... 0.1547 ........ 0.1686 ...... 0.1516 ........ 0.1373
32-bit string ........ 0.1558 ........ 0.1729 ...... 0.1511 ........ 0.1396
wide char string #1 .. 0.0098 ........ 0.0237 ...... 0.0066 ........ 0.0065
wide char string #2 .. 0.0128 ........ 0.0291 ...... 0.0061 ........ 0.0082
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0040 ........ 0.0129 ...... 0.0120 ........ 0.0058
fix array #2 ......... 0.0279 ........ 0.0390 ...... 0.0143 ........ 0.0165
fix array #3 ......... 0.0415 ........ 0.0463 ...... 0.0162 ........ 0.0187
16-bit array #1 ...... 0.1349 ........ 0.1628 ...... 0.0334 ........ 0.0341
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0345 ........ 0.0391 ...... 0.0143 ........ 0.0168
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0459 ........ 0.0473 ...... 0.0151 ........ 0.0163
16-bit map #1 ........ 0.2518 ........ 0.2962 ...... 0.0400 ........ 0.0490
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.2380 ........ 0.2682 ...... 0.0545 ........ 0.0579
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total 1.5625 2.3866 0.7735 0.7243
Skipped 4 4 4 4
Failed 0 0 24 17
Ignored 24 24 0 7
With JIT:
MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php
Example output
Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000
===========================================================================
Test/Target Packer BufferUnpacker msgpack_pack msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0001 ........ 0.0052 ...... 0.0053 ........ 0.0042
false ................ 0.0007 ........ 0.0060 ...... 0.0057 ........ 0.0043
true ................. 0.0008 ........ 0.0060 ...... 0.0056 ........ 0.0041
7-bit uint #1 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0041
7-bit uint #2 ........ 0.0021 ........ 0.0043 ...... 0.0062 ........ 0.0041
7-bit uint #3 ........ 0.0022 ........ 0.0044 ...... 0.0061 ........ 0.0040
5-bit sint #1 ........ 0.0030 ........ 0.0048 ...... 0.0062 ........ 0.0040
5-bit sint #2 ........ 0.0032 ........ 0.0046 ...... 0.0062 ........ 0.0040
5-bit sint #3 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0040
8-bit uint #1 ........ 0.0054 ........ 0.0079 ...... 0.0062 ........ 0.0050
8-bit uint #2 ........ 0.0051 ........ 0.0079 ...... 0.0064 ........ 0.0044
8-bit uint #3 ........ 0.0051 ........ 0.0082 ...... 0.0062 ........ 0.0044
16-bit uint #1 ....... 0.0077 ........ 0.0094 ...... 0.0065 ........ 0.0045
16-bit uint #2 ....... 0.0077 ........ 0.0094 ...... 0.0063 ........ 0.0045
16-bit uint #3 ....... 0.0077 ........ 0.0095 ...... 0.0064 ........ 0.0047
32-bit uint #1 ....... 0.0088 ........ 0.0119 ...... 0.0063 ........ 0.0043
32-bit uint #2 ....... 0.0089 ........ 0.0117 ...... 0.0062 ........ 0.0039
32-bit uint #3 ....... 0.0089 ........ 0.0118 ...... 0.0063 ........ 0.0044
64-bit uint #1 ....... 0.0097 ........ 0.0155 ...... 0.0063 ........ 0.0045
64-bit uint #2 ....... 0.0095 ........ 0.0153 ...... 0.0061 ........ 0.0045
64-bit uint #3 ....... 0.0096 ........ 0.0156 ...... 0.0063 ........ 0.0047
8-bit int #1 ......... 0.0053 ........ 0.0083 ...... 0.0062 ........ 0.0044
8-bit int #2 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0044
8-bit int #3 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0043
16-bit int #1 ........ 0.0089 ........ 0.0097 ...... 0.0069 ........ 0.0046
16-bit int #2 ........ 0.0075 ........ 0.0093 ...... 0.0063 ........ 0.0043
16-bit int #3 ........ 0.0075 ........ 0.0094 ...... 0.0062 ........ 0.0046
32-bit int #1 ........ 0.0086 ........ 0.0122 ...... 0.0063 ........ 0.0044
32-bit int #2 ........ 0.0087 ........ 0.0120 ...... 0.0066 ........ 0.0046
32-bit int #3 ........ 0.0086 ........ 0.0121 ...... 0.0060 ........ 0.0044
64-bit int #1 ........ 0.0096 ........ 0.0149 ...... 0.0060 ........ 0.0045
64-bit int #2 ........ 0.0096 ........ 0.0157 ...... 0.0062 ........ 0.0044
64-bit int #3 ........ 0.0096 ........ 0.0160 ...... 0.0063 ........ 0.0046
64-bit int #4 ........ 0.0097 ........ 0.0157 ...... 0.0061 ........ 0.0044
64-bit float #1 ...... 0.0079 ........ 0.0153 ...... 0.0056 ........ 0.0044
64-bit float #2 ...... 0.0079 ........ 0.0152 ...... 0.0057 ........ 0.0045
64-bit float #3 ...... 0.0079 ........ 0.0155 ...... 0.0057 ........ 0.0044
fix string #1 ........ 0.0010 ........ 0.0045 ...... 0.0071 ........ 0.0044
fix string #2 ........ 0.0048 ........ 0.0075 ...... 0.0070 ........ 0.0060
fix string #3 ........ 0.0048 ........ 0.0086 ...... 0.0068 ........ 0.0060
fix string #4 ........ 0.0050 ........ 0.0088 ...... 0.0070 ........ 0.0059
8-bit string #1 ...... 0.0081 ........ 0.0129 ...... 0.0069 ........ 0.0062
8-bit string #2 ...... 0.0086 ........ 0.0128 ...... 0.0069 ........ 0.0065
8-bit string #3 ...... 0.0086 ........ 0.0126 ...... 0.0115 ........ 0.0065
16-bit string #1 ..... 0.0105 ........ 0.0137 ...... 0.0128 ........ 0.0068
16-bit string #2 ..... 0.1510 ........ 0.1486 ...... 0.1526 ........ 0.1391
32-bit string ........ 0.1517 ........ 0.1475 ...... 0.1504 ........ 0.1370
wide char string #1 .. 0.0044 ........ 0.0085 ...... 0.0067 ........ 0.0057
wide char string #2 .. 0.0081 ........ 0.0125 ...... 0.0069 ........ 0.0063
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0014 ........ 0.0059 ...... 0.0132 ........ 0.0055
fix array #2 ......... 0.0146 ........ 0.0156 ...... 0.0155 ........ 0.0148
fix array #3 ......... 0.0211 ........ 0.0229 ...... 0.0179 ........ 0.0180
16-bit array #1 ...... 0.0673 ........ 0.0498 ...... 0.0343 ........ 0.0388
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0148 ........ 0.0180 ...... 0.0156 ........ 0.0179
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0252 ........ 0.0201 ...... 0.0214 ........ 0.0167
16-bit map #1 ........ 0.1027 ........ 0.0836 ...... 0.0388 ........ 0.0510
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.1104 ........ 0.1010 ...... 0.0556 ........ 0.0602
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total 0.9642 1.0909 0.8224 0.7213
Skipped 4 4 4 4
Failed 0 0 24 17
Ignored 24 24 0 7
Note that the msgpack extension (v2.1.2) doesn't support ext, bin and UTF-8 str types.
