NamedTupletools.jl: Some Utilities for Working with NamedTuples

NamedTupleTools.jl

Some NamedTuple utilities


Overview

NamedTuples are built from fieldnames, given as Symbols and field values, as they may be given. These utilities make some uses of NamedTuples more straightforward. This package benefits greatly from others (see Credits).

Operations

Construction

Reconstruction

Selection

Deletion

Merging

Recursive Merging

Splitting


Functions

Construction from names and values

julia> using NamedTupleTools
julia> namesofvalues  = (:instrument, :madeby)
julia> matchingvalues = ("violin", "Stradivarius")

julia> nt = namedtuple(namesofvalues, matchingvalues)
(instrument = "violin", madeby = "Stradivarius")
  • The names may be given as Symbols or Strings
  • The names, values may be Tuples or Vectors

Selecting Aspects of Elements

julia> using NamedTupleTools

julia> nt = NamedTuple{(:a, :b)}(1.0, "two")
(a = 1.0, b = "two")

julia> typeof(nt) == NamedTuple{(:a, :b),Tuple{Float64,String}}
true

julia> propertynames(nt) == (:a, :b)
true

julia> fieldnames(nt) == (:a, :b)             # synonym for the moment
true

julia> fieldtypes(nt) == (Float64, String)
true

julia> valtype(nt) == Tuple{Float64, String}
true

julia> fieldvalues(nt) == (1.0, "two")
true

Use NamedTuple prototypes

using NamedTupleTools

julia> namedtuple(:a, :b, :c)(1, 2.0, "three")
(a = 1, b = 2.0, c = "three")

#=
    namedtuple(  name1, name2, ..  )
    namedtuple( (name1, name2, ..) )
       where the `names` are all `Symbols` or all `Strings`

Generate a NamedTuple prototype by specifying or obtaining the fieldnames.
The prototype is applied to fieldvalues, giving a completed NamedTuple.
=#
julia> nt = (a = 1, b = "two")
(a = 1, b = "two")

julia> nt_prototype = prototype(nt)
NamedTuple{(:a, :b),T} where T<:Tuple

julia> nt_prototype = namedtuple(:a, :b)
NamedTuple{(:a, :b),T} where T<:Tuple

julia> nt = nt_prototype(1, 2)
(a = 1, b = 2)

julia> nt = nt_prototype("A", 3)
(a = "A", b = 3)

julia> isprototype(nt_prototype)
true

julia> isprototype(nt)
false

Select

using NamedTupleTools

julia> nt = (a = 1, b = 2, y = 25, z = 26)
(a = 1, b = 2, y = 25, z = 26)

julia> ay = select(nt, (:a, :y))
(a = 1, y = 25)

Delete

using NamedTupleTools

julia> ntproto = namedtuple( :a, :b, :c );
NamedTuple{(:a, :b, :c),T} where T<:Tuple

julia> delete(ntproto, :b) === namedtuple(:a, :c)
true

julia> fieldnames(delete(ntproto, :b))
NamedTuple{(:a, :c),T} where T<:Tuple

julia> fieldnames(delete(ntproto, (:a, :c)), fieldnames(delete(ntproto, :a, :c)
(:b,), (:b,)

julia> nt = ntproto(1, 2, 3)
(a = 1, b = 2, c = 3)

julia> delete(nt, :a)
(b = 2, c = 3)

julia> delete(nt, :a, :c)
(b = 2,)

Merge

# merge from 2..7 NamedTuples

julia> ntproto1 = namedtuple(:a, :b);
julia> ntproto2 = namedtuple(:b, :c);

julia> merge(ntproto1, ntproto2)
NamedTuple{(:a, :b, :c),T} where T<:Tuple
julia> nt1 = (a = 3, b = 5);
julia> nt2 = (c = 8,);

julia> merge(nt1, nt2)
(a = 3, b = 5, c = 8)

julia> nt1 = (a = 3, b = 5);
julia> nt2 = (b = 6, c = 8);

julia> merge(nt1, nt2)
(a = 3, b = 6, c = 8)

recursive_merge

#=
Recursively merge namedtuples. Where more than one of the namedtuple args share the same fieldname (same key),
    the leftmost argument's key's value will be propogated. Where each namedtuple has distinct fieldnames (keys),
    all of named fields will be gathered with their respective values. The named fields will appear in the same
    order they are encountered (leftmost arg, second leftmost arg, .., second rightmost arg, rightmost arg).

