How to Successfully Switch Careers To Programming in These 4 Steps

Don’t just quit your job; read these 4 steps to ensure you make the right decision

Looking back, I can say  I successfully switched careers a few years ago.Even though I’m really happy at my current job as a full stack developer the switch wasn’t easy. In this article I summarized all of the advise I wish I could give to my younger self in 4 steps.

The barriers to a career in IT are lower than you think. No matter your background, age or experience; a suitable job is within your reach. If you are doubting your current career path, are interested in switching careers to IT or starting a brand new career this article is for you. No matter your choice, be it a career switch or a start, this is a big decision. You don’t want to “throw away” years of invested time and money, building your current career only to find out that IT isn’t for you after all. This article aims to help you switch or start successfully.

1. Orientation

2. Preparing

3. Applying

4. Growing

#careers #python #data-science #javascript

What is GEEK

Buddha Community

How to Successfully Switch Careers To Programming in These 4 Steps

Plpgsql Check: Extension That Allows to Check Plpgsql Source Code.

plpgsql_check

I founded this project, because I wanted to publish the code I wrote in the last two years, when I tried to write enhanced checking for PostgreSQL upstream. It was not fully successful - integration into upstream requires some larger plpgsql refactoring - probably it will not be done in next years (now is Dec 2013). But written code is fully functional and can be used in production (and it is used in production). So, I created this extension to be available for all plpgsql developers.

If you like it and if you would to join to development of this extension, register yourself to postgresql extension hacking google group.

Features

  • check fields of referenced database objects and types inside embedded SQL
  • using correct types of function parameters
  • unused variables and function argumens, unmodified OUT argumens
  • partially detection of dead code (due RETURN command)
  • detection of missing RETURN command in function
  • try to identify unwanted hidden casts, that can be performance issue like unused indexes
  • possibility to collect relations and functions used by function
  • possibility to check EXECUTE stmt agaist SQL injection vulnerability

I invite any ideas, patches, bugreports.

plpgsql_check is next generation of plpgsql_lint. It allows to check source code by explicit call plpgsql_check_function.

PostgreSQL PostgreSQL 10, 11, 12, 13 and 14 are supported.

The SQL statements inside PL/pgSQL functions are checked by validator for semantic errors. These errors can be found by plpgsql_check_function:

Active mode

postgres=# CREATE EXTENSION plpgsql_check;
LOAD
postgres=# CREATE TABLE t1(a int, b int);
CREATE TABLE

postgres=#
CREATE OR REPLACE FUNCTION public.f1()
RETURNS void
LANGUAGE plpgsql
AS $function$
DECLARE r record;
BEGIN
  FOR r IN SELECT * FROM t1
  LOOP
    RAISE NOTICE '%', r.c; -- there is bug - table t1 missing "c" column
  END LOOP;
END;
$function$;

CREATE FUNCTION

postgres=# select f1(); -- execution doesn't find a bug due to empty table t1
  f1 
 ────
   
 (1 row)

postgres=# \x
Expanded display is on.
postgres=# select * from plpgsql_check_function_tb('f1()');
─[ RECORD 1 ]───────────────────────────
functionid │ f1
lineno     │ 6
statement  │ RAISE
sqlstate   │ 42703
message    │ record "r" has no field "c"
detail     │ [null]
hint       │ [null]
level      │ error
position   │ 0
query      │ [null]

postgres=# \sf+ f1
    CREATE OR REPLACE FUNCTION public.f1()
     RETURNS void
     LANGUAGE plpgsql
1       AS $function$
2       DECLARE r record;
3       BEGIN
4         FOR r IN SELECT * FROM t1
5         LOOP
6           RAISE NOTICE '%', r.c; -- there is bug - table t1 missing "c" column
7         END LOOP;
8       END;
9       $function$

Function plpgsql_check_function() has three possible formats: text, json or xml

select * from plpgsql_check_function('f1()', fatal_errors := false);
                         plpgsql_check_function                         
------------------------------------------------------------------------
 error:42703:4:SQL statement:column "c" of relation "t1" does not exist
 Query: update t1 set c = 30
 --                   ^
 error:42P01:7:RAISE:missing FROM-clause entry for table "r"
 Query: SELECT r.c
 --            ^
 error:42601:7:RAISE:too few parameters specified for RAISE
(7 rows)

postgres=# select * from plpgsql_check_function('fx()', format:='xml');
                 plpgsql_check_function                     
────────────────────────────────────────────────────────────────
 <Function oid="16400">                                        ↵
   <Issue>                                                     ↵
     <Level>error</level>                                      ↵
     <Sqlstate>42P01</Sqlstate>                                ↵
     <Message>relation "foo111" does not exist</Message>       ↵
     <Stmt lineno="3">RETURN</Stmt>                            ↵
     <Query position="23">SELECT (select a from foo111)</Query>↵
   </Issue>                                                    ↵
  </Function>
 (1 row)

Arguments

You can set level of warnings via function's parameters:

Mandatory arguments

  • function name or function signature - these functions requires function specification. Any function in PostgreSQL can be specified by Oid or by name or by signature. When you know oid or complete function's signature, you can use a regprocedure type parameter like 'fx()'::regprocedure or 16799::regprocedure. Possible alternative is using a name only, when function's name is unique - like 'fx'. When the name is not unique or the function doesn't exists it raises a error.

Optional arguments

relid DEFAULT 0 - oid of relation assigned with trigger function. It is necessary for check of any trigger function.

fatal_errors boolean DEFAULT true - stop on first error

other_warnings boolean DEFAULT true - show warnings like different attributes number in assignmenet on left and right side, variable overlaps function's parameter, unused variables, unwanted casting, ..

extra_warnings boolean DEFAULT true - show warnings like missing RETURN, shadowed variables, dead code, never read (unused) function's parameter, unmodified variables, modified auto variables, ..

performance_warnings boolean DEFAULT false - performance related warnings like declared type with type modificator, casting, implicit casts in where clause (can be reason why index is not used), ..

security_warnings boolean DEFAULT false - security related checks like SQL injection vulnerability detection

anyelementtype regtype DEFAULT 'int' - a real type used instead anyelement type

anyenumtype regtype DEFAULT '-' - a real type used instead anyenum type

anyrangetype regtype DEFAULT 'int4range' - a real type used instead anyrange type

anycompatibletype DEFAULT 'int' - a real type used instead anycompatible type

anycompatiblerangetype DEFAULT 'int4range' - a real type used instead anycompatible range type

without_warnings DEFAULT false - disable all warnings

all_warnings DEFAULT false - enable all warnings

newtable DEFAULT NULL, oldtable DEFAULT NULL - the names of NEW or OLD transitive tables. These parameters are required when transitive tables are used.

Triggers

When you want to check any trigger, you have to enter a relation that will be used together with trigger function

CREATE TABLE bar(a int, b int);

postgres=# \sf+ foo_trg
    CREATE OR REPLACE FUNCTION public.foo_trg()
         RETURNS trigger
         LANGUAGE plpgsql
1       AS $function$
2       BEGIN
3         NEW.c := NEW.a + NEW.b;
4         RETURN NEW;
5       END;
6       $function$

Missing relation specification

postgres=# select * from plpgsql_check_function('foo_trg()');
ERROR:  missing trigger relation
HINT:  Trigger relation oid must be valid

Correct trigger checking (with specified relation)

postgres=# select * from plpgsql_check_function('foo_trg()', 'bar');
                 plpgsql_check_function                 
--------------------------------------------------------
 error:42703:3:assignment:record "new" has no field "c"
(1 row)

For triggers with transitive tables you can set a oldtable or newtable parameters:

create or replace function footab_trig_func()
returns trigger as $$
declare x int;
begin
  if false then
    -- should be ok;
    select count(*) from newtab into x; 

    -- should fail;
    select count(*) from newtab where d = 10 into x;
  end if;
  return null;
end;
$$ language plpgsql;

select * from plpgsql_check_function('footab_trig_func','footab', newtable := 'newtab');

Mass check

You can use the plpgsql_check_function for mass check functions and mass check triggers. Please, test following queries:

-- check all nontrigger plpgsql functions
SELECT p.oid, p.proname, plpgsql_check_function(p.oid)
   FROM pg_catalog.pg_namespace n
   JOIN pg_catalog.pg_proc p ON pronamespace = n.oid
   JOIN pg_catalog.pg_language l ON p.prolang = l.oid
  WHERE l.lanname = 'plpgsql' AND p.prorettype <> 2279;

or

SELECT p.proname, tgrelid::regclass, cf.*
   FROM pg_proc p
        JOIN pg_trigger t ON t.tgfoid = p.oid 
        JOIN pg_language l ON p.prolang = l.oid
        JOIN pg_namespace n ON p.pronamespace = n.oid,
        LATERAL plpgsql_check_function(p.oid, t.tgrelid) cf
  WHERE n.nspname = 'public' and l.lanname = 'plpgsql'

or

-- check all plpgsql functions (functions or trigger functions with defined triggers)
SELECT
    (pcf).functionid::regprocedure, (pcf).lineno, (pcf).statement,
    (pcf).sqlstate, (pcf).message, (pcf).detail, (pcf).hint, (pcf).level,
    (pcf)."position", (pcf).query, (pcf).context
FROM
(
    SELECT
        plpgsql_check_function_tb(pg_proc.oid, COALESCE(pg_trigger.tgrelid, 0)) AS pcf
    FROM pg_proc
    LEFT JOIN pg_trigger
        ON (pg_trigger.tgfoid = pg_proc.oid)
    WHERE
        prolang = (SELECT lang.oid FROM pg_language lang WHERE lang.lanname = 'plpgsql') AND
        pronamespace <> (SELECT nsp.oid FROM pg_namespace nsp WHERE nsp.nspname = 'pg_catalog') AND
        -- ignore unused triggers
        (pg_proc.prorettype <> (SELECT typ.oid FROM pg_type typ WHERE typ.typname = 'trigger') OR
         pg_trigger.tgfoid IS NOT NULL)
    OFFSET 0
) ss
ORDER BY (pcf).functionid::regprocedure::text, (pcf).lineno

Passive mode

Functions should be checked on start - plpgsql_check module must be loaded.

Configuration

plpgsql_check.mode = [ disabled | by_function | fresh_start | every_start ]
plpgsql_check.fatal_errors = [ yes | no ]

plpgsql_check.show_nonperformance_warnings = false
plpgsql_check.show_performance_warnings = false

Default mode is by_function, that means that the enhanced check is done only in active mode - by plpgsql_check_function. fresh_start means cold start.