The library is released under the MIT License. See the bundled LICENSE file for details.
Author: rybakit
Source Code: https://github.com/rybakit/msgpack.php
License: MIT License
1630743562
FHIR_DB
This is really just a wrapper around Sembast_SQFLite - so all of the heavy lifting was done by Alex Tekartik. I highly recommend that if you have any questions about working with this package that you take a look at Sembast. He's also just a super nice guy, and even answered a question for me when I was deciding which sembast version to use. As usual, ResoCoder also has a good tutorial.
I have an interest in low-resource settings and thus a specific reason to be able to store data offline. To encourage this use, there are a number of other packages I have created based around the data format FHIR. FHIR® is the registered trademark of HL7 and is used with the permission of HL7. Use of the FHIR trademark does not constitute endorsement of this product by HL7.
So, while not absolutely necessary, I highly recommend that you use some sort of interface class. This adds the benefit of more easily handling errors, plus if you change to a different database in the future, you don't have to change the rest of your app, just the interface.
I've used something like this in my projects:
class IFhirDb {
IFhirDb();
final ResourceDao resourceDao = ResourceDao();
Future<Either<DbFailure, Resource>> save(Resource resource) async {
Resource resultResource;
try {
resultResource = await resourceDao.save(resource);
} catch (error) {
return left(DbFailure.unableToSave(error: error.toString()));
}
return right(resultResource);
}
Future<Either<DbFailure, List<Resource>>> returnListOfSingleResourceType(
String resourceType) async {
List<Resource> resultList;
try {
resultList =
await resourceDao.getAllSortedById(resourceType: resourceType);
} catch (error) {
return left(DbFailure.unableToObtainList(error: error.toString()));
}
return right(resultList);
}
Future<Either<DbFailure, List<Resource>>> searchFunction(
String resourceType, String searchString, String reference) async {
List<Resource> resultList;
try {
resultList =
await resourceDao.searchFor(resourceType, searchString, reference);
} catch (error) {
return left(DbFailure.unableToObtainList(error: error.toString()));
}
return right(resultList);
}
}
I like this because in case there's an i/o error or something, it won't crash your app. Then, you can call this interface in your app like the following:
final patient = Patient(
resourceType: 'Patient',
name: [HumanName(text: 'New Patient Name')],
birthDate: Date(DateTime.now()),
);
final saveResult = await IFhirDb().save(patient);
This will save your newly created patient to the locally embedded database.
IMPORTANT: this database will expect that all previously created resources have an id. When you save a resource, it will check to see if that resource type has already been stored. (Each resource type is saved in it's own store in the database). It will then check if there is an ID. If there's no ID, it will create a new one for that resource (along with metadata on version number and creation time). It will save it, and return the resource. If it already has an ID, it will copy the the old version of the resource into a _history store. It will then update the metadata of the new resource and save that version into the appropriate store for that resource. If, for instance, we have a previously created patient:
{
"resourceType": "Patient",
"id": "fhirfli-294057507-6811107",
"meta": {
"versionId": "1",
"lastUpdated": "2020-10-16T19:41:28.054369Z"
},
"name": [
{
"given": ["New"],
"family": "Patient"
}
],
"birthDate": "2020-10-16"
}
And we update the last name to 'Provider'. The above version of the patient will be kept in _history, while in the 'Patient' store in the db, we will have the updated version:
{
"resourceType": "Patient",
"id": "fhirfli-294057507-6811107",
"meta": {
"versionId": "2",
"lastUpdated": "2020-10-16T19:45:07.316698Z"
},
"name": [
{
"given": ["New"],
"family": "Provider"
}
],
"birthDate": "2020-10-16"
}
This way we can keep track of all previous version of all resources (which is obviously important in medicine).
For most of the interactions (saving, deleting, etc), they work the way you'd expect. The only difference is search. Because Sembast is NoSQL, we can search on any of the fields in a resource. If in our interface class, we have the following function:
Future<Either<DbFailure, List<Resource>>> searchFunction(
String resourceType, String searchString, String reference) async {
List<Resource> resultList;
try {
resultList =
await resourceDao.searchFor(resourceType, searchString, reference);
} catch (error) {
return left(DbFailure.unableToObtainList(error: error.toString()));
}
return right(resultList);
}
You can search for all immunizations of a certain patient:
searchFunction(
'Immunization', 'patient.reference', 'Patient/$patientId');
This function will search through all entries in the 'Immunization' store. It will look at all 'patient.reference' fields, and return any that match 'Patient/$patientId'.
The last thing I'll mention is that this is a password protected db, using AES-256 encryption (although it can also use Salsa20). Anytime you use the db, you have the option of using a password for encryption/decryption. Remember, if you setup the database using encryption, you will only be able to access it using that same password. When you're ready to change the password, you will need to call the update password function. If we again assume we created a change password method in our interface, it might look something like this:
class IFhirDb {
IFhirDb();
final ResourceDao resourceDao = ResourceDao();
...
Future<Either<DbFailure, Unit>> updatePassword(String oldPassword, String newPassword) async {
try {
await resourceDao.updatePw(oldPassword, newPassword);
} catch (error) {
return left(DbFailure.unableToUpdatePassword(error: error.toString()));
}
return right(Unit);
}
You don't have to use a password, and in that case, it will save the db file as plain text. If you want to add a password later, it will encrypt it at that time.
After using this for a while in an app, I've realized that it needs to be able to store data apart from just FHIR resources, at least on occasion. For this, I've added a second class for all versions of the database called GeneralDao. This is similar to the ResourceDao, but fewer options. So, in order to save something, it would look like this:
await GeneralDao().save('password', {'new':'map'});
await GeneralDao().save('password', {'new':'map'}, 'key');
The difference between these two options is that the first one will generate a key for the map being stored, while the second will store the map using the key provided. Both will return the key after successfully storing the map.
Other functions available include:
// deletes everything in the general store
await GeneralDao().deleteAllGeneral('password');
// delete specific entry
await GeneralDao().delete('password','key');
// returns map with that key
await GeneralDao().find('password', 'key');
FHIR® is a registered trademark of Health Level Seven International (HL7) and its use does not constitute an endorsement of products by HL7®
Run this command:
With Flutter:
$ flutter pub add fhir_db
This will add a line like this to your package's pubspec.yaml (and run an implicit flutter pub get):
dependencies:
fhir_db: ^0.4.3
Alternatively, your editor might support or flutter pub get. Check the docs for your editor to learn more.