If there are no nested namedtuples, `merge(nt1, nts..., recursive=true)` is the same as `merge(nt1, nts...)`.
=#

a = (food = (fruits = (orange = "mango", white = "pear"),
             liquids = (water = "still", wine = "burgandy")))

b = (food = (fruits = (yellow = "banana", orange = "papaya"),
             liquids = (water = "sparkling", wine = "champagne"), 
             bread = "multigrain"))

merge(b,a)  == (fruits  = (orange = "mango", white = "pear"), 
                liquids = (water = "still", wine = "burgandy"),
                bread   = "multigrain")

merge_recursive(b,a) == 
               (fruits  = (yellow = "banana", orange = "mango", white = "pear"), 
                liquids = (water = "still", wine = "burgandy"),
                bread   = "multigrain")

merge(a,b)  == (fruits  = (yellow = "banana", orange = "papaya"),
                liquids = (water = "sparkling", wine = "champagne"),
                bread   = "multigrain")

merge_recursive(a,b) == 
               (fruits  = (orange = "papaya", white = "pear", yellow = "banana"),
                liquids = (water = "sparkling", wine = "champagne"),
                bread   = "multigrain")

Split

julia> using NamedTupleTools

julia> nt = (a = 1, b = 2, c = 3, d = 4);

julia> split(nt, :a)
((a = 1,), (b = 2, c = 3, d = 4))

julia> split(nt, (:a, :b))
((a = 1, b = 2), (c = 3, d = 4))

julia> merge(split(nt, (:a, :b))...) == nt
true

Struct construction, conversion

using NamedTupleTools

julia> struct MyStruct
           tally::Int
           team::String
       end

julia> mystruct = MyStruct(5, "hometeam")
MyStruct(5, "hometeam")

julia> mynamedtuple = ntfromstruct(mystruct)
(tally = 5, team = "hometeam")

julia> ntstruct = structfromnt(MyStruct, mynamedtuple)
MyStruct(5, "hometeam")

julia> mystruct == ntstruct
true

AbstractDict construction, reconstruction

julia> nt = (a = 1, b = 2)
(a = 1, b = 2)

julia> convert(Dict, nt)
Dict{Symbol,Int64} with 2 entries:
  :a => 1
  :b => 2
  
julia> adict = Dict(:a => 1, :b => "two")
Dict{Symbol,Any} with 2 entries:
  :a => 1
  :b => "two"

julia> nt = namedtuple(adict)
(a = 1, b = "two")

julia> convert(Dict, nt)
Dict{Symbol,Union{Int64, String}} with 2 entries:
  :a => 1
  :b => "two"

julia> nt = namedtuple(adict)
(a = 1, b = 2//11, c = "three")

julia> convert(Dict, nt)
Dict{Symbol,Union{Rational{Int64}, Int64, String}} with 3 entries:
  :a => 1
  :b => 2//11
  :c => "three"

julia> using OrderedCollections: OrderedDict, LittleDict

julia> ldict = OrderedDict(:a => 1, :b => "two")
OrderedDict{Symbol,Any} with 2 entries:
  :a => 1
  :b => "two"

julia> nt = namedtuple(ldict)
(a = 1, b = "two")

julia> convert(LittleDict, nt)
LittleDict{Symbol,Union{Int64, String},Array{Symbol,1},Array{Union{Int64, String},1}} with 2 entries:
  :a => 1
  :b => "two"

Vector of Pairs

julia> vec = [:a => 1, :b => 2]
2-element Array{Pair{Symbol,Int64},1}:
 :a => 1
 :b => 2

julia> nt = namedtuple(vec)
(a = 1, b = 2)

convert to Vector Of Pairs

julia> nt = (a=1, b=2);
julia> convert(Vector{Pair}, nt)
2-element Array{Pair{Symbol,Int64},1}:
 :a => 1
 :b => 2
 
nt = (a = 1, b = "two", c = 3.0);
vec = convert(Vector{Pair}, nt)
3-element Array{Pair{Symbol,B} where B,1}:
 :a => 1
 :b => "two"
 :c => 3.0