You can enable passive mode by

load 'plpgsql'; -- 1.1 and higher doesn't need it
load 'plpgsql_check';
set plpgsql_check.mode = 'every_start';

SELECT fx(10); -- run functions - function is checked before runtime starts it

Limits

plpgsql_check should find almost all errors on really static code. When developer use some PLpgSQL's dynamic features like dynamic SQL or record data type, then false positives are possible. These should be rare - in well written code - and then the affected function should be redesigned or plpgsql_check should be disabled for this function.

CREATE OR REPLACE FUNCTION f1()
RETURNS void AS $$
DECLARE r record;
BEGIN
  FOR r IN EXECUTE 'SELECT * FROM t1'
  LOOP
    RAISE NOTICE '%', r.c;
  END LOOP;
END;
$$ LANGUAGE plpgsql SET plpgsql.enable_check TO false;

A usage of plpgsql_check adds a small overhead (in enabled passive mode) and you should use it only in develop or preprod environments.

Dynamic SQL

This module doesn't check queries that are assembled in runtime. It is not possible to identify results of dynamic queries - so plpgsql_check cannot to set correct type to record variables and cannot to check a dependent SQLs and expressions.

When type of record's variable is not know, you can assign it explicitly with pragma type:

DECLARE r record;
BEGIN
  EXECUTE format('SELECT * FROM %I', _tablename) INTO r;
  PERFORM plpgsql_check_pragma('type: r (id int, processed bool)');
  IF NOT r.processed THEN
    ...

Attention: The SQL injection check can detect only some SQL injection vulnerabilities. This tool cannot be used for security audit! Some issues should not be detected. This check can raise false alarms too - probably when variable is sanitized by other command or when value is of some compose type. 

Refcursors

plpgsql_check should not to detect structure of referenced cursors. A reference on cursor in PLpgSQL is implemented as name of global cursor. In check time, the name is not known (not in all possibilities), and global cursor doesn't exist. It is significant break for any static analyse. PLpgSQL cannot to set correct type for record variables and cannot to check a dependent SQLs and expressions. A solution is same like dynamic SQL. Don't use record variable as target when you use refcursor type or disable plpgsql_check for these functions.

CREATE OR REPLACE FUNCTION foo(refcur_var refcursor)
RETURNS void AS $$
DECLARE
  rec_var record;
BEGIN
  FETCH refcur_var INTO rec_var; -- this is STOP for plpgsql_check
  RAISE NOTICE '%', rec_var;     -- record rec_var is not assigned yet error

In this case a record type should not be used (use known rowtype instead):

CREATE OR REPLACE FUNCTION foo(refcur_var refcursor)
RETURNS void AS $$
DECLARE
  rec_var some_rowtype;
BEGIN
  FETCH refcur_var INTO rec_var;
  RAISE NOTICE '%', rec_var;

Temporary tables

plpgsql_check cannot verify queries over temporary tables that are created in plpgsql's function runtime. For this use case it is necessary to create a fake temp table or disable plpgsql_check for this function.

In reality temp tables are stored in own (per user) schema with higher priority than persistent tables. So you can do (with following trick safetly):

CREATE OR REPLACE FUNCTION public.disable_dml()
RETURNS trigger
LANGUAGE plpgsql AS $function$
BEGIN
  RAISE EXCEPTION SQLSTATE '42P01'
     USING message = format('this instance of %I table doesn''t allow any DML operation', TG_TABLE_NAME),
           hint = format('you should to run "CREATE TEMP TABLE %1$I(LIKE %1$I INCLUDING ALL);" statement',
                         TG_TABLE_NAME);
  RETURN NULL;
END;
$function$;

CREATE TABLE foo(a int, b int); -- doesn't hold data ever
CREATE TRIGGER foo_disable_dml
   BEFORE INSERT OR UPDATE OR DELETE ON foo
   EXECUTE PROCEDURE disable_dml();

postgres=# INSERT INTO  foo VALUES(10,20);
ERROR:  this instance of foo table doesn't allow any DML operation
HINT:  you should to run "CREATE TEMP TABLE foo(LIKE foo INCLUDING ALL);" statement
postgres=# 

CREATE TABLE
postgres=# INSERT INTO  foo VALUES(10,20);
INSERT 0 1

This trick emulates GLOBAL TEMP tables partially and it allows a statical validation. Other possibility is using a [template foreign data wrapper] (https://github.com/okbob/template_fdw)

You can use pragma table and create ephemeral table:

BEGIN
   CREATE TEMP TABLE xxx(a int);
   PERFORM plpgsql_check_pragma('table: xxx(a int)');
   INSERT INTO xxx VALUES(10);

Dependency list

A function plpgsql_show_dependency_tb can show all functions, operators and relations used inside processed function:

postgres=# select * from plpgsql_show_dependency_tb('testfunc(int,float)');
┌──────────┬───────┬────────┬─────────┬────────────────────────────┐
│   type   │  oid  │ schema │  name   │           params           │
╞══════════╪═══════╪════════╪═════════╪════════════════════════════╡
│ FUNCTION │ 36008 │ public │ myfunc1 │ (integer,double precision) │
│ FUNCTION │ 35999 │ public │ myfunc2 │ (integer,double precision) │
│ OPERATOR │ 36007 │ public │ **      │ (integer,integer)          │
│ RELATION │ 36005 │ public │ myview  │                            │
│ RELATION │ 36002 │ public │ mytable │                            │
└──────────┴───────┴────────┴─────────┴────────────────────────────┘
(4 rows)

Profiler

The plpgsql_check contains simple profiler of plpgsql functions and procedures. It can work with/without a access to shared memory. It depends on shared_preload_libraries config. When plpgsql_check was initialized by shared_preload_libraries, then it can allocate shared memory, and function's profiles are stored there. When plpgsql_check cannot to allocate shared momory, the profile is stored in session memory.

Due dependencies, shared_preload_libraries should to contains plpgsql first

postgres=# show shared_preload_libraries ;
┌──────────────────────────┐
│ shared_preload_libraries │
╞══════════════════════════╡
│ plpgsql,plpgsql_check    │
└──────────────────────────┘
(1 row)

The profiler is active when GUC plpgsql_check.profiler is on. The profiler doesn't require shared memory, but if there are not shared memory, then the profile is limmitted just to active session.

When plpgsql_check is initialized by shared_preload_libraries, another GUC is available to configure the amount of shared memory used by the profiler: plpgsql_check.profiler_max_shared_chunks. This defines the maximum number of statements chunk that can be stored in shared memory. For each plpgsql function (or procedure), the whole content is split into chunks of 30 statements. If needed, multiple chunks can be used to store the whole content of a single function. A single chunk is 1704 bytes. The default value for this GUC is 15000, which should be enough for big projects containing hundred of thousands of statements in plpgsql, and will consume about 24MB of memory. If your project doesn't require that much number of chunks, you can set this parameter to a smaller number in order to decrease the memory usage. The minimum value is 50 (which should consume about 83kB of memory), and the maximum value is 100000 (which should consume about 163MB of memory). Changing this parameter requires a PostgreSQL restart.

The profiler will also retrieve the query identifier for each instruction that contains an expression or optimizable statement. Note that this requires pg_stat_statements, or another similar third-party extension), to be installed. There are some limitations to the query identifier retrieval:

  • if a plpgsql expression contains underlying statements, only the top level query identifier will be retrieved
  • the profiler doesn't compute query identifier by itself but relies on external extension, such as pg_stat_statements, for that. It means that depending on the external extension behavior, you may not be able to see a query identifier for some statements. That's for instance the case with DDL statements, as pg_stat_statements doesn't expose the query identifier for such queries.
  • a query identifier is retrieved only for instructions containing expressions. This means that plpgsql_profiler_function_tb() function can report less query identifier than instructions on a single line.

Attention: A update of shared profiles can decrease performance on servers under higher load.

The profile can be displayed by function plpgsql_profiler_function_tb:

postgres=# select lineno, avg_time, source from plpgsql_profiler_function_tb('fx(int)');
┌────────┬──────────┬───────────────────────────────────────────────────────────────────┐
│ lineno │ avg_time │                              source                               │
╞════════╪══════════╪═══════════════════════════════════════════════════════════════════╡
│      1 │          │                                                                   │
│      2 │          │ declare result int = 0;                                           │
│      3 │    0.075 │ begin                                                             │
│      4 │    0.202 │   for i in 1..$1 loop                                             │
│      5 │    0.005 │     select result + i into result; select result + i into result; │
│      6 │          │   end loop;                                                       │
│      7 │        0 │   return result;                                                  │
│      8 │          │ end;                                                              │
└────────┴──────────┴───────────────────────────────────────────────────────────────────┘
(9 rows)

The profile per statements (not per line) can be displayed by function plpgsql_profiler_function_statements_tb:

        CREATE OR REPLACE FUNCTION public.fx1(a integer)
         RETURNS integer
         LANGUAGE plpgsql
1       AS $function$
2       begin
3         if a > 10 then
4           raise notice 'ahoj';
5           return -1;
6         else
7           raise notice 'nazdar';
8           return 1;
9         end if;
10      end;
11      $function$

postgres=# select stmtid, parent_stmtid, parent_note, lineno, exec_stmts, stmtname
             from plpgsql_profiler_function_statements_tb('fx1');
┌────────┬───────────────┬─────────────┬────────┬────────────┬─────────────────┐
│ stmtid │ parent_stmtid │ parent_note │ lineno │ exec_stmts │    stmtname     │
╞════════╪═══════════════╪═════════════╪════════╪════════════╪═════════════════╡
│      0 │             ∅ │ ∅           │      2 │          0 │ statement block │
│      1 │             0 │ body        │      3 │          0 │ IF              │
│      2 │             1 │ then body   │      4 │          0 │ RAISE           │
│      3 │             1 │ then body   │      5 │          0 │ RETURN          │
│      4 │             1 │ else body   │      7 │          0 │ RAISE           │
│      5 │             1 │ else body   │      8 │          0 │ RETURN          │
└────────┴───────────────┴─────────────┴────────┴────────────┴─────────────────┘
(6 rows)

All stored profiles can be displayed by calling function plpgsql_profiler_functions_all:

postgres=# select * from plpgsql_profiler_functions_all();
┌───────────────────────┬────────────┬────────────┬──────────┬─────────────┬──────────┬──────────┐
│        funcoid        │ exec_count │ total_time │ avg_time │ stddev_time │ min_time │ max_time │
╞═══════════════════════╪════════════╪════════════╪══════════╪═════════════╪══════════╪══════════╡
│ fxx(double precision) │          1 │       0.01 │     0.01 │        0.00 │     0.01 │     0.01 │
└───────────────────────┴────────────┴────────────┴──────────┴─────────────┴──────────┴──────────┘
(1 row)

There are two functions for cleaning stored profiles: plpgsql_profiler_reset_all() and plpgsql_profiler_reset(regprocedure).