Now in your Dart code, you can use:
import 'package:fhir_db/dstu2.dart';
import 'package:fhir_db/dstu2/fhir_db.dart';
import 'package:fhir_db/dstu2/general_dao.dart';
import 'package:fhir_db/dstu2/resource_dao.dart';
import 'package:fhir_db/encrypt/aes.dart';
import 'package:fhir_db/encrypt/salsa.dart';
import 'package:fhir_db/r4.dart';
import 'package:fhir_db/r4/fhir_db.dart';
import 'package:fhir_db/r4/general_dao.dart';
import 'package:fhir_db/r4/resource_dao.dart';
import 'package:fhir_db/r5.dart';
import 'package:fhir_db/r5/fhir_db.dart';
import 'package:fhir_db/r5/general_dao.dart';
import 'package:fhir_db/r5/resource_dao.dart';
import 'package:fhir_db/stu3.dart';
import 'package:fhir_db/stu3/fhir_db.dart';
import 'package:fhir_db/stu3/general_dao.dart';
import 'package:fhir_db/stu3/resource_dao.dart';
import 'package:fhir/r4.dart';
import 'package:fhir_db/r4.dart';
import 'package:flutter/material.dart';
import 'package:test/test.dart';
Future<void> main() async {
WidgetsFlutterBinding.ensureInitialized();
final resourceDao = ResourceDao();
// await resourceDao.updatePw('newPw', null);
await resourceDao.deleteAllResources(null);
group('Playing with passwords', () {
test('Playing with Passwords', () async {
final patient = Patient(id: Id('1'));
final saved = await resourceDao.save(null, patient);
await resourceDao.updatePw(null, 'newPw');
final search1 = await resourceDao.find('newPw',
resourceType: R4ResourceType.Patient, id: Id('1'));
expect(saved, search1[0]);
await resourceDao.updatePw('newPw', 'newerPw');
final search2 = await resourceDao.find('newerPw',
resourceType: R4ResourceType.Patient, id: Id('1'));
expect(saved, search2[0]);
await resourceDao.updatePw('newerPw', null);
final search3 = await resourceDao.find(null,
resourceType: R4ResourceType.Patient, id: Id('1'));
expect(saved, search3[0]);
await resourceDao.deleteAllResources(null);
});
});
final id = Id('12345');
group('Saving Things:', () {
test('Save Patient', () async {
final humanName = HumanName(family: 'Atreides', given: ['Duke']);
final patient = Patient(id: id, name: [humanName]);
final saved = await resourceDao.save(null, patient);
expect(saved.id, id);
expect((saved as Patient).name?[0], humanName);
});
test('Save Organization', () async {
final organization = Organization(id: id, name: 'FhirFli');
final saved = await resourceDao.save(null, organization);
expect(saved.id, id);
expect((saved as Organization).name, 'FhirFli');
});
test('Save Observation1', () async {
final observation1 = Observation(
id: Id('obs1'),
code: CodeableConcept(text: 'Observation #1'),
effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
);
final saved = await resourceDao.save(null, observation1);
expect(saved.id, Id('obs1'));
expect((saved as Observation).code.text, 'Observation #1');
});
test('Save Observation1 Again', () async {
final observation1 = Observation(
id: Id('obs1'),
code: CodeableConcept(text: 'Observation #1 - Updated'));
final saved = await resourceDao.save(null, observation1);
expect(saved.id, Id('obs1'));
expect((saved as Observation).code.text, 'Observation #1 - Updated');
expect(saved.meta?.versionId, Id('2'));
});
test('Save Observation2', () async {
final observation2 = Observation(
id: Id('obs2'),
code: CodeableConcept(text: 'Observation #2'),
effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
);
final saved = await resourceDao.save(null, observation2);
expect(saved.id, Id('obs2'));
expect((saved as Observation).code.text, 'Observation #2');
});
test('Save Observation3', () async {
final observation3 = Observation(
id: Id('obs3'),
code: CodeableConcept(text: 'Observation #3'),
effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
);
final saved = await resourceDao.save(null, observation3);
expect(saved.id, Id('obs3'));
expect((saved as Observation).code.text, 'Observation #3');
});
});
group('Finding Things:', () {
test('Find 1st Patient', () async {
final search = await resourceDao.find(null,
resourceType: R4ResourceType.Patient, id: id);
final humanName = HumanName(family: 'Atreides', given: ['Duke']);
expect(search.length, 1);
expect((search[0] as Patient).name?[0], humanName);
});
test('Find 3rd Observation', () async {
final search = await resourceDao.find(null,
resourceType: R4ResourceType.Observation, id: Id('obs3'));
expect(search.length, 1);
expect(search[0].id, Id('obs3'));
expect((search[0] as Observation).code.text, 'Observation #3');
});
test('Find All Observations', () async {
final search = await resourceDao.getResourceType(
null,
resourceTypes: [R4ResourceType.Observation],
);
expect(search.length, 3);
final idList = [];
for (final obs in search) {
idList.add(obs.id.toString());
}
expect(idList.contains('obs1'), true);
expect(idList.contains('obs2'), true);
expect(idList.contains('obs3'), true);
});
test('Find All (non-historical) Resources', () async {
final search = await resourceDao.getAll(null);
expect(search.length, 5);
final patList = search.toList();
final orgList = search.toList();
final obsList = search.toList();
patList.retainWhere(
(resource) => resource.resourceType == R4ResourceType.Patient);
orgList.retainWhere(
(resource) => resource.resourceType == R4ResourceType.Organization);
obsList.retainWhere(
(resource) => resource.resourceType == R4ResourceType.Observation);
expect(patList.length, 1);
expect(orgList.length, 1);
expect(obsList.length, 3);
});
});
group('Deleting Things:', () {
test('Delete 2nd Observation', () async {
await resourceDao.delete(
null, null, R4ResourceType.Observation, Id('obs2'), null, null);
final search = await resourceDao.getResourceType(
null,
resourceTypes: [R4ResourceType.Observation],
);
expect(search.length, 2);
final idList = [];
for (final obs in search) {
idList.add(obs.id.toString());
}
expect(idList.contains('obs1'), true);
expect(idList.contains('obs2'), false);
expect(idList.contains('obs3'), true);
});
test('Delete All Observations', () async {
await resourceDao.deleteSingleType(null,
resourceType: R4ResourceType.Observation);
final search = await resourceDao.getAll(null);
expect(search.length, 2);
final patList = search.toList();
final orgList = search.toList();
patList.retainWhere(
(resource) => resource.resourceType == R4ResourceType.Patient);
orgList.retainWhere(
(resource) => resource.resourceType == R4ResourceType.Organization);
expect(patList.length, 1);
expect(patList.length, 1);
});
test('Delete All Resources', () async {
await resourceDao.deleteAllResources(null);
final search = await resourceDao.getAll(null);
expect(search.length, 0);
});
});
group('Password - Saving Things:', () {
test('Save Patient', () async {
await resourceDao.updatePw(null, 'newPw');
final humanName = HumanName(family: 'Atreides', given: ['Duke']);
final patient = Patient(id: id, name: [humanName]);
final saved = await resourceDao.save('newPw', patient);