Variables mixed with standard syntax

julia> a, b, c, d, f = 1, 1.0, 1//1, "one", (g=1,)
(1, 1.0, 1//1, "one", (g = 1,))

julia> nt = @namedtuple(a, b, c, d, e = a + b, f...)
(a = 1, b = 1.0, c = 1//1, d = "one", e = 2.0, g = 1)

Credits

Construction from names and values

  • submitted by Kristoffer Carlsson

Use NamedTuple prototypes

  • improved by Chad Scherrer

Select

  • submitted by Chad Scherrer

Split

  • submitted by Seth Axen

AbstractDict construction, reconstruction

  • improved by Kevin Squire

Vector of Pairs

  • submitted by Peter Deffebach

Variables mixed with standard syntax

  • submitted by Sebastian Pfitzner, Takafumi Arakaki

Delete, Select: inferencing, coverage

  • improved by Gustavo Goretkin

Merge: support recursive merging

  • submitted by @wytbella

fixups

  • remove ambiguity
    • from @marius311

Download Details:

Author: JeffreySarnoff
Source Code: https://github.com/JeffreySarnoff/NamedTupleTools.jl 
License: MIT license

#julia #tools 

What is GEEK

Buddha Community

NamedTupletools.jl: Some Utilities for Working with NamedTuples
Alice Cook

Alice Cook

1614329473

Fix: G Suite not Working | G Suite Email not Working | Google Business

G Suite is one of the Google products, developed form of Google Apps. It is a single platform to hold cloud computing, collaboration tools, productivity, software, and products. While using it, many a time, it’s not working, and users have a question– How to fix G Suite not working on iPhone? It can be resolved easily by restarting the device, and if unable to do so, you can reach our specialists whenever you want.
For more details: https://contactforhelp.com/blog/how-to-fix-the-g-suite-email-not-working-issue/

#g suite email not working #g suite email not working on iphone #g suite email not working on android #suite email not working on windows 10 #g suite email not working on mac #g suite email not syncing

Xfinity Stream Not Working?

Xfinity, the tradename of Comcast Cable Communications, LLC, is the first rate supplier of Internet, satellite TV, phone, and remote administrations in the United States. Presented in 2010, previously these administrations were given under the Comcast brand umbrella. Xfinity makes a universe of mind boggling amusement and innovation benefits that joins a great many individuals to the encounters and minutes that issue them the most. Since Xfinity is the greatest supplier of link administrations and home Internet in the United States, it isn’t amazing that the organization gets a ton of investigating and inquiry goal demands on its telephone based Xfinity Customer Service.

#my internet is not working comcast #comcast tv remote not working #my xfinity internet is not working #xfinity stream not working #xfinity wifi hotspot not working

NamedTupletools.jl: Some Utilities for Working with NamedTuples

NamedTupleTools.jl

Some NamedTuple utilities


Overview

NamedTuples are built from fieldnames, given as Symbols and field values, as they may be given. These utilities make some uses of NamedTuples more straightforward. This package benefits greatly from others (see Credits).

Operations

Construction

Reconstruction

Selection

Deletion

Merging

Recursive Merging

Splitting


Functions

Construction from names and values

julia> using NamedTupleTools
julia> namesofvalues  = (:instrument, :madeby)
julia> matchingvalues = ("violin", "Stradivarius")

julia> nt = namedtuple(namesofvalues, matchingvalues)
(instrument = "violin", madeby = "Stradivarius")
  • The names may be given as Symbols or Strings
  • The names, values may be Tuples or Vectors

Selecting Aspects of Elements

julia> using NamedTupleTools

julia> nt = NamedTuple{(:a, :b)}(1.0, "two")
(a = 1.0, b = "two")

julia> typeof(nt) == NamedTuple{(:a, :b),Tuple{Float64,String}}
true

julia> propertynames(nt) == (:a, :b)
true

julia> fieldnames(nt) == (:a, :b)             # synonym for the moment
true

julia> fieldtypes(nt) == (Float64, String)
true

julia> valtype(nt) == Tuple{Float64, String}
true

julia> fieldvalues(nt) == (1.0, "two")
true

Use NamedTuple prototypes

using NamedTupleTools

julia> namedtuple(:a, :b, :c)(1, 2.0, "three")
(a = 1, b = 2.0, c = "three")