Coverage metrics

plpgsql_check provides two functions:

  • plpgsql_coverage_statements(name)
  • plpgsql_coverage_branches(name)

Note

There is another very good PLpgSQL profiler - https://bitbucket.org/openscg/plprofiler

My extension is designed to be simple for use and practical. Nothing more or less.

plprofiler is more complex. It build call graphs and from this graph it can creates flame graph of execution times.

Both extensions can be used together with buildin PostgreSQL's feature - tracking functions.

set track_functions to 'pl';
...
select * from pg_stat_user_functions;

Tracer

plpgsql_check provides a tracing possibility - in this mode you can see notices on start or end functions (terse and default verbosity) and start or end statements (verbose verbosity). For default and verbose verbosity the content of function arguments is displayed. The content of related variables are displayed when verbosity is verbose.

postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #0 ->> start of inline_code_block (Oid=0)
NOTICE:  #2   ->> start of function fx(integer,integer,date,text) (Oid=16405)
NOTICE:  #2        call by inline_code_block line 1 at PERFORM
NOTICE:  #2       "a" => '10', "b" => null, "c" => '2020-08-03', "d" => 'stěhule'
NOTICE:  #4     ->> start of function fx(integer) (Oid=16404)
NOTICE:  #4          call by fx(integer,integer,date,text) line 1 at PERFORM
NOTICE:  #4         "a" => '10'
NOTICE:  #4     <<- end of function fx (elapsed time=0.098 ms)
NOTICE:  #2   <<- end of function fx (elapsed time=0.399 ms)
NOTICE:  #0 <<- end of block (elapsed time=0.754 ms)

The number after # is a execution frame counter (this number is related to deep of error context stack). It allows to pair start end and of function.

Tracing is enabled by setting plpgsql_check.tracer to on. Attention - enabling this behaviour has significant negative impact on performance (unlike the profiler). You can set a level for output used by tracer plpgsql_check.tracer_errlevel (default is notice). The output content is limited by length specified by plpgsql_check.tracer_variable_max_length configuration variable.

In terse verbose mode the output is reduced:

postgres=# set plpgsql_check.tracer_verbosity TO terse;
SET
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #0 start of inline code block (oid=0)
NOTICE:  #2 start of fx (oid=16405)
NOTICE:  #4 start of fx (oid=16404)
NOTICE:  #4 end of fx
NOTICE:  #2 end of fx
NOTICE:  #0 end of inline code block

In verbose mode the output is extended about statement details:

postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #0            ->> start of block inline_code_block (oid=0)
NOTICE:  #0.1       1  --> start of PERFORM
NOTICE:  #2              ->> start of function fx(integer,integer,date,text) (oid=16405)
NOTICE:  #2                   call by inline_code_block line 1 at PERFORM
NOTICE:  #2                  "a" => '10', "b" => null, "c" => '2020-08-04', "d" => 'stěhule'
NOTICE:  #2.1       1    --> start of PERFORM
NOTICE:  #2.1                "a" => '10'
NOTICE:  #4                ->> start of function fx(integer) (oid=16404)
NOTICE:  #4                     call by fx(integer,integer,date,text) line 1 at PERFORM
NOTICE:  #4                    "a" => '10'
NOTICE:  #4.1       6      --> start of assignment
NOTICE:  #4.1                  "a" => '10', "b" => '20'
NOTICE:  #4.1              <-- end of assignment (elapsed time=0.076 ms)
NOTICE:  #4.1                  "res" => '130'
NOTICE:  #4.2       7      --> start of RETURN
NOTICE:  #4.2                  "res" => '130'
NOTICE:  #4.2              <-- end of RETURN (elapsed time=0.054 ms)
NOTICE:  #4                <<- end of function fx (elapsed time=0.373 ms)
NOTICE:  #2.1            <-- end of PERFORM (elapsed time=0.589 ms)
NOTICE:  #2              <<- end of function fx (elapsed time=0.727 ms)
NOTICE:  #0.1          <-- end of PERFORM (elapsed time=1.147 ms)
NOTICE:  #0            <<- end of block (elapsed time=1.286 ms)

Special feature of tracer is tracing of ASSERT statement when plpgsql_check.trace_assert is on. When plpgsql_check.trace_assert_verbosity is DEFAULT, then all function's or procedure's variables are displayed when assert expression is false. When this configuration is VERBOSE then all variables from all plpgsql frames are displayed. This behaviour is independent on plpgsql.check_asserts value. It can be used, although the assertions are disabled in plpgsql runtime.

postgres=# set plpgsql_check.tracer to off;
postgres=# set plpgsql_check.trace_assert_verbosity TO verbose;

postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #4 PLpgSQL assert expression (false) on line 12 of fx(integer) is false
NOTICE:   "a" => '10', "res" => null, "b" => '20'
NOTICE:  #2 PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
NOTICE:   "a" => '10', "b" => null, "c" => '2020-08-05', "d" => 'stěhule'
NOTICE:  #0 PL/pgSQL function inline_code_block line 1 at PERFORM
ERROR:  assertion failed
CONTEXT:  PL/pgSQL function fx(integer) line 12 at ASSERT
SQL statement "SELECT fx(a)"
PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
SQL statement "SELECT fx(10,null, 'now', e'stěhule')"
PL/pgSQL function inline_code_block line 1 at PERFORM

postgres=# set plpgsql.check_asserts to off;
SET
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #4 PLpgSQL assert expression (false) on line 12 of fx(integer) is false
NOTICE:   "a" => '10', "res" => null, "b" => '20'
NOTICE:  #2 PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
NOTICE:   "a" => '10', "b" => null, "c" => '2020-08-05', "d" => 'stěhule'
NOTICE:  #0 PL/pgSQL function inline_code_block line 1 at PERFORM
DO

Attention - SECURITY

Tracer prints content of variables or function arguments. For security definer function, this content can hold security sensitive data. This is reason why tracer is disabled by default and should be enabled only with super user rights plpgsql_check.enable_tracer.

Pragma

You can configure plpgsql_check behave inside checked function with "pragma" function. This is a analogy of PL/SQL or ADA language of PRAGMA feature. PLpgSQL doesn't support PRAGMA, but plpgsql_check detects function named plpgsql_check_pragma and get options from parameters of this function. These plpgsql_check options are valid to end of group of statements.

CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
BEGIN
  ...
  -- for following statements disable check
  PERFORM plpgsql_check_pragma('disable:check');
  ...
  -- enable check again
  PERFORM plpgsql_check_pragma('enable:check');
  ...
END;
$$ LANGUAGE plpgsql;

The function plpgsql_check_pragma is immutable function that returns one. It is defined by plpgsql_check extension. You can declare alternative plpgsql_check_pragma function like:

CREATE OR REPLACE FUNCTION plpgsql_check_pragma(VARIADIC args[])
RETURNS int AS $$
SELECT 1
$$ LANGUAGE sql IMMUTABLE;

Using pragma function in declaration part of top block sets options on function level too.

CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
DECLARE
  aux int := plpgsql_check_pragma('disable:extra_warnings');
  ...

Shorter syntax for pragma is supported too:

CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
DECLARE r record;
BEGIN
  PERFORM 'PRAGMA:TYPE:r (a int, b int)';
  PERFORM 'PRAGMA:TABLE: x (like pg_class)';
  ...

Supported pragmas

echo:str - print string (for testing)

status:check,status:tracer, status:other_warnings, status:performance_warnings, status:extra_warnings,status:security_warnings

enable:check,enable:tracer, enable:other_warnings, enable:performance_warnings, enable:extra_warnings,enable:security_warnings

disable:check,disable:tracer, disable:other_warnings, disable:performance_warnings, disable:extra_warnings,disable:security_warnings

type:varname typename or type:varname (fieldname type, ...) - set type to variable of record type

table: name (column_name type, ...) or table: name (like tablename) - create ephereal table

Pragmas enable:tracer and disable:tracerare active for Postgres 12 and higher

Compilation

You need a development environment for PostgreSQL extensions:

make clean
make install

result:

[pavel@localhost plpgsql_check]$ make USE_PGXS=1 clean
rm -f plpgsql_check.so   libplpgsql_check.a  libplpgsql_check.pc
rm -f plpgsql_check.o
rm -rf results/ regression.diffs regression.out tmp_check/ log/
[pavel@localhost plpgsql_check]$ make USE_PGXS=1 all
clang -O2 -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement -Wendif-labels -Wmissing-format-attribute -Wformat-security -fno-strict-aliasing -fwrapv -fpic -I/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/pl/plpgsql/src -I. -I./ -I/usr/local/pgsql/include/server -I/usr/local/pgsql/include/internal -D_GNU_SOURCE   -c -o plpgsql_check.o plpgsql_check.c
clang -O2 -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement -Wendif-labels -Wmissing-format-attribute -Wformat-security -fno-strict-aliasing -fwrapv -fpic -I/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/pl/plpgsql/src -shared -o plpgsql_check.so plpgsql_check.o -L/usr/local/pgsql/lib -Wl,--as-needed -Wl,-rpath,'/usr/local/pgsql/lib',--enable-new-dtags  
[pavel@localhost plpgsql_check]$ su root
Password: *******
[root@localhost plpgsql_check]# make USE_PGXS=1 install
/usr/bin/mkdir -p '/usr/local/pgsql/lib'
/usr/bin/mkdir -p '/usr/local/pgsql/share/extension'
/usr/bin/mkdir -p '/usr/local/pgsql/share/extension'
/usr/bin/install -c -m 755  plpgsql_check.so '/usr/local/pgsql/lib/plpgsql_check.so'
/usr/bin/install -c -m 644 plpgsql_check.control '/usr/local/pgsql/share/extension/'
/usr/bin/install -c -m 644 plpgsql_check--0.9.sql '/usr/local/pgsql/share/extension/'
[root@localhost plpgsql_check]# exit
[pavel@localhost plpgsql_check]$ make USE_PGXS=1 installcheck
/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/test/regress/pg_regress --inputdir=./ --psqldir='/usr/local/pgsql/bin'    --dbname=pl_regression --load-language=plpgsql --dbname=contrib_regression plpgsql_check_passive plpgsql_check_active plpgsql_check_active-9.5
(using postmaster on Unix socket, default port)
============== dropping database "contrib_regression" ==============
DROP DATABASE
============== creating database "contrib_regression" ==============
CREATE DATABASE
ALTER DATABASE
============== installing plpgsql                     ==============
CREATE LANGUAGE
============== running regression test queries        ==============
test plpgsql_check_passive    ... ok
test plpgsql_check_active     ... ok
test plpgsql_check_active-9.5 ... ok