expect(saved.id, id);
expect((saved as Patient).name?[0], humanName);
});
test('Save Organization', () async {
final organization = Organization(id: id, name: 'FhirFli');
final saved = await resourceDao.save('newPw', organization);
expect(saved.id, id);
expect((saved as Organization).name, 'FhirFli');
});
test('Save Observation1', () async {
final observation1 = Observation(
id: Id('obs1'),
code: CodeableConcept(text: 'Observation #1'),
effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
);
final saved = await resourceDao.save('newPw', observation1);
expect(saved.id, Id('obs1'));
expect((saved as Observation).code.text, 'Observation #1');
});
test('Save Observation1 Again', () async {
final observation1 = Observation(
id: Id('obs1'),
code: CodeableConcept(text: 'Observation #1 - Updated'));
final saved = await resourceDao.save('newPw', observation1);
expect(saved.id, Id('obs1'));
expect((saved as Observation).code.text, 'Observation #1 - Updated');
expect(saved.meta?.versionId, Id('2'));
});
test('Save Observation2', () async {
final observation2 = Observation(
id: Id('obs2'),
code: CodeableConcept(text: 'Observation #2'),
effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
);
final saved = await resourceDao.save('newPw', observation2);
expect(saved.id, Id('obs2'));
expect((saved as Observation).code.text, 'Observation #2');
});
test('Save Observation3', () async {
final observation3 = Observation(
id: Id('obs3'),
code: CodeableConcept(text: 'Observation #3'),
effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
);
final saved = await resourceDao.save('newPw', observation3);
expect(saved.id, Id('obs3'));
expect((saved as Observation).code.text, 'Observation #3');
});
});
group('Password - Finding Things:', () {
test('Find 1st Patient', () async {
final search = await resourceDao.find('newPw',
resourceType: R4ResourceType.Patient, id: id);
final humanName = HumanName(family: 'Atreides', given: ['Duke']);
expect(search.length, 1);
expect((search[0] as Patient).name?[0], humanName);
});
test('Find 3rd Observation', () async {
final search = await resourceDao.find('newPw',
resourceType: R4ResourceType.Observation, id: Id('obs3'));
expect(search.length, 1);
expect(search[0].id, Id('obs3'));
expect((search[0] as Observation).code.text, 'Observation #3');
});
test('Find All Observations', () async {
final search = await resourceDao.getResourceType(
'newPw',
resourceTypes: [R4ResourceType.Observation],
);
expect(search.length, 3);
final idList = [];
for (final obs in search) {
idList.add(obs.id.toString());
}
expect(idList.contains('obs1'), true);
expect(idList.contains('obs2'), true);
expect(idList.contains('obs3'), true);
});
test('Find All (non-historical) Resources', () async {
final search = await resourceDao.getAll('newPw');
expect(search.length, 5);
final patList = search.toList();
final orgList = search.toList();
final obsList = search.toList();
patList.retainWhere(
(resource) => resource.resourceType == R4ResourceType.Patient);
orgList.retainWhere(
(resource) => resource.resourceType == R4ResourceType.Organization);
obsList.retainWhere(
(resource) => resource.resourceType == R4ResourceType.Observation);
expect(patList.length, 1);
expect(orgList.length, 1);
expect(obsList.length, 3);
});
});
group('Password - Deleting Things:', () {
test('Delete 2nd Observation', () async {
await resourceDao.delete(
'newPw', null, R4ResourceType.Observation, Id('obs2'), null, null);
final search = await resourceDao.getResourceType(
'newPw',
resourceTypes: [R4ResourceType.Observation],
);
expect(search.length, 2);
final idList = [];
for (final obs in search) {
idList.add(obs.id.toString());
}
expect(idList.contains('obs1'), true);
expect(idList.contains('obs2'), false);
expect(idList.contains('obs3'), true);
});
test('Delete All Observations', () async {
await resourceDao.deleteSingleType('newPw',
resourceType: R4ResourceType.Observation);
final search = await resourceDao.getAll('newPw');
expect(search.length, 2);
final patList = search.toList();
final orgList = search.toList();
patList.retainWhere(
(resource) => resource.resourceType == R4ResourceType.Patient);
orgList.retainWhere(
(resource) => resource.resourceType == R4ResourceType.Organization);
expect(patList.length, 1);
expect(patList.length, 1);
});
test('Delete All Resources', () async {
await resourceDao.deleteAllResources('newPw');
final search = await resourceDao.getAll('newPw');
expect(search.length, 0);
await resourceDao.updatePw('newPw', null);
});
});
}
Download Details:
Author: MayJuun
Source Code: https://github.com/MayJuun/fhir/tree/main/fhir_db
1669952228
In this tutorial, you'll learn: What is Dijkstra's Algorithm and how Dijkstra's algorithm works with the help of visual guides.
You can use algorithms in programming to solve specific problems through a set of precise instructions or procedures.
Dijkstra's algorithm is one of many graph algorithms you'll come across. It is used to find the shortest path from a fixed node to all other nodes in a graph.
There are different representations of Dijkstra's algorithm. You can either find the shortest path between two nodes, or the shortest path from a fixed node to the rest of the nodes in a graph.
In this article, you'll learn how Dijkstra's algorithm works with the help of visual guides.
Before we dive into more detailed visual examples, you need to understand how Dijkstra's algorithm works.
Although the theoretical explanation may seem a bit abstract, it'll help you understand the practical aspect better.
In a given graph containing different nodes, we are required to get the shortest path from a given node to the rest of the nodes.
These nodes can represent any object like the names of cities, letters, and so on.
Between each node is a number denoting the distance between two nodes, as you can see in the image below:
We usually work with two arrays – one for visited nodes, and another for unvisited nodes. You'll learn more about the arrays in the next section.
When a node is visited, the algorithm calculates how long it took to get to the node and stores the distance. If a shorter path to a node is found, the initial value assigned for the distance is updated.
Note that a node cannot be visited twice.
The algorithm runs recursively until all the nodes have been visited.
In this section, we'll take a look at a practical example that shows how Dijkstra's algorithm works.
Here's the graph we'll be working with:
We'll use the table below to put down the visited nodes and their distance from the fixed node:
NODE | SHORTEST DISTANCE FROM FIXED NODE |
---|---|
A | ∞ |
B | ∞ |
C | ∞ |
D | ∞ |
E | ∞ |
Visited nodes = []
Unvisited nodes = [A,B,C,D,E]
Above, we have a table showing each node and the shortest distance from the that node to the fixed node. We are yet to choose the fixed node.