#=
    namedtuple(  name1, name2, ..  )
    namedtuple( (name1, name2, ..) )
       where the `names` are all `Symbols` or all `Strings`

Generate a NamedTuple prototype by specifying or obtaining the fieldnames.
The prototype is applied to fieldvalues, giving a completed NamedTuple.
=#
julia> nt = (a = 1, b = "two")
(a = 1, b = "two")

julia> nt_prototype = prototype(nt)
NamedTuple{(:a, :b),T} where T<:Tuple

julia> nt_prototype = namedtuple(:a, :b)
NamedTuple{(:a, :b),T} where T<:Tuple

julia> nt = nt_prototype(1, 2)
(a = 1, b = 2)

julia> nt = nt_prototype("A", 3)
(a = "A", b = 3)

julia> isprototype(nt_prototype)
true

julia> isprototype(nt)
false

Select

using NamedTupleTools

julia> nt = (a = 1, b = 2, y = 25, z = 26)
(a = 1, b = 2, y = 25, z = 26)

julia> ay = select(nt, (:a, :y))
(a = 1, y = 25)

Delete

using NamedTupleTools

julia> ntproto = namedtuple( :a, :b, :c );
NamedTuple{(:a, :b, :c),T} where T<:Tuple

julia> delete(ntproto, :b) === namedtuple(:a, :c)
true

julia> fieldnames(delete(ntproto, :b))
NamedTuple{(:a, :c),T} where T<:Tuple

julia> fieldnames(delete(ntproto, (:a, :c)), fieldnames(delete(ntproto, :a, :c)
(:b,), (:b,)

julia> nt = ntproto(1, 2, 3)
(a = 1, b = 2, c = 3)

julia> delete(nt, :a)
(b = 2, c = 3)

julia> delete(nt, :a, :c)
(b = 2,)

Merge

# merge from 2..7 NamedTuples

julia> ntproto1 = namedtuple(:a, :b);
julia> ntproto2 = namedtuple(:b, :c);

julia> merge(ntproto1, ntproto2)
NamedTuple{(:a, :b, :c),T} where T<:Tuple
julia> nt1 = (a = 3, b = 5);
julia> nt2 = (c = 8,);

julia> merge(nt1, nt2)
(a = 3, b = 5, c = 8)

julia> nt1 = (a = 3, b = 5);
julia> nt2 = (b = 6, c = 8);

julia> merge(nt1, nt2)
(a = 3, b = 6, c = 8)

recursive_merge

#=
Recursively merge namedtuples. Where more than one of the namedtuple args share the same fieldname (same key),
    the leftmost argument's key's value will be propogated. Where each namedtuple has distinct fieldnames (keys),
    all of named fields will be gathered with their respective values. The named fields will appear in the same
    order they are encountered (leftmost arg, second leftmost arg, .., second rightmost arg, rightmost arg).

If there are no nested namedtuples, `merge(nt1, nts..., recursive=true)` is the same as `merge(nt1, nts...)`.
=#

a = (food = (fruits = (orange = "mango", white = "pear"),
             liquids = (water = "still", wine = "burgandy")))

b = (food = (fruits = (yellow = "banana", orange = "papaya"),
             liquids = (water = "sparkling", wine = "champagne"), 
             bread = "multigrain"))

merge(b,a)  == (fruits  = (orange = "mango", white = "pear"), 
                liquids = (water = "still", wine = "burgandy"),
                bread   = "multigrain")

merge_recursive(b,a) == 
               (fruits  = (yellow = "banana", orange = "mango", white = "pear"), 
                liquids = (water = "still", wine = "burgandy"),
                bread   = "multigrain")

merge(a,b)  == (fruits  = (yellow = "banana", orange = "papaya"),
                liquids = (water = "sparkling", wine = "champagne"),
                bread   = "multigrain")

merge_recursive(a,b) == 
               (fruits  = (orange = "papaya", white = "pear", yellow = "banana"),
                liquids = (water = "sparkling", wine = "champagne"),
                bread   = "multigrain")