=====================
 All 3 tests passed. 
=====================

Compilation on Ubuntu

Sometimes successful compilation can require libicu-dev package (PostgreSQL 10 and higher - when pg was compiled with ICU support)

sudo apt install libicu-dev

Compilation plpgsql_check on Windows

You can check precompiled dll libraries http://okbob.blogspot.cz/2015/02/plpgsqlcheck-is-available-for-microsoft.html

or compile by self:

  1. Download and install PostgreSQL for Win32 from http://www.enterprisedb.com
  2. Download and install Microsoft Visual C++ Express
  3. Lern tutorial http://blog.2ndquadrant.com/compiling-postgresql-extensions-visual-studio-windows
  4. Build plpgsql_check.dll
  5. Install plugin
  6. copy plpgsql_check.dll to PostgreSQL\14\lib
  7. copy plpgsql_check.control and plpgsql_check--2.1.sql to PostgreSQL\14\share\extension

Checked on

  • gcc on Linux (against all supported PostgreSQL)
  • clang 3.4 on Linux (against PostgreSQL 10)
  • for success regress tests the PostgreSQL 10 or higher is required

Compilation against PostgreSQL 10 requires libICU!

Licence

Copyright (c) Pavel Stehule (pavel.stehule@gmail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Note

If you like it, send a postcard to address

Pavel Stehule
Skalice 12
256 01 Benesov u Prahy
Czech Republic

I invite any questions, comments, bug reports, patches on mail address pavel.stehule@gmail.com


Author: okbob
Source Code: https://github.com/okbob/plpgsql_check
License: View license

#postgresql 

Franz  Becker

Franz Becker

1648803600

Plpgsql Check: Extension That Allows to Check Plpgsql Source Code.

plpgsql_check

I founded this project, because I wanted to publish the code I wrote in the last two years, when I tried to write enhanced checking for PostgreSQL upstream. It was not fully successful - integration into upstream requires some larger plpgsql refactoring - probably it will not be done in next years (now is Dec 2013). But written code is fully functional and can be used in production (and it is used in production). So, I created this extension to be available for all plpgsql developers.

If you like it and if you would to join to development of this extension, register yourself to postgresql extension hacking google group.

Features

  • check fields of referenced database objects and types inside embedded SQL
  • using correct types of function parameters
  • unused variables and function argumens, unmodified OUT argumens
  • partially detection of dead code (due RETURN command)
  • detection of missing RETURN command in function
  • try to identify unwanted hidden casts, that can be performance issue like unused indexes
  • possibility to collect relations and functions used by function
  • possibility to check EXECUTE stmt agaist SQL injection vulnerability

I invite any ideas, patches, bugreports.

plpgsql_check is next generation of plpgsql_lint. It allows to check source code by explicit call plpgsql_check_function.

PostgreSQL PostgreSQL 10, 11, 12, 13 and 14 are supported.

The SQL statements inside PL/pgSQL functions are checked by validator for semantic errors. These errors can be found by plpgsql_check_function:

Active mode

postgres=# CREATE EXTENSION plpgsql_check;
LOAD
postgres=# CREATE TABLE t1(a int, b int);
CREATE TABLE

postgres=#
CREATE OR REPLACE FUNCTION public.f1()
RETURNS void
LANGUAGE plpgsql
AS $function$
DECLARE r record;
BEGIN
  FOR r IN SELECT * FROM t1
  LOOP
    RAISE NOTICE '%', r.c; -- there is bug - table t1 missing "c" column
  END LOOP;
END;
$function$;

CREATE FUNCTION

postgres=# select f1(); -- execution doesn't find a bug due to empty table t1
  f1 
 ────
   
 (1 row)

postgres=# \x
Expanded display is on.
postgres=# select * from plpgsql_check_function_tb('f1()');
─[ RECORD 1 ]───────────────────────────
functionid │ f1
lineno     │ 6
statement  │ RAISE
sqlstate   │ 42703
message    │ record "r" has no field "c"
detail     │ [null]
hint       │ [null]
level      │ error
position   │ 0
query      │ [null]

postgres=# \sf+ f1
    CREATE OR REPLACE FUNCTION public.f1()
     RETURNS void
     LANGUAGE plpgsql
1       AS $function$
2       DECLARE r record;
3       BEGIN
4         FOR r IN SELECT * FROM t1
5         LOOP
6           RAISE NOTICE '%', r.c; -- there is bug - table t1 missing "c" column
7         END LOOP;
8       END;
9       $function$

Function plpgsql_check_function() has three possible formats: text, json or xml

select * from plpgsql_check_function('f1()', fatal_errors := false);
                         plpgsql_check_function                         
------------------------------------------------------------------------
 error:42703:4:SQL statement:column "c" of relation "t1" does not exist
 Query: update t1 set c = 30
 --                   ^
 error:42P01:7:RAISE:missing FROM-clause entry for table "r"
 Query: SELECT r.c
 --            ^
 error:42601:7:RAISE:too few parameters specified for RAISE
(7 rows)

postgres=# select * from plpgsql_check_function('fx()', format:='xml');
                 plpgsql_check_function                     
────────────────────────────────────────────────────────────────
 <Function oid="16400">                                        ↵
   <Issue>                                                     ↵
     <Level>error</level>                                      ↵
     <Sqlstate>42P01</Sqlstate>                                ↵
     <Message>relation "foo111" does not exist</Message>       ↵
     <Stmt lineno="3">RETURN</Stmt>                            ↵
     <Query position="23">SELECT (select a from foo111)</Query>↵
   </Issue>                                                    ↵
  </Function>
 (1 row)

Arguments

You can set level of warnings via function's parameters:

Mandatory arguments

  • function name or function signature - these functions requires function specification. Any function in PostgreSQL can be specified by Oid or by name or by signature. When you know oid or complete function's signature, you can use a regprocedure type parameter like 'fx()'::regprocedure or 16799::regprocedure. Possible alternative is using a name only, when function's name is unique - like 'fx'. When the name is not unique or the function doesn't exists it raises a error.

Optional arguments

relid DEFAULT 0 - oid of relation assigned with trigger function. It is necessary for check of any trigger function.

fatal_errors boolean DEFAULT true - stop on first error

other_warnings boolean DEFAULT true - show warnings like different attributes number in assignmenet on left and right side, variable overlaps function's parameter, unused variables, unwanted casting, ..

extra_warnings boolean DEFAULT true - show warnings like missing RETURN, shadowed variables, dead code, never read (unused) function's parameter, unmodified variables, modified auto variables, ..

performance_warnings boolean DEFAULT false - performance related warnings like declared type with type modificator, casting, implicit casts in where clause (can be reason why index is not used), ..

security_warnings boolean DEFAULT false - security related checks like SQL injection vulnerability detection

anyelementtype regtype DEFAULT 'int' - a real type used instead anyelement type

anyenumtype regtype DEFAULT '-' - a real type used instead anyenum type

anyrangetype regtype DEFAULT 'int4range' - a real type used instead anyrange type

anycompatibletype DEFAULT 'int' - a real type used instead anycompatible type

anycompatiblerangetype DEFAULT 'int4range' - a real type used instead anycompatible range type

without_warnings DEFAULT false - disable all warnings

all_warnings DEFAULT false - enable all warnings

newtable DEFAULT NULL, oldtable DEFAULT NULL - the names of NEW or OLD transitive tables. These parameters are required when transitive tables are used.

Triggers

When you want to check any trigger, you have to enter a relation that will be used together with trigger function

CREATE TABLE bar(a int, b int);

postgres=# \sf+ foo_trg
    CREATE OR REPLACE FUNCTION public.foo_trg()
         RETURNS trigger
         LANGUAGE plpgsql
1       AS $function$
2       BEGIN
3         NEW.c := NEW.a + NEW.b;
4         RETURN NEW;
5       END;
6       $function$

Missing relation specification

postgres=# select * from plpgsql_check_function('foo_trg()');
ERROR:  missing trigger relation
HINT:  Trigger relation oid must be valid

Correct trigger checking (with specified relation)

postgres=# select * from plpgsql_check_function('foo_trg()', 'bar');
                 plpgsql_check_function                 
--------------------------------------------------------
 error:42703:3:assignment:record "new" has no field "c"
(1 row)

For triggers with transitive tables you can set a oldtable or newtable parameters:

create or replace function footab_trig_func()
returns trigger as $$
declare x int;
begin
  if false then
    -- should be ok;
    select count(*) from newtab into x; 

    -- should fail;
    select count(*) from newtab where d = 10 into x;
  end if;
  return null;
end;
$$ language plpgsql;

select * from plpgsql_check_function('footab_trig_func','footab', newtable := 'newtab');

Mass check

You can use the plpgsql_check_function for mass check functions and mass check triggers. Please, test following queries:

-- check all nontrigger plpgsql functions
SELECT p.oid, p.proname, plpgsql_check_function(p.oid)
   FROM pg_catalog.pg_namespace n
   JOIN pg_catalog.pg_proc p ON pronamespace = n.oid
   JOIN pg_catalog.pg_language l ON p.prolang = l.oid
  WHERE l.lanname = 'plpgsql' AND p.prorettype <> 2279;

or

SELECT p.proname, tgrelid::regclass, cf.*
   FROM pg_proc p
        JOIN pg_trigger t ON t.tgfoid = p.oid 
        JOIN pg_language l ON p.prolang = l.oid
        JOIN pg_namespace n ON p.pronamespace = n.oid,
        LATERAL plpgsql_check_function(p.oid, t.tgrelid) cf
  WHERE n.nspname = 'public' and l.lanname = 'plpgsql'

or

-- check all plpgsql functions (functions or trigger functions with defined triggers)
SELECT
    (pcf).functionid::regprocedure, (pcf).lineno, (pcf).statement,
    (pcf).sqlstate, (pcf).message, (pcf).detail, (pcf).hint, (pcf).level,
    (pcf)."position", (pcf).query, (pcf).context
FROM
(
    SELECT
        plpgsql_check_function_tb(pg_proc.oid, COALESCE(pg_trigger.tgrelid, 0)) AS pcf
    FROM pg_proc
    LEFT JOIN pg_trigger
        ON (pg_trigger.tgfoid = pg_proc.oid)
    WHERE
        prolang = (SELECT lang.oid FROM pg_language lang WHERE lang.lanname = 'plpgsql') AND
        pronamespace <> (SELECT nsp.oid FROM pg_namespace nsp WHERE nsp.nspname = 'pg_catalog') AND
        -- ignore unused triggers
        (pg_proc.prorettype <> (SELECT typ.oid FROM pg_type typ WHERE typ.typname = 'trigger') OR
         pg_trigger.tgfoid IS NOT NULL)
    OFFSET 0
) ss
ORDER BY (pcf).functionid::regprocedure::text, (pcf).lineno

Passive mode

Functions should be checked on start - plpgsql_check module must be loaded.