Note that the distance for each node in the table is currently denoted as infinity (∞). This is because we don't know the shortest distance yet.
We also have two arrays – visited and unvisited. Whenever a node is visited, it is added to the visited nodes array.
Let's get started!
To simplify things, I'll break the process down into iterations. You'll see what happens in each step with the aid of diagrams.
The first iteration might seem confusing, but that's totally fine. Once we start repeating the process in each iteration, you'll have a clearer picture of how the algorithm works.
Step #1 - Pick an unvisited node
We'll choose A as the fixed node. So we'll find the shortest distance from A to every other node in the graph.
We're going to give A a distance of 0 because it is the initial node. So the table would look like this:
NODE | SHORTEST DISTANCE FROM FIXED NODE |
---|---|
A | 0 |
B | ∞ |
C | ∞ |
D | ∞ |
E | ∞ |
Step #2 - Find the distance from current node
The next thing to do after choosing a node is to find the distance from it to the unvisited nodes around it.
The two unvisited nodes directly linked to A are B and C.
To get the distance from A to B:
0 + 4 = 4
0 being the value of the current node (A), and 4 being the distance between A and B in the graph.
To get the distance from A to C:
0 + 2 = 2
Step #3 - Update table with known distances
In the last step, we got 4 and 2 as the values of B and C respectively. So we'll update the table with those values:
NODE | SHORTEST DISTANCE FROM FIXED NODE |
---|---|
A | 0 |
B | 4 |
C | 2 |
D | ∞ |
E | ∞ |
Step #4 - Update arrays
At this point, the first iteration is complete. We'll move node A to the visited nodes array:
Visited nodes = [A]
Unvisited nodes = [B,C,D,E]
Before we proceed to the next iteration, you should know the following:
Step #1 - Pick an unvisited node
We have four unvisited nodes — [B,C,D,E]. So how do you know which node to pick for the next iteration?
Well, we pick the node with the smallest known distance recorded in the table. Here's the table:
NODE | SHORTEST DISTANCE FROM FIXED NODE |
---|---|
A | 0 |
B | 4 |
C | 2 |
D | ∞ |
E | ∞ |
So we're going with node C.
Step #2 - Find the distance from current node
To find the distance from the current node to the fixed node, we have to consider the nodes linked to the current node.
The nodes linked to the current node are A and B.
But A has been visited in the previous iteration so it will not be linked to the current node. That is:
From the diagram above,
To find the distance from C to B:
2 + 1 = 3
2 above is recorded distance for node C while 1 is the distance between C and B in the graph.
Step #3 - Update table with known distances
In the last step, we got the value of B to be 3. In the first iteration, it was 4.
We're going to update the distance in the table to 3.
NODE | SHORTEST DISTANCE FROM FIXED NODE |
---|---|
A | 0 |
B | 3 |
C | 2 |
D | ∞ |
E | ∞ |
So, A --> B = 4 (First iteration).
A --> C --> B = 3 (Second iteration).
The algorithm has helped us find the shortest path to B from A.
Step #4 - Update arrays
We're done with the last visited node. Let's add it to the visited nodes array:
Visited nodes = [A,C]
Unvisited nodes = [B,D,E]
Step #1 - Pick an unvisited node
We're down to three unvisited nodes — [B,D,E]. From the array, B has the shortest known distance.
To restate what is going on in the diagram above:
Step #2 - Find the distance from current node
The nodes linked to the current node are D and E.
B (the current node) has a value of 3. Therefore,
For node D, 3 + 3 = 6.
For node E, 3 + 2 = 5.
Step #3 - Update table with known distances
NODE | SHORTEST DISTANCE FROM FIXED NODE |
---|---|
A | 0 |
B | 3 |
C | 2 |
D | 6 |
E | 5 |
Step #4 - Update arrays
Visited nodes = [A,C,B]
Unvisited nodes = [D,E]
Step #1 - Pick an unvisited node
Like other iterations, we'll go with the unvisited node with the shortest known distance. That is E.
Step #2 - Find the distance from current node
According to our table, E has a value of 5.
For D in the current iteration,
5 + 5 = 10.
The value gotten for D here is 10, which is greater than the recorded value of 6 in the previous iteration. For this reason, we'll not update the table.
Step #3 - Update table with known distances
Our table remains the same:
NODE | SHORTEST DISTANCE FROM FIXED NODE |
---|---|
A | 0 |
B | 3 |
C | 2 |
D | 6 |
E | 5 |
Step #4 - Update arrays
Visited nodes = [A,C,B,E]
Unvisited nodes = [D]
Step #1 - Pick an unvisited node
We're currently left with one node in the unvisited array — D.
Step #2 - Find the distance from current node
The algorithm has gotten to the last iteration. This is because all nodes linked to the current node have been visited already so we can't link to them.
Step #3 - Update table with known distances
Our table remains the same:
NODE | SHORTEST DISTANCE FROM FIXED NODE |
---|---|
A | 0 |
B | 3 |
C | 2 |
D | 6 |
E | 5 |
At this point, we have updated the table with the shortest distance from the fixed node to every other node in the graph.
Step #4 - Update arrays
Visited nodes = [A,C,B,E,D]
Unvisited nodes = []
As can be seen above, we have no nodes left to visit. Using Dijkstra's algorithm, we've found the shortest distance from the fixed node to others nodes in the graph.
The pseudocode example in this section was gotten from Wikipedia. Here it is:
1 function Dijkstra(Graph, source):
2
3 for each vertex v in Graph.Vertices:
4 dist[v] ← INFINITY
5 prev[v] ← UNDEFINED
6 add v to Q
7 dist[source] ← 0
8
9 while Q is not empty:
10 u ← vertex in Q with min dist[u]
11 remove u from Q
12
13 for each neighbor v of u still in Q:
14 alt ← dist[u] + Graph.Edges(u, v)
15 if alt < dist[v]:
16 dist[v] ← alt
17 prev[v] ← u
18
19 return dist[], prev[]
Here are some of the common applications of Dijkstra's algorithm:
In this article, we talked about Dijkstra's algorithm. It is used to find the shortest distance from a fixed node to all other nodes in a graph.
We started by giving a brief summary of how the algorithm works.
We then had a look at an example that further explained Dijkstra's algorithm in steps using visual guides.
We concluded with a pseudocode example and some of the applications of Dijkstra's algorithm.
Happy coding!
Original article source at https://www.freecodecamp.org
#algorithm #datastructures
1627095600
In this Svelte tutorial, we go over handling inputs and binding values.
📚 Installation:
npx degit sveltejs/template my-svelte-project
🖥️ Source code: https://devascend.com/d/github
💡 Have a video request?