Split

julia> using NamedTupleTools

julia> nt = (a = 1, b = 2, c = 3, d = 4);

julia> split(nt, :a)
((a = 1,), (b = 2, c = 3, d = 4))

julia> split(nt, (:a, :b))
((a = 1, b = 2), (c = 3, d = 4))

julia> merge(split(nt, (:a, :b))...) == nt
true

Struct construction, conversion

using NamedTupleTools

julia> struct MyStruct
           tally::Int
           team::String
       end

julia> mystruct = MyStruct(5, "hometeam")
MyStruct(5, "hometeam")

julia> mynamedtuple = ntfromstruct(mystruct)
(tally = 5, team = "hometeam")

julia> ntstruct = structfromnt(MyStruct, mynamedtuple)
MyStruct(5, "hometeam")

julia> mystruct == ntstruct
true

AbstractDict construction, reconstruction

julia> nt = (a = 1, b = 2)
(a = 1, b = 2)

julia> convert(Dict, nt)
Dict{Symbol,Int64} with 2 entries:
  :a => 1
  :b => 2
  
julia> adict = Dict(:a => 1, :b => "two")
Dict{Symbol,Any} with 2 entries:
  :a => 1
  :b => "two"

julia> nt = namedtuple(adict)
(a = 1, b = "two")

julia> convert(Dict, nt)
Dict{Symbol,Union{Int64, String}} with 2 entries:
  :a => 1
  :b => "two"

julia> nt = namedtuple(adict)
(a = 1, b = 2//11, c = "three")

julia> convert(Dict, nt)
Dict{Symbol,Union{Rational{Int64}, Int64, String}} with 3 entries:
  :a => 1
  :b => 2//11
  :c => "three"

julia> using OrderedCollections: OrderedDict, LittleDict

julia> ldict = OrderedDict(:a => 1, :b => "two")
OrderedDict{Symbol,Any} with 2 entries:
  :a => 1
  :b => "two"

julia> nt = namedtuple(ldict)
(a = 1, b = "two")

julia> convert(LittleDict, nt)
LittleDict{Symbol,Union{Int64, String},Array{Symbol,1},Array{Union{Int64, String},1}} with 2 entries:
  :a => 1
  :b => "two"

Vector of Pairs

julia> vec = [:a => 1, :b => 2]
2-element Array{Pair{Symbol,Int64},1}:
 :a => 1
 :b => 2

julia> nt = namedtuple(vec)
(a = 1, b = 2)

convert to Vector Of Pairs

julia> nt = (a=1, b=2);
julia> convert(Vector{Pair}, nt)
2-element Array{Pair{Symbol,Int64},1}:
 :a => 1
 :b => 2
 
nt = (a = 1, b = "two", c = 3.0);
vec = convert(Vector{Pair}, nt)
3-element Array{Pair{Symbol,B} where B,1}:
 :a => 1
 :b => "two"
 :c => 3.0

Variables mixed with standard syntax

julia> a, b, c, d, f = 1, 1.0, 1//1, "one", (g=1,)
(1, 1.0, 1//1, "one", (g = 1,))

julia> nt = @namedtuple(a, b, c, d, e = a + b, f...)
(a = 1, b = 1.0, c = 1//1, d = "one", e = 2.0, g = 1)

Credits

Construction from names and values

  • submitted by Kristoffer Carlsson

Use NamedTuple prototypes

  • improved by Chad Scherrer

Select

  • submitted by Chad Scherrer

Split

  • submitted by Seth Axen

AbstractDict construction, reconstruction

  • improved by Kevin Squire

Vector of Pairs

  • submitted by Peter Deffebach

Variables mixed with standard syntax

  • submitted by Sebastian Pfitzner, Takafumi Arakaki

Delete, Select: inferencing, coverage

  • improved by Gustavo Goretkin

Merge: support recursive merging

  • submitted by @wytbella

fixups

  • remove ambiguity
    • from @marius311

Download Details:

Author: JeffreySarnoff
Source Code: https://github.com/JeffreySarnoff/NamedTupleTools.jl 
License: MIT license

#julia #tools 

Resolve Xfinity Comcast Email not Working | +1-888-857-5157 | How to

Comcast is one of the email service providers and you can log-in by using credentials such as username and password. However, while using it, many users face Comcast email, not working problems. Here we discussed How To Resolve Xfinity Comcast Email Not Working Problems easily by going through the steps. This article helps you to get rid of several issues associated with Xfinity Comcast Email Not Working Issues.