Configuration

plpgsql_check.mode = [ disabled | by_function | fresh_start | every_start ]
plpgsql_check.fatal_errors = [ yes | no ]

plpgsql_check.show_nonperformance_warnings = false
plpgsql_check.show_performance_warnings = false

Default mode is by_function, that means that the enhanced check is done only in active mode - by plpgsql_check_function. fresh_start means cold start.

You can enable passive mode by

load 'plpgsql'; -- 1.1 and higher doesn't need it
load 'plpgsql_check';
set plpgsql_check.mode = 'every_start';

SELECT fx(10); -- run functions - function is checked before runtime starts it

Limits

plpgsql_check should find almost all errors on really static code. When developer use some PLpgSQL's dynamic features like dynamic SQL or record data type, then false positives are possible. These should be rare - in well written code - and then the affected function should be redesigned or plpgsql_check should be disabled for this function.

CREATE OR REPLACE FUNCTION f1()
RETURNS void AS $$
DECLARE r record;
BEGIN
  FOR r IN EXECUTE 'SELECT * FROM t1'
  LOOP
    RAISE NOTICE '%', r.c;
  END LOOP;
END;
$$ LANGUAGE plpgsql SET plpgsql.enable_check TO false;

A usage of plpgsql_check adds a small overhead (in enabled passive mode) and you should use it only in develop or preprod environments.

Dynamic SQL

This module doesn't check queries that are assembled in runtime. It is not possible to identify results of dynamic queries - so plpgsql_check cannot to set correct type to record variables and cannot to check a dependent SQLs and expressions.

When type of record's variable is not know, you can assign it explicitly with pragma type:

DECLARE r record;
BEGIN
  EXECUTE format('SELECT * FROM %I', _tablename) INTO r;
  PERFORM plpgsql_check_pragma('type: r (id int, processed bool)');
  IF NOT r.processed THEN
    ...

Attention: The SQL injection check can detect only some SQL injection vulnerabilities. This tool cannot be used for security audit! Some issues should not be detected. This check can raise false alarms too - probably when variable is sanitized by other command or when value is of some compose type. 

Refcursors

plpgsql_check should not to detect structure of referenced cursors. A reference on cursor in PLpgSQL is implemented as name of global cursor. In check time, the name is not known (not in all possibilities), and global cursor doesn't exist. It is significant break for any static analyse. PLpgSQL cannot to set correct type for record variables and cannot to check a dependent SQLs and expressions. A solution is same like dynamic SQL. Don't use record variable as target when you use refcursor type or disable plpgsql_check for these functions.

CREATE OR REPLACE FUNCTION foo(refcur_var refcursor)
RETURNS void AS $$
DECLARE
  rec_var record;
BEGIN
  FETCH refcur_var INTO rec_var; -- this is STOP for plpgsql_check
  RAISE NOTICE '%', rec_var;     -- record rec_var is not assigned yet error

In this case a record type should not be used (use known rowtype instead):

CREATE OR REPLACE FUNCTION foo(refcur_var refcursor)
RETURNS void AS $$
DECLARE
  rec_var some_rowtype;
BEGIN
  FETCH refcur_var INTO rec_var;
  RAISE NOTICE '%', rec_var;

Temporary tables

plpgsql_check cannot verify queries over temporary tables that are created in plpgsql's function runtime. For this use case it is necessary to create a fake temp table or disable plpgsql_check for this function.

In reality temp tables are stored in own (per user) schema with higher priority than persistent tables. So you can do (with following trick safetly):

CREATE OR REPLACE FUNCTION public.disable_dml()
RETURNS trigger
LANGUAGE plpgsql AS $function$
BEGIN
  RAISE EXCEPTION SQLSTATE '42P01'
     USING message = format('this instance of %I table doesn''t allow any DML operation', TG_TABLE_NAME),
           hint = format('you should to run "CREATE TEMP TABLE %1$I(LIKE %1$I INCLUDING ALL);" statement',
                         TG_TABLE_NAME);
  RETURN NULL;
END;
$function$;

CREATE TABLE foo(a int, b int); -- doesn't hold data ever
CREATE TRIGGER foo_disable_dml
   BEFORE INSERT OR UPDATE OR DELETE ON foo
   EXECUTE PROCEDURE disable_dml();

postgres=# INSERT INTO  foo VALUES(10,20);
ERROR:  this instance of foo table doesn't allow any DML operation
HINT:  you should to run "CREATE TEMP TABLE foo(LIKE foo INCLUDING ALL);" statement
postgres=# 

CREATE TABLE
postgres=# INSERT INTO  foo VALUES(10,20);
INSERT 0 1

This trick emulates GLOBAL TEMP tables partially and it allows a statical validation. Other possibility is using a [template foreign data wrapper] (https://github.com/okbob/template_fdw)

You can use pragma table and create ephemeral table:

BEGIN
   CREATE TEMP TABLE xxx(a int);
   PERFORM plpgsql_check_pragma('table: xxx(a int)');
   INSERT INTO xxx VALUES(10);

Dependency list

A function plpgsql_show_dependency_tb can show all functions, operators and relations used inside processed function:

postgres=# select * from plpgsql_show_dependency_tb('testfunc(int,float)');
┌──────────┬───────┬────────┬─────────┬────────────────────────────┐
│   type   │  oid  │ schema │  name   │           params           │
╞══════════╪═══════╪════════╪═════════╪════════════════════════════╡
│ FUNCTION │ 36008 │ public │ myfunc1 │ (integer,double precision) │
│ FUNCTION │ 35999 │ public │ myfunc2 │ (integer,double precision) │
│ OPERATOR │ 36007 │ public │ **      │ (integer,integer)          │
│ RELATION │ 36005 │ public │ myview  │                            │
│ RELATION │ 36002 │ public │ mytable │                            │
└──────────┴───────┴────────┴─────────┴────────────────────────────┘
(4 rows)

Profiler

The plpgsql_check contains simple profiler of plpgsql functions and procedures. It can work with/without a access to shared memory. It depends on shared_preload_libraries config. When plpgsql_check was initialized by shared_preload_libraries, then it can allocate shared memory, and function's profiles are stored there. When plpgsql_check cannot to allocate shared momory, the profile is stored in session memory.

Due dependencies, shared_preload_libraries should to contains plpgsql first

postgres=# show shared_preload_libraries ;
┌──────────────────────────┐
│ shared_preload_libraries │
╞══════════════════════════╡
│ plpgsql,plpgsql_check    │
└──────────────────────────┘
(1 row)

The profiler is active when GUC plpgsql_check.profiler is on. The profiler doesn't require shared memory, but if there are not shared memory, then the profile is limmitted just to active session.

When plpgsql_check is initialized by shared_preload_libraries, another GUC is available to configure the amount of shared memory used by the profiler: plpgsql_check.profiler_max_shared_chunks. This defines the maximum number of statements chunk that can be stored in shared memory. For each plpgsql function (or procedure), the whole content is split into chunks of 30 statements. If needed, multiple chunks can be used to store the whole content of a single function. A single chunk is 1704 bytes. The default value for this GUC is 15000, which should be enough for big projects containing hundred of thousands of statements in plpgsql, and will consume about 24MB of memory. If your project doesn't require that much number of chunks, you can set this parameter to a smaller number in order to decrease the memory usage. The minimum value is 50 (which should consume about 83kB of memory), and the maximum value is 100000 (which should consume about 163MB of memory). Changing this parameter requires a PostgreSQL restart.

The profiler will also retrieve the query identifier for each instruction that contains an expression or optimizable statement. Note that this requires pg_stat_statements, or another similar third-party extension), to be installed. There are some limitations to the query identifier retrieval:

  • if a plpgsql expression contains underlying statements, only the top level query identifier will be retrieved
  • the profiler doesn't compute query identifier by itself but relies on external extension, such as pg_stat_statements, for that. It means that depending on the external extension behavior, you may not be able to see a query identifier for some statements. That's for instance the case with DDL statements, as pg_stat_statements doesn't expose the query identifier for such queries.
  • a query identifier is retrieved only for instructions containing expressions. This means that plpgsql_profiler_function_tb() function can report less query identifier than instructions on a single line.

Attention: A update of shared profiles can decrease performance on servers under higher load.