Suggest it in the Dev Ascend Discord community server or leave it in the comments below!
🕐 Timestamps:
00:00 Introduction
00:33 Adding an input
1:00 Creating handleInput function
03:06 Creating a two-way bind
#svelte #tutorial #beginners #devascend
#svelte
1632834749
ClipsReel Review
TURN YOUR TEXTS, POSTS, WEBSITES INTO ANIMATED VIDEOS IN SECONDS
Welcome to my ClipsReel review!
“Show your readers it all, don’t tell them” Hemingway once said” Video Marketing is a perfect tool to demonstrate the power of images and help businesses bring products to market. It can be said that in the current 4.0 technology era, it has the “capacity” to gain the upper hand.
You may not know, there are 10 billion views per month on Youtube, which is enough to prove why video is an effective method in expanding user reach. Compared to other traditional media, video is likely to be shared more and more.
Meaningful messages will always hit the viewer’s psychology, it can be seen that touching stories will attract more people interested in your videos. This is the way to make Marketing videos that businesses love to use today: communicate more messages, impact viewers’ emotions directly.
But with traditional ways, you can spend a lot of time and have to hire content creators to write scripts for your products. While this is an important stage of your campaign, do you want to reduce the load and simplify every step?
If what you are looking for is speed and efficiency, then the product ClipsReel that I am about to introduce today may be right for you. It is equipped with state-of-the-art features to help you produce a wide range of videos quickly with guaranteed quality.
Table Of Contents [show]
Creator | Abhi Dwivedi |
Product | ClipsReel |
Launch Date | 2021-Sep-28 |
Launch Time | 11:00 EST |
Official website | Click Here |
Front-End Price | $35 – $37 |
Bonuses | HUGE BONUSES OF DIFFERENT CATEGORIES AT THE END OF THE REVIEW |
Skill | All Levels |
Guarantee | 14 Days Money Back Guarantee |
Niche | Tools & Software |
Support | Еffесtіvе Rеѕроnѕе |
Recommend | Highly Recommend! |
ClipsReel is a one-stop shop for creating stunning animated videos using your blogs posts, articles, or any webpage. ClipsReel helps you create amazon affiliate review videos, marketing videos, promotional videos for your blog posts, tutorials, course videos, VSLs, sales videos and so much more.
It lets you turn any URL into a video using machine learning & adaptive AI technology, within minutes with 100% customization. Keep following today ClipsReel review to discover more features of this product.
ClipsReel is made by Abhi Dwivedi, who has been an online marketer and software developer for over 15 years now, having done multiple six-figure product launches, webinar promos, and running multiple successful YouTube channels. You can experience all the other cool things he did. In the past few years, he has had constantly multiple Best-Seller software products with thousands of users actively using and benefiting from his products.
His products deliver real-life results with real experiences and lessons so that you will be satisfied with these practical features. That will be expressed through his previous launches such as Sonority, AgencyReel, AIWA, ClickAd, VideoDyno, CourseReel, etc.
Video content is important right now as much as your regular blog posts or text-based articles. But creating videos for your articles, websites is not easy, often time taking. ClipsReel makes it hands-free for you to turn your (or any) blog posts, article, webpage, amazon products, Shopify pages, or any content piece into a stunning-looking video automatically, saving you tons of time, effort and money.
Because ClipsReel uses a well-trained A.I. model to create videos. The A.I. improves itself automatically every time a video is created, hence when you try to create a video using the same URL used earlier, ClipsReel understands it and tries to create a unique NEW video every single time.
Simply enter any URL, your own or a public webpage, amazon product, etc; and ClipsReel will use Machine Learning and Artificial Intelligence to capture relevant text from the article/page, curate it with relevant images and video clips and create a stunning video with animation and transition added to it, which then can be customized by you as needed.
Never worry about ending up creating the same video advert as someone else. ClipsReel lets you easily customize each video as per your own needs. Change or add new images/video clips to timeline, add text, add call-to-action, change the background, update background music, add voiceovers, text-to-speech, subtitles and so much more.
With ClipsReel you get access to the Reelimages library that generates UNIQUE images using A.I. These images are synthetic images, never-seen-before, and copyright free.
You also get access to the massive library of millions of images that you can use in your own videos, as you like. These images are high quality and stock-free.
With ClipsReel you get access to the massive library of millions of background and abstract video clips as well. You can use these clips as you like, in any video you like.
Just like the Reelimages library, ClipsReel also gives you access to the background music library with over 10,000 background music files to choose from and use in your videos.
Your call-to-action, your watermark, and your text message are only as powerful as you present it. With 1,000+ professionally selected fonts, you can now add that professional look to your texts in the video.
Import your own logo or add your own text, adjust transparency, and turn it into your own watermark.
Want to add your own voice-over, image, video clips, audio, or music? With ClipsReel you can easily do that too.
Hate doing voice-overs? Just paste your script or text and ClipsReel will convert the text into a high-quality voice-over with multiple accents and languages to choose from.
Turn any video into a square video with top and bottom where you can add your own text, FB reaction icons and customize it as you like. These types of videos are very powerful when shared on Facebook:
ClipsReel is designed to give you a variety of dimensions and formats you can export to so you can easily publish your video on Facebook. Instagram, YouTube, SnapChat, Stories etc. without hassle:
You will see full details in the demo part of my ClipsReel review!
While exporting, choose whichever quality you want your video to be. Helps create videos for the web or for playing on bigger screens.
ClipsReel is a cloud-based application. There’s nothing to download or install or configure. Simply log in to your accounts and start creating videos and sharing them in minutes.
ClipsReel is a 100% whitehat video adverts creation app and in no way violates any TOS, making sure your accounts are fully safe.
ClipsReel comes with SyVID. LIVEreel, Sonority, Facebook & YouTube integration as well. This means you can seamlessly push your video adverts into your SyVID account and start sharing them on 8 different video sites and 15 different social networks to get more viral traffic, leads, and sales.
You can also turn your videos into LIVE videos using LIVEreel, create synthetic human voice-overs using Sonority, and share videos on Facebook and YouTube in one click.
With over 100+ beta testers and 3 years in research and development, ClipsReel is a stable product that is here to stay for the long run and bring in recurring commissions for you.
Login to your account to unlock ClipsReel.
The dashboard will appear, where you can have 3 options to start creating videos by using: copy & paste your content, blog post or articles, and e-commerce details page.
You need to add a name and paste the content for this campaign.
And there are 3 dimensions you can choose: Regular, Story, Square.
And then choose one template for your video:
And your video is ready to edit: You can change the font styles, color, background and size when clicking on Text.
If you go through “Media”, you can change the images, videos from the library. Or you also can upload them from your PC. As long as you can have suitable media for the campaign.
and move to Audio, firstly you will go to Library Audio, there is unlimited audio so you can listen and select one. You will use this audio for the entire video.