Many of them might be first-time users of Comcast. While you have created an account, you may not know the procedure for sign-in but while log-in some users face the issue and unable to get into your account. The log-in procedure to the account is very simple and easy to follow. Let’s start with the procedure to follow the below steps.

**Steps To Resolve Xfinity Comcast Email Login Problem
**

  • Be sure that your internet network connection is strong.
  • Always ensure to turn on and Off the NUMLOCK and CAPSLOCK keys while typing your password as passwords are always case-sensitive.
  • Avoid doing copy-pasting your password as there is a possibility of including a Space at the beginning or at the end of the password.
  • Now, you have to enter slowly and steadily to avoid the human tendency of doing typo-error while in a hurry.
  • If your browser is auto-filling your old/previous password then, you have to hit on your browser’s Auto-fill Settings and update it with your current password.
  • Even a minor fault can also lead to an Xfinity Comcast email login problem and thus, you should check whether there is a Comcast Email Service outage in your area.
  • Always, be sure about the compatibility of your web browser with Comcast email, and update the version of your web browser.
  • Now, you have to remove all the add-ons and plug-ins from your browser that might be interfering with your Comcast email service leading to blocking of your account access.
  • Lastly, you can try temporarily disabling your antivirus and Windows Firewall as they can also block your access to the Comcast email service account.

After going, through these steps, you can surely get the issue resolved related to Xfinity Comcast Email Not Working Problems and if you require technical assistance related to it, then you can feel free to get in touch with our Xfinity Comcast Email specialists at +1-888-857-5157. Our support team available 24*7 to help resolve your issues related to Xfinity Comcast Email Problems.

#resolve xfinity comcast email not working problems #xfinity comcast email not working issues #xfinity comcast email not working problems #xfinity comcast email not working #xfinity comcast email

Emails Customer Care - AOL Mail Is Working Slow Problems

This is image title

Are you dealing with AOL Mail Is Working Slow Problems? Behind this error may be several reasons such as outdated web browser, memory space, RAM, and maybe other software problems. Here, In this blog, we are discussing How To Fix AOL Mail Is Working Slow Problems? Following some common steps to solve these issues as per client requirements.

Basic tips to solve AOL mail Working slow

  • Update Windows and software for the latest release.
  • Try upgrading your computer’s application driver.
  • Turn off your computer’s firewall.
  • Virus and malware programs can be removed using anti-virus tools.
  • Change your computer settings.
  • Remove all temporary and junk files from your computer.

Why AOL Mail Responding Slow Down & Working Issues?

1. Again start your Computer
Many problems can be easily solved by restarting your computer. A reboot helps remove all junk and time files from the computer. It also contributes to RAM cleaning and solving minor technical problems. It also helps connect the router to the AOL Gold desktop server.

2. Check your Internet Connection
If your internet connection is slow, all programs including AOL Desktop Gold will run slowly. You inspect all network link cables. Turn off the modem and the router. You can turn your computer off for 30 seconds before turning it back on and making sure that the link is secure. You can also search for Desk Gold which is not actually running in the background, as it slows down AOL Desktop Gold.

3. Software Reinstallation
You have to reinstall the program due to a technical issue arising as a result of the software running continuously or for some other purpose.

You can review the specifications of the software before downloading it. This program must be compliant with the system requirements for downloading.

Solution 4: Startup programs should be discontinued
If you have a program that is classified as a Windows start-up program, you have to close all of them. If you add more software to the system, the list of startup programs will continue to grow. This problem is not caused by a program on your computer desktop. Disabling problematic programs will help you save time and make the machine run faster.

Conclusion
You have to follow these simple steps to fix AOL Mail’s Working Slow Issues. If you are unable to fix these issues. You may talk to our email customer care experts through a phone call at +1-888-857-5157. We will provide complete solutions related to your issues.

Source: https://sites.google.com/view/emails-customer-care/blog/aol-mail-is-working-slow-problems

#aol mail is working slow problems #aol mail is working slow issues #aol mail is slow responding #aol email is working slow problems, #aol email is working slow issues