The profile can be displayed by function plpgsql_profiler_function_tb:

postgres=# select lineno, avg_time, source from plpgsql_profiler_function_tb('fx(int)');
┌────────┬──────────┬───────────────────────────────────────────────────────────────────┐
│ lineno │ avg_time │                              source                               │
╞════════╪══════════╪═══════════════════════════════════════════════════════════════════╡
│      1 │          │                                                                   │
│      2 │          │ declare result int = 0;                                           │
│      3 │    0.075 │ begin                                                             │
│      4 │    0.202 │   for i in 1..$1 loop                                             │
│      5 │    0.005 │     select result + i into result; select result + i into result; │
│      6 │          │   end loop;                                                       │
│      7 │        0 │   return result;                                                  │
│      8 │          │ end;                                                              │
└────────┴──────────┴───────────────────────────────────────────────────────────────────┘
(9 rows)

The profile per statements (not per line) can be displayed by function plpgsql_profiler_function_statements_tb:

        CREATE OR REPLACE FUNCTION public.fx1(a integer)
         RETURNS integer
         LANGUAGE plpgsql
1       AS $function$
2       begin
3         if a > 10 then
4           raise notice 'ahoj';
5           return -1;
6         else
7           raise notice 'nazdar';
8           return 1;
9         end if;
10      end;
11      $function$

postgres=# select stmtid, parent_stmtid, parent_note, lineno, exec_stmts, stmtname
             from plpgsql_profiler_function_statements_tb('fx1');
┌────────┬───────────────┬─────────────┬────────┬────────────┬─────────────────┐
│ stmtid │ parent_stmtid │ parent_note │ lineno │ exec_stmts │    stmtname     │
╞════════╪═══════════════╪═════════════╪════════╪════════════╪═════════════════╡
│      0 │             ∅ │ ∅           │      2 │          0 │ statement block │
│      1 │             0 │ body        │      3 │          0 │ IF              │
│      2 │             1 │ then body   │      4 │          0 │ RAISE           │
│      3 │             1 │ then body   │      5 │          0 │ RETURN          │
│      4 │             1 │ else body   │      7 │          0 │ RAISE           │
│      5 │             1 │ else body   │      8 │          0 │ RETURN          │
└────────┴───────────────┴─────────────┴────────┴────────────┴─────────────────┘
(6 rows)

All stored profiles can be displayed by calling function plpgsql_profiler_functions_all:

postgres=# select * from plpgsql_profiler_functions_all();
┌───────────────────────┬────────────┬────────────┬──────────┬─────────────┬──────────┬──────────┐
│        funcoid        │ exec_count │ total_time │ avg_time │ stddev_time │ min_time │ max_time │
╞═══════════════════════╪════════════╪════════════╪══════════╪═════════════╪══════════╪══════════╡
│ fxx(double precision) │          1 │       0.01 │     0.01 │        0.00 │     0.01 │     0.01 │
└───────────────────────┴────────────┴────────────┴──────────┴─────────────┴──────────┴──────────┘
(1 row)

There are two functions for cleaning stored profiles: plpgsql_profiler_reset_all() and plpgsql_profiler_reset(regprocedure).

Coverage metrics

plpgsql_check provides two functions:

  • plpgsql_coverage_statements(name)
  • plpgsql_coverage_branches(name)

Note

There is another very good PLpgSQL profiler - https://bitbucket.org/openscg/plprofiler

My extension is designed to be simple for use and practical. Nothing more or less.

plprofiler is more complex. It build call graphs and from this graph it can creates flame graph of execution times.

Both extensions can be used together with buildin PostgreSQL's feature - tracking functions.

set track_functions to 'pl';
...
select * from pg_stat_user_functions;

Tracer

plpgsql_check provides a tracing possibility - in this mode you can see notices on start or end functions (terse and default verbosity) and start or end statements (verbose verbosity). For default and verbose verbosity the content of function arguments is displayed. The content of related variables are displayed when verbosity is verbose.

postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #0 ->> start of inline_code_block (Oid=0)
NOTICE:  #2   ->> start of function fx(integer,integer,date,text) (Oid=16405)
NOTICE:  #2        call by inline_code_block line 1 at PERFORM
NOTICE:  #2       "a" => '10', "b" => null, "c" => '2020-08-03', "d" => 'stěhule'
NOTICE:  #4     ->> start of function fx(integer) (Oid=16404)
NOTICE:  #4          call by fx(integer,integer,date,text) line 1 at PERFORM
NOTICE:  #4         "a" => '10'
NOTICE:  #4     <<- end of function fx (elapsed time=0.098 ms)
NOTICE:  #2   <<- end of function fx (elapsed time=0.399 ms)
NOTICE:  #0 <<- end of block (elapsed time=0.754 ms)

The number after # is a execution frame counter (this number is related to deep of error context stack). It allows to pair start end and of function.

Tracing is enabled by setting plpgsql_check.tracer to on. Attention - enabling this behaviour has significant negative impact on performance (unlike the profiler). You can set a level for output used by tracer plpgsql_check.tracer_errlevel (default is notice). The output content is limited by length specified by plpgsql_check.tracer_variable_max_length configuration variable.

In terse verbose mode the output is reduced:

postgres=# set plpgsql_check.tracer_verbosity TO terse;
SET
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #0 start of inline code block (oid=0)
NOTICE:  #2 start of fx (oid=16405)
NOTICE:  #4 start of fx (oid=16404)
NOTICE:  #4 end of fx
NOTICE:  #2 end of fx
NOTICE:  #0 end of inline code block

In verbose mode the output is extended about statement details:

postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #0            ->> start of block inline_code_block (oid=0)
NOTICE:  #0.1       1  --> start of PERFORM
NOTICE:  #2              ->> start of function fx(integer,integer,date,text) (oid=16405)
NOTICE:  #2                   call by inline_code_block line 1 at PERFORM
NOTICE:  #2                  "a" => '10', "b" => null, "c" => '2020-08-04', "d" => 'stěhule'
NOTICE:  #2.1       1    --> start of PERFORM
NOTICE:  #2.1                "a" => '10'
NOTICE:  #4                ->> start of function fx(integer) (oid=16404)
NOTICE:  #4                     call by fx(integer,integer,date,text) line 1 at PERFORM
NOTICE:  #4                    "a" => '10'
NOTICE:  #4.1       6      --> start of assignment
NOTICE:  #4.1                  "a" => '10', "b" => '20'
NOTICE:  #4.1              <-- end of assignment (elapsed time=0.076 ms)
NOTICE:  #4.1                  "res" => '130'
NOTICE:  #4.2       7      --> start of RETURN
NOTICE:  #4.2                  "res" => '130'
NOTICE:  #4.2              <-- end of RETURN (elapsed time=0.054 ms)
NOTICE:  #4                <<- end of function fx (elapsed time=0.373 ms)
NOTICE:  #2.1            <-- end of PERFORM (elapsed time=0.589 ms)
NOTICE:  #2              <<- end of function fx (elapsed time=0.727 ms)
NOTICE:  #0.1          <-- end of PERFORM (elapsed time=1.147 ms)
NOTICE:  #0            <<- end of block (elapsed time=1.286 ms)

Special feature of tracer is tracing of ASSERT statement when plpgsql_check.trace_assert is on. When plpgsql_check.trace_assert_verbosity is DEFAULT, then all function's or procedure's variables are displayed when assert expression is false. When this configuration is VERBOSE then all variables from all plpgsql frames are displayed. This behaviour is independent on plpgsql.check_asserts value. It can be used, although the assertions are disabled in plpgsql runtime.

postgres=# set plpgsql_check.tracer to off;
postgres=# set plpgsql_check.trace_assert_verbosity TO verbose;

postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #4 PLpgSQL assert expression (false) on line 12 of fx(integer) is false
NOTICE:   "a" => '10', "res" => null, "b" => '20'
NOTICE:  #2 PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
NOTICE:   "a" => '10', "b" => null, "c" => '2020-08-05', "d" => 'stěhule'
NOTICE:  #0 PL/pgSQL function inline_code_block line 1 at PERFORM
ERROR:  assertion failed
CONTEXT:  PL/pgSQL function fx(integer) line 12 at ASSERT
SQL statement "SELECT fx(a)"
PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
SQL statement "SELECT fx(10,null, 'now', e'stěhule')"
PL/pgSQL function inline_code_block line 1 at PERFORM

postgres=# set plpgsql.check_asserts to off;
SET
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #4 PLpgSQL assert expression (false) on line 12 of fx(integer) is false
NOTICE:   "a" => '10', "res" => null, "b" => '20'
NOTICE:  #2 PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
NOTICE:   "a" => '10', "b" => null, "c" => '2020-08-05', "d" => 'stěhule'
NOTICE:  #0 PL/pgSQL function inline_code_block line 1 at PERFORM
DO

Attention - SECURITY

Tracer prints content of variables or function arguments. For security definer function, this content can hold security sensitive data. This is reason why tracer is disabled by default and should be enabled only with super user rights plpgsql_check.enable_tracer.

Pragma

You can configure plpgsql_check behave inside checked function with "pragma" function. This is a analogy of PL/SQL or ADA language of PRAGMA feature. PLpgSQL doesn't support PRAGMA, but plpgsql_check detects function named plpgsql_check_pragma and get options from parameters of this function. These plpgsql_check options are valid to end of group of statements.

CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
BEGIN
  ...
  -- for following statements disable check
  PERFORM plpgsql_check_pragma('disable:check');
  ...
  -- enable check again
  PERFORM plpgsql_check_pragma('enable:check');
  ...
END;
$$ LANGUAGE plpgsql;

The function plpgsql_check_pragma is immutable function that returns one. It is defined by plpgsql_check extension. You can declare alternative plpgsql_check_pragma function like:

CREATE OR REPLACE FUNCTION plpgsql_check_pragma(VARIADIC args[])
RETURNS int AS $$
SELECT 1
$$ LANGUAGE sql IMMUTABLE;

Using pragma function in declaration part of top block sets options on function level too.

CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
DECLARE
  aux int := plpgsql_check_pragma('disable:extra_warnings');
  ...

Shorter syntax for pragma is supported too:

CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
DECLARE r record;
BEGIN
  PERFORM 'PRAGMA:TYPE:r (a int, b int)';
  PERFORM 'PRAGMA:TABLE: x (like pg_class)';
  ...