Then switch to Robo Voices: You can use Text-To-Speech with multiple voices, accents & languages. Just paste your script or text and ClipsReel will convert the text into a high-quality voice-over with multiple accents and languages to choose from.
Or Want to add your own voice-over, with ClipsReel you can easily do that too.
The style section will let you upload the logo, watermark and swap the template design.
and credits help you to select how your logo shows up at the end of the video by using the outro template design.
When you’re done, click save the project to move to other parts.
Enter your Blog post URL here:
You will do the same manipulations above. You need to add a name for your project, choose dimension and start to edit: changing fonts, adding media, audio, applying styles and inserting credits.
You copy the link of the product you want to make a video and paste it here.
And all the steps are the same. Just follow step by step to make video easily with ClipsReel.
ClipReel Review – The Demo Video
ClipsReel allows you to turn any article, website, blog post, amazon product page, Shopify pages, AliExpress products, eBay or Walmart products into an animated video. You may feel crazy but with the help of the SVRAI tech and openAI, it will help you turn those lifeless texts into animated videos in seconds:
Imagine, instead of your customers having to scroll to read long articles and still can’t find the focus, now they just need to watch videos with music and colorful fonts. I can guarantee it saves customers time and especially videos attract them more than text. Just copy and paste those pages, blogs into ClipsReel, you will have videos that can be used for your marketing campaign.
That is what you need to create a video, right? You will have never-seen-before and copyright-free images so that you can use them to demonstrate for your products.
It is hard if you do not know how to set up the background, so you just need to get access to the massive library of millions of background and abstract video clips and insert music with over 10,000 background music files to choose from and use in your videos. I can bet no two videos will look the same, because you have such a diverse source of images and music, duplication is impossible.
If you want to create quickly and easily professional yet gorgeous looking videos for your marketing, without spending hours designing, editing, recording or a fortune on them, if you have no time to write a video script or design all those other video elements, you can refer to ClipsReel today.
It is really easy to set up and start, even a newbie can simply generate and create videos. Creating a profitable video without being an expert, creating your own content, and literally spending less than 10 minutes. The following videos will feature this advantage of ClipsReel:
There are two options: $35 for Personal and $37 for Commercial with the differences shown below:
You need to pay $35 – $37 for all the amazing features inside ClipsReel. It’s definitely an unprecedented opportunity at a decent price – so don’t let it slip through your fingers. After going through this ClipsReel review, I am pretty sure that you are quite clear about how powerful it is!
You must be in a rush and hit the buy button below to get instant access to ClipsReel now because this is a strictly LIMITED TIME discounted offer! The price will jump significantly – likely to up to $200 per month.
(After early birds @ 5 pm EST, remember to apply the $2 discount coupon “clipoff”)
Some upgrades help you get more advanced features and lets your business grow speed, you can dive in:
ClipsReel Exclusive Bundle Deal – $297 for:
The Unlimited upgrade supercharges the ClipsReel app and unlocks access to NEW templates and removes any and all limits of video creation:
[+] Unlimited upgrade you will get access to the brand new ReelMerg feature to join multiple videos to create longer videos
[+] TrimReel feature to create square or stories style videos, Instagram/TikTok Sharing features
[+] Ability to create unlimited videos, create FHD Videos, Priority Video Rendering, Account Manager + Priority Support
With the ClipsReel Professional, you unlock powerful professional features to take your video creation to the next level. You unlock access to 3 professional features and over 12 video use cases using the professional upgrade, including:
[+] International Voice-Overs – 20 Different Languages
[+] Professional Voice-Overs – 50 New Voice Accents
[+] 1-Click Multi-Lingual Video Translation
[+] 100+ Languages
[+] Photo Video Maker, Facebook Video Maker, YouTube Video Maker, Instagram Video Maker, Instagram Story Maker, Promo Video Maker and so much more.
With the ClipsReel Agency, you will get full business features including agency-Whitelabel branding, custom done-for-you professional looking Video Creation Website with custom checkout.
They also get 6 Stunning & Compelling Video Commercials to promote their video creation agency, Team & Virtual Assistant Access, Clients Access, DFY Client Contract Templates, BusinessFinder feature, and 100+ Facebook Ad Templates.
PlayerNeos is a cloud-based interactive video creator that helps turn any ordinary video into a sales machine. Using this you can add buttons, menus, buy now buttons, opt-in forms, new custom thumbnails, logos, watermarks, and even auto-play the video on any browser.
You can also find other high-traffic videos and piggyback on them with your optin/buttons added.
Sonority is a cloud-based voice-over and music-track synthesizer app that lets you create audio tracks for your videos or podcasts. Sonority lets you pick from over 15 different voice-over articles, copy-paste your text and convert it into a human-like voice in just a click.
Sonority lets you pick from 1000+ A.I. created music or gives you the ability to create unique music tracks for your videos using A.I. on complete autopilot, without being a musician or artist. Simply pick the type of music you like from 15 different categories and the A.I. will automatically create it for you.
Finally, you can use Sonority to mix and merge multiple different audio files (voice-overs and music both) into an audio track for your videos, podcast, courses, and more.
Everyone needs videos for their marketing strategy and wants to save time and money for this stage. ClipsReel not only helps you solve those problems but also helps you create high-quality videos with outstanding features such as AI technology.
You will never be able to make a breakthrough if you don’t step out of your comfort zone and experiment with new devices. Please, give it a chance if you are:
♥ Video creators
♥ Web builders
♥ Social media marketers
♥ Product reviewers
♥ Affiliate marketers
♥ Video ad-makers
♥ E-com store owners
♥ Bloggers/content marketers/Youtubers
♥ Digital
♥ Product sellers
♥ Advertising agency owners
♥ Product coaches/trainers
♥ Brand influencers
♥ Webinars/seminar presenters
♥ Lifestyle trend setters
PROS:
♥ Create affiliate review videos promoting Amazon products.
♥ Turn Shopify Stores into animated videos. Use the video to promote your ecom store on YouTube, Instagram, TikTok, and more.
♥ Start your very own Video Promo Agency for local businesses.
♥ Create 1:1, 16:9, and 9:16 videos… all kinds of videos you’ll ever need for 2021-22.
♥ Video created using the SVRAI tech and openAI. Automatically creates storyboards, adds images, video clips, text, formatting etc. Videos created in minutes
♥ Everyone who has a website or a funnel needs a video and using ClipsReel you can turn their pages into videos without any extra work or creativity.
♥ Create UNIQUE videos every single time using the AI in AIWA.
♥ Access to millions of copyright-free images and video clips. Access to thousands of fonts. Fully customizable videos created using ClipsReel.
♥ Multiple professionally create templates to create videos from.
♥ Create a video for yourself to promote your own brand and look professional.