Supported pragmas

echo:str - print string (for testing)

status:check,status:tracer, status:other_warnings, status:performance_warnings, status:extra_warnings,status:security_warnings

enable:check,enable:tracer, enable:other_warnings, enable:performance_warnings, enable:extra_warnings,enable:security_warnings

disable:check,disable:tracer, disable:other_warnings, disable:performance_warnings, disable:extra_warnings,disable:security_warnings

type:varname typename or type:varname (fieldname type, ...) - set type to variable of record type

table: name (column_name type, ...) or table: name (like tablename) - create ephereal table

Pragmas enable:tracer and disable:tracerare active for Postgres 12 and higher

Compilation

You need a development environment for PostgreSQL extensions:

make clean
make install

result:

[pavel@localhost plpgsql_check]$ make USE_PGXS=1 clean
rm -f plpgsql_check.so   libplpgsql_check.a  libplpgsql_check.pc
rm -f plpgsql_check.o
rm -rf results/ regression.diffs regression.out tmp_check/ log/
[pavel@localhost plpgsql_check]$ make USE_PGXS=1 all
clang -O2 -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement -Wendif-labels -Wmissing-format-attribute -Wformat-security -fno-strict-aliasing -fwrapv -fpic -I/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/pl/plpgsql/src -I. -I./ -I/usr/local/pgsql/include/server -I/usr/local/pgsql/include/internal -D_GNU_SOURCE   -c -o plpgsql_check.o plpgsql_check.c
clang -O2 -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement -Wendif-labels -Wmissing-format-attribute -Wformat-security -fno-strict-aliasing -fwrapv -fpic -I/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/pl/plpgsql/src -shared -o plpgsql_check.so plpgsql_check.o -L/usr/local/pgsql/lib -Wl,--as-needed -Wl,-rpath,'/usr/local/pgsql/lib',--enable-new-dtags  
[pavel@localhost plpgsql_check]$ su root
Password: *******
[root@localhost plpgsql_check]# make USE_PGXS=1 install
/usr/bin/mkdir -p '/usr/local/pgsql/lib'
/usr/bin/mkdir -p '/usr/local/pgsql/share/extension'
/usr/bin/mkdir -p '/usr/local/pgsql/share/extension'
/usr/bin/install -c -m 755  plpgsql_check.so '/usr/local/pgsql/lib/plpgsql_check.so'
/usr/bin/install -c -m 644 plpgsql_check.control '/usr/local/pgsql/share/extension/'
/usr/bin/install -c -m 644 plpgsql_check--0.9.sql '/usr/local/pgsql/share/extension/'
[root@localhost plpgsql_check]# exit
[pavel@localhost plpgsql_check]$ make USE_PGXS=1 installcheck
/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/test/regress/pg_regress --inputdir=./ --psqldir='/usr/local/pgsql/bin'    --dbname=pl_regression --load-language=plpgsql --dbname=contrib_regression plpgsql_check_passive plpgsql_check_active plpgsql_check_active-9.5
(using postmaster on Unix socket, default port)
============== dropping database "contrib_regression" ==============
DROP DATABASE
============== creating database "contrib_regression" ==============
CREATE DATABASE
ALTER DATABASE
============== installing plpgsql                     ==============
CREATE LANGUAGE
============== running regression test queries        ==============
test plpgsql_check_passive    ... ok
test plpgsql_check_active     ... ok
test plpgsql_check_active-9.5 ... ok

=====================
 All 3 tests passed. 
=====================

Compilation on Ubuntu

Sometimes successful compilation can require libicu-dev package (PostgreSQL 10 and higher - when pg was compiled with ICU support)

sudo apt install libicu-dev

Compilation plpgsql_check on Windows

You can check precompiled dll libraries http://okbob.blogspot.cz/2015/02/plpgsqlcheck-is-available-for-microsoft.html

or compile by self:

  1. Download and install PostgreSQL for Win32 from http://www.enterprisedb.com
  2. Download and install Microsoft Visual C++ Express
  3. Lern tutorial http://blog.2ndquadrant.com/compiling-postgresql-extensions-visual-studio-windows
  4. Build plpgsql_check.dll
  5. Install plugin
  6. copy plpgsql_check.dll to PostgreSQL\14\lib
  7. copy plpgsql_check.control and plpgsql_check--2.1.sql to PostgreSQL\14\share\extension

Checked on

  • gcc on Linux (against all supported PostgreSQL)
  • clang 3.4 on Linux (against PostgreSQL 10)
  • for success regress tests the PostgreSQL 10 or higher is required

Compilation against PostgreSQL 10 requires libICU!

Licence

Copyright (c) Pavel Stehule (pavel.stehule@gmail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Note

If you like it, send a postcard to address

Pavel Stehule
Skalice 12
256 01 Benesov u Prahy
Czech Republic

I invite any questions, comments, bug reports, patches on mail address pavel.stehule@gmail.com


Author: okbob
Source Code: https://github.com/okbob/plpgsql_check
License: View license

#postgresql 

Veronica  Roob

Veronica Roob

1653475560

A Pure PHP Implementation Of The MessagePack Serialization Format

msgpack.php

A pure PHP implementation of the MessagePack serialization format.

Features

Installation

The recommended way to install the library is through Composer:

composer require rybakit/msgpack

Usage

Packing

To pack values you can either use an instance of a Packer:

$packer = new Packer();
$packed = $packer->pack($value);

or call a static method on the MessagePack class:

$packed = MessagePack::pack($value);

In the examples above, the method pack automatically packs a value depending on its type. However, not all PHP types can be uniquely translated to MessagePack types. For example, the MessagePack format defines map and array types, which are represented by a single array type in PHP. By default, the packer will pack a PHP array as a MessagePack array if it has sequential numeric keys, starting from 0 and as a MessagePack map otherwise:

$mpArr1 = $packer->pack([1, 2]);               // MP array [1, 2]
$mpArr2 = $packer->pack([0 => 1, 1 => 2]);     // MP array [1, 2]
$mpMap1 = $packer->pack([0 => 1, 2 => 3]);     // MP map {0: 1, 2: 3}
$mpMap2 = $packer->pack([1 => 2, 2 => 3]);     // MP map {1: 2, 2: 3}
$mpMap3 = $packer->pack(['a' => 1, 'b' => 2]); // MP map {a: 1, b: 2}

However, sometimes you need to pack a sequential array as a MessagePack map. To do this, use the packMap method:

$mpMap = $packer->packMap([1, 2]); // {0: 1, 1: 2}

Here is a list of type-specific packing methods:

$packer->packNil();           // MP nil
$packer->packBool(true);      // MP bool
$packer->packInt(42);         // MP int
$packer->packFloat(M_PI);     // MP float (32 or 64)
$packer->packFloat32(M_PI);   // MP float 32
$packer->packFloat64(M_PI);   // MP float 64
$packer->packStr('foo');      // MP str
$packer->packBin("\x80");     // MP bin
$packer->packArray([1, 2]);   // MP array
$packer->packMap(['a' => 1]); // MP map
$packer->packExt(1, "\xaa");  // MP ext

Check the "Custom types" section below on how to pack custom types.

Packing options

The Packer object supports a number of bitmask-based options for fine-tuning the packing process (defaults are in bold):

NameDescription
FORCE_STRForces PHP strings to be packed as MessagePack UTF-8 strings
FORCE_BINForces PHP strings to be packed as MessagePack binary data
DETECT_STR_BINDetects MessagePack str/bin type automatically
  
FORCE_ARRForces PHP arrays to be packed as MessagePack arrays
FORCE_MAPForces PHP arrays to be packed as MessagePack maps
DETECT_ARR_MAPDetects MessagePack array/map type automatically
  
FORCE_FLOAT32Forces PHP floats to be packed as 32-bits MessagePack floats
FORCE_FLOAT64Forces PHP floats to be packed as 64-bits MessagePack floats

The type detection mode (DETECT_STR_BIN/DETECT_ARR_MAP) adds some overhead which can be noticed when you pack large (16- and 32-bit) arrays or strings. However, if you know the value type in advance (for example, you only work with UTF-8 strings or/and associative arrays), you can eliminate this overhead by forcing the packer to use the appropriate type, which will save it from running the auto-detection routine. Another option is to explicitly specify the value type. The library provides 2 auxiliary classes for this, Map and Bin. Check the "Custom types" section below for details.

Examples:

// detect str/bin type and pack PHP 64-bit floats (doubles) to MP 32-bit floats
$packer = new Packer(PackOptions::DETECT_STR_BIN | PackOptions::FORCE_FLOAT32);

// these will throw MessagePack\Exception\InvalidOptionException
$packer = new Packer(PackOptions::FORCE_STR | PackOptions::FORCE_BIN);
$packer = new Packer(PackOptions::FORCE_FLOAT32 | PackOptions::FORCE_FLOAT64);

Unpacking

To unpack data you can either use an instance of a BufferUnpacker:

$unpacker = new BufferUnpacker();

$unpacker->reset($packed);
$value = $unpacker->unpack();

or call a static method on the MessagePack class:

$value = MessagePack::unpack($packed);

If the packed data is received in chunks (e.g. when reading from a stream), use the tryUnpack method, which attempts to unpack data and returns an array of unpacked messages (if any) instead of throwing an InsufficientDataException:

while ($chunk = ...) {
    $unpacker->append($chunk);
    if ($messages = $unpacker->tryUnpack()) {
        return $messages;
    }
}

If you want to unpack from a specific position in a buffer, use seek:

$unpacker->seek(42); // set position equal to 42 bytes
$unpacker->seek(-8); // set position to 8 bytes before the end of the buffer

To skip bytes from the current position, use skip:

$unpacker->skip(10); // set position to 10 bytes ahead of the current position

To get the number of remaining (unread) bytes in the buffer:

$unreadBytesCount = $unpacker->getRemainingCount();

To check whether the buffer has unread data:

$hasUnreadBytes = $unpacker->hasRemaining();

If needed, you can remove already read data from the buffer by calling:

$releasedBytesCount = $unpacker->release();

With the read method you can read raw (packed) data:

$packedData = $unpacker->read(2); // read 2 bytes

Besides the above methods BufferUnpacker provides type-specific unpacking methods, namely:

$unpacker->unpackNil();   // PHP null
$unpacker->unpackBool();  // PHP bool
$unpacker->unpackInt();   // PHP int
$unpacker->unpackFloat(); // PHP float
$unpacker->unpackStr();   // PHP UTF-8 string
$unpacker->unpackBin();   // PHP binary string
$unpacker->unpackArray(); // PHP sequential array
$unpacker->unpackMap();   // PHP associative array
$unpacker->unpackExt();   // PHP MessagePack\Type\Ext object

Unpacking options

The BufferUnpacker object supports a number of bitmask-based options for fine-tuning the unpacking process (defaults are in bold):

NameDescription
BIGINT_AS_STRConverts overflowed integers to strings [1]
BIGINT_AS_GMPConverts overflowed integers to GMP objects [2]
BIGINT_AS_DECConverts overflowed integers to Decimal\Decimal objects [3]

1. The binary MessagePack format has unsigned 64-bit as its largest integer data type, but PHP does not support such integers, which means that an overflow can occur during unpacking.