♥ You can add your logo, customize the menu, change the color theme, create square, vertical or regular videos, edit the text, add images, add videos, customize the template and pretty much anything you like.
CONS:
X It can be a big mistake if you skip this launch.
All in all, everything is up to you. There are thousands of add-on products on the market but you can not find the same one again. You can sleep on it if you think big and know that ClipsReel will take you closer to your dream. The launching will expire soon, grab it as soon as possible.
The bonuses are carefully selected and presented with descriptions with the hope to facilitate your online business activities
***3 STEPS TO CLAIM THESE BONUSES***
Step 1: Buy after reading ClipsReel review on my website
Step 2: After completing the transaction, forward the receipt to my email at steveseunreview@gmail.com
Step 3: You will receive the bonuses within 24 hours
You will get the first 6 powerful Packages for purchasing FE + 1 OTO
(Buy FE only? No worries! Pick 4 packages to your liking!)
Bonus #1: DesignBundle – The Ultimate 10-In-1 Web & Graphics Design Suite
Bonus #2: All-in-One Solution to Create STUNNING Pro Quality Video Thumbnails
Thumbnail Temples which are available in Standard Video Size, Square Video Size & Stories Video Size
Animated Thumbnail Template Samples
Bonus #3: MARTKET CRUSH
Your Marketing Needs To Be Professional AND Consistent You Need PORTFOLIO Marketing
*Agency License: Sell Edited Portfolios to Business Clients.
*White Label License: Sell product and raw template files as your own
Bonus #4: LOCAL NICHE ARTICLE PACK
Bonus #5: SOCIAL COVER GRAPHICS
Bonus 8: Moto Theme 4.0 with 2 OTO PLUS Unlimited Sites
Bonus 9: Content & Print Ready Graphics For Boosting Your Brand On Social Media
Bonus 10: Funnel & Templates To Boost Conversion
Part 1 – 350 Business Templates
PART 2: 6 RESOURCES FOR SOCIAL POSTING TEMPLATE
Bonus #1: Food Social Media Kit
Bonus #2: 140+ Instagram Template Pack
Instagram Post Templates Full Bundle Pack suitable for all social media promotions.
Bonus #3: Creative Social Media Templates
Bonus #4: Instagram Quotes Stories Pack suitable for all social media kits
Bonus #5: 40 Pinterest Quotes
Bonus #6: Shutterstock Collection
Quick Adz – Create High Converting Animated Ads In Just 10 Minutes with 440+ Multipurpose Video Templates
Here’s What You Will Get Inside Quick Adz
20 MODULES OF THE MOST EYE CATCHING & PROFITABLE 2021 DESIGNS
GOOGLE ADS ANIMATED TEMPLATES | SOCIAL MEDIA ANIMATED TEMPLATES |
STATIC MARKETING PACK (YOUTUBE – FACEBOOK – TWITTER) COVERS
Module #1 – Animated Google Ads Design Templates
SAMPLE: SOCIAL MEDIA NICHE “TRAVEL”
| SAMPLE: SOCIAL MEDIA NICHE “COFFEE SHOP”
|
Module #2 – Animated Social Media Design Templates
SAMPLE: SOCIAL MEDIA NICHE “TRAVEL”
| SOCIAL MEDIA NICHE “COFFEE SHOP”
|
Module #3 – Static Cover Design Templates For Facebook, Twitter & YouTube
This package is aimed to help you generate better social media & content marketing campaigns:
PACKAGE 06: SOCIAL MEDIA & VIDEO BONUSES
FROM YOUR THIRD PURCHASE, PICK 2 EXTRA PACKAGES BELOW FOR EACH OTO PURCHASE MADE
Part 1: Motion Graphics Pack
The only setup & effects toolkit that is packed with 4500+ ready-to-use elements & presets that are just a few clicks away from turning your content into a masterpiece.
For a much intuitive and faster experience, this Graphics Library also comes with AtomX Extension, an After Effects extension bundled in the package.
The extension is really simple to use, and as the toolkit is packed with a huge collection of elements & presets, AtomX Extension just makes it a lot simple to find the right assets for the right job.
Below is the quick recap of what you’re getting:
|
|
Take a look at some samples included in this package:
Part 2: Smart Animation Pro FE + OTO 1 + Launch Bonuses
You’re getting several sets of character to make videos of any marketing goals: sales video, whiteboard video, explainer video, tutorial video, etc. and then place on your video website for more traffic and sales converting
Traffic Generation is your struggle? No more worries! This bonus package will hep you out!
Want to create professional unique content to engage the visitors & gain better ranking? There’s no better way than providing informative content that keeps them staying longer on our website or social media pages. I have collected some great sources of e-books that include a variety of hot topics (Self-Help, Health & wellness, Making money online) with PLR assisting you to attract more eyeballs
Bonus #1: 70 Ebooks on Health, Fitness & Weightloss with PLR
Health & Wellness have been the hottest niches as people, no matter what their background, culture, or economic status… want to be happy and healthy. And they are easily attracted to the content of these topics and willing to buy products or treatments that will help them improve their health & lifestyle.
That’s why this bonus package will give you an unfair advantage in generating content for your online presence. You will save a huge amount of money on copywriting services.
Below is the sample of the content pieces:
![]() | ![]() |
Bonus #2: Executive Collection PLR
The ONLY Personal Development PLR Ever Created By an Executive Director of the John Maxwell Team
Executive Collection is a brand new line of premium, gorgeous, high production value PLR courses that you’ll actually be proud to offer to your subscribers and customers.
Bonus #3: PLR Jackpot 2
You’re getting PLR ebooks including Business & Money, Niche related topics ranging from SEO methods to Youtube strategies to viral methods, Personal Development, Health and Wellness, Internet Marketing, Self-help,… All of these ebooks include .docx files, .pdf files, hi-rez covers, and .psd files
Extra Package 05: Lead Generation Bonuses
Find it hard to generate leads for your campaigns? The bonus package below might help you with that!
EXTRA PACKAGE 06: LIST BUILDING
(17 BONUSES)
Produce a stunning video is hard?
Moreover, due to the short attention span, we just have a couple of seconds to attract people to watch our videos. If we fail, no matter how high quality our videos are produced with, you just try in vain!
So I hope to help you in this part by offering you Envidio – YouTuber Things (FE and OTO 1) as a bonus to create a better intro for an awesome video and more. The details of Envidio FE are listed below. And OTO 1 (DELUXE) gives you more elements with developer license.
EXTRA PACKAGE 08: AFFILIATE MARKETING BONUSES
Besides email marketing, hopefully this package will give you another idea of getting sales and save you money on some extra tools you need for your promotion campaigns
EXTRA PACKAGE 09: GRAPHICS BONUSES
Extra Package 11: HANDY SOFTWARE
(28 BONUSES)
Extra Package 12: SEO bonus
Extra Package 13:
Traffic Generation Bonuses (16 BONUSES)