2. Make sure the GMP extension is enabled.

3. Make sure the Decimal extension is enabled.

Examples:

$packedUint64 = "\xcf"."\xff\xff\xff\xff"."\xff\xff\xff\xff";

$unpacker = new BufferUnpacker($packedUint64);
var_dump($unpacker->unpack()); // string(20) "18446744073709551615"

$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_GMP);
var_dump($unpacker->unpack()); // object(GMP) {...}

$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_DEC);
var_dump($unpacker->unpack()); // object(Decimal\Decimal) {...}

Custom types

In addition to the basic types, the library provides functionality to serialize and deserialize arbitrary types. This can be done in several ways, depending on your use case. Let's take a look at them.

Type objects

If you need to serialize an instance of one of your classes into one of the basic MessagePack types, the best way to do this is to implement the CanBePacked interface in the class. A good example of such a class is the Map type class that comes with the library. This type is useful when you want to explicitly specify that a given PHP array should be packed as a MessagePack map without triggering an automatic type detection routine:

$packer = new Packer();

$packedMap = $packer->pack(new Map([1, 2, 3]));
$packedArray = $packer->pack([1, 2, 3]);

More type examples can be found in the src/Type directory.

Type transformers

As with type objects, type transformers are only responsible for serializing values. They should be used when you need to serialize a value that does not implement the CanBePacked interface. Examples of such values could be instances of built-in or third-party classes that you don't own, or non-objects such as resources.

A transformer class must implement the CanPack interface. To use a transformer, it must first be registered in the packer. Here is an example of how to serialize PHP streams into the MessagePack bin format type using one of the supplied transformers, StreamTransformer:

$packer = new Packer(null, [new StreamTransformer()]);

$packedBin = $packer->pack(fopen('/path/to/file', 'r+'));

More type transformer examples can be found in the src/TypeTransformer directory.

Extensions

In contrast to the cases described above, extensions are intended to handle extension types and are responsible for both serialization and deserialization of values (types).

An extension class must implement the Extension interface. To use an extension, it must first be registered in the packer and the unpacker.

The MessagePack specification divides extension types into two groups: predefined and application-specific. Currently, there is only one predefined type in the specification, Timestamp.

Timestamp

The Timestamp extension type is a predefined type. Support for this type in the library is done through the TimestampExtension class. This class is responsible for handling Timestamp objects, which represent the number of seconds and optional adjustment in nanoseconds:

$timestampExtension = new TimestampExtension();

$packer = new Packer();
$packer = $packer->extendWith($timestampExtension);

$unpacker = new BufferUnpacker();
$unpacker = $unpacker->extendWith($timestampExtension);

$packedTimestamp = $packer->pack(Timestamp::now());
$timestamp = $unpacker->reset($packedTimestamp)->unpack();

$seconds = $timestamp->getSeconds();
$nanoseconds = $timestamp->getNanoseconds();

When using the MessagePack class, the Timestamp extension is already registered:

$packedTimestamp = MessagePack::pack(Timestamp::now());
$timestamp = MessagePack::unpack($packedTimestamp);

Application-specific extensions

In addition, the format can be extended with your own types. For example, to make the built-in PHP DateTime objects first-class citizens in your code, you can create a corresponding extension, as shown in the example. Please note, that custom extensions have to be registered with a unique extension ID (an integer from 0 to 127).

More extension examples can be found in the examples/MessagePack directory.

To learn more about how extension types can be useful, check out this article.

Exceptions

If an error occurs during packing/unpacking, a PackingFailedException or an UnpackingFailedException will be thrown, respectively. In addition, an InsufficientDataException can be thrown during unpacking.

An InvalidOptionException will be thrown in case an invalid option (or a combination of mutually exclusive options) is used.

Tests

Run tests as follows:

vendor/bin/phpunit

Also, if you already have Docker installed, you can run the tests in a docker container. First, create a container:

./dockerfile.sh | docker build -t msgpack -

The command above will create a container named msgpack with PHP 8.1 runtime. You may change the default runtime by defining the PHP_IMAGE environment variable:

PHP_IMAGE='php:8.0-cli' ./dockerfile.sh | docker build -t msgpack -

See a list of various images here.

Then run the unit tests:

docker run --rm -v $PWD:/msgpack -w /msgpack msgpack

Fuzzing

To ensure that the unpacking works correctly with malformed/semi-malformed data, you can use a testing technique called Fuzzing. The library ships with a help file (target) for PHP-Fuzzer and can be used as follows:

php-fuzzer fuzz tests/fuzz_buffer_unpacker.php

Performance

To check performance, run:

php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

=============================================
Test/Target            Packer  BufferUnpacker
---------------------------------------------
nil .................. 0.0030 ........ 0.0139
false ................ 0.0037 ........ 0.0144
true ................. 0.0040 ........ 0.0137
7-bit uint #1 ........ 0.0052 ........ 0.0120
7-bit uint #2 ........ 0.0059 ........ 0.0114
7-bit uint #3 ........ 0.0061 ........ 0.0119
5-bit sint #1 ........ 0.0067 ........ 0.0126
5-bit sint #2 ........ 0.0064 ........ 0.0132
5-bit sint #3 ........ 0.0066 ........ 0.0135
8-bit uint #1 ........ 0.0078 ........ 0.0200
8-bit uint #2 ........ 0.0077 ........ 0.0212
8-bit uint #3 ........ 0.0086 ........ 0.0203
16-bit uint #1 ....... 0.0111 ........ 0.0271
16-bit uint #2 ....... 0.0115 ........ 0.0260
16-bit uint #3 ....... 0.0103 ........ 0.0273
32-bit uint #1 ....... 0.0116 ........ 0.0326
32-bit uint #2 ....... 0.0118 ........ 0.0332
32-bit uint #3 ....... 0.0127 ........ 0.0325
64-bit uint #1 ....... 0.0140 ........ 0.0277
64-bit uint #2 ....... 0.0134 ........ 0.0294
64-bit uint #3 ....... 0.0134 ........ 0.0281
8-bit int #1 ......... 0.0086 ........ 0.0241
8-bit int #2 ......... 0.0089 ........ 0.0225
8-bit int #3 ......... 0.0085 ........ 0.0229
16-bit int #1 ........ 0.0118 ........ 0.0280
16-bit int #2 ........ 0.0121 ........ 0.0270
16-bit int #3 ........ 0.0109 ........ 0.0274
32-bit int #1 ........ 0.0128 ........ 0.0346
32-bit int #2 ........ 0.0118 ........ 0.0339
32-bit int #3 ........ 0.0135 ........ 0.0368
64-bit int #1 ........ 0.0138 ........ 0.0276
64-bit int #2 ........ 0.0132 ........ 0.0286
64-bit int #3 ........ 0.0137 ........ 0.0274
64-bit int #4 ........ 0.0180 ........ 0.0285
64-bit float #1 ...... 0.0134 ........ 0.0284
64-bit float #2 ...... 0.0125 ........ 0.0275
64-bit float #3 ...... 0.0126 ........ 0.0283
fix string #1 ........ 0.0035 ........ 0.0133
fix string #2 ........ 0.0094 ........ 0.0216
fix string #3 ........ 0.0094 ........ 0.0222
fix string #4 ........ 0.0091 ........ 0.0241
8-bit string #1 ...... 0.0122 ........ 0.0301
8-bit string #2 ...... 0.0118 ........ 0.0304
8-bit string #3 ...... 0.0119 ........ 0.0315
16-bit string #1 ..... 0.0150 ........ 0.0388
16-bit string #2 ..... 0.1545 ........ 0.1665
32-bit string ........ 0.1570 ........ 0.1756
wide char string #1 .. 0.0091 ........ 0.0236
wide char string #2 .. 0.0122 ........ 0.0313
8-bit binary #1 ...... 0.0100 ........ 0.0302
8-bit binary #2 ...... 0.0123 ........ 0.0324
8-bit binary #3 ...... 0.0126 ........ 0.0327
16-bit binary ........ 0.0168 ........ 0.0372
32-bit binary ........ 0.1588 ........ 0.1754
fix array #1 ......... 0.0042 ........ 0.0131
fix array #2 ......... 0.0294 ........ 0.0367
fix array #3 ......... 0.0412 ........ 0.0472
16-bit array #1 ...... 0.1378 ........ 0.1596
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.1865 ........ 0.2283
fix map #1 ........... 0.0725 ........ 0.1048
fix map #2 ........... 0.0319 ........ 0.0405
fix map #3 ........... 0.0356 ........ 0.0665
fix map #4 ........... 0.0465 ........ 0.0497
16-bit map #1 ........ 0.2540 ........ 0.3028
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.2372 ........ 0.2710
fixext 1 ............. 0.0283 ........ 0.0358
fixext 2 ............. 0.0291 ........ 0.0371
fixext 4 ............. 0.0302 ........ 0.0355
fixext 8 ............. 0.0288 ........ 0.0384
fixext 16 ............ 0.0293 ........ 0.0359
8-bit ext ............ 0.0302 ........ 0.0439
16-bit ext ........... 0.0334 ........ 0.0499
32-bit ext ........... 0.1845 ........ 0.1888
32-bit timestamp #1 .. 0.0337 ........ 0.0547
32-bit timestamp #2 .. 0.0335 ........ 0.0560
64-bit timestamp #1 .. 0.0371 ........ 0.0575
64-bit timestamp #2 .. 0.0374 ........ 0.0542
64-bit timestamp #3 .. 0.0356 ........ 0.0533
96-bit timestamp #1 .. 0.0362 ........ 0.0699
96-bit timestamp #2 .. 0.0381 ........ 0.0701
96-bit timestamp #3 .. 0.0367 ........ 0.0687
=============================================
Total                  2.7618          4.0820
Skipped                     4               4
Failed                      0               0
Ignored                     0               0

With JIT:

php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

=============================================
Test/Target            Packer  BufferUnpacker
---------------------------------------------
nil .................. 0.0005 ........ 0.0054
false ................ 0.0004 ........ 0.0059
true ................. 0.0004 ........ 0.0059
7-bit uint #1 ........ 0.0010 ........ 0.0047
7-bit uint #2 ........ 0.0010 ........ 0.0046
7-bit uint #3 ........ 0.0010 ........ 0.0046
5-bit sint #1 ........ 0.0025 ........ 0.0046
5-bit sint #2 ........ 0.0023 ........ 0.0046
5-bit sint #3 ........ 0.0024 ........ 0.0045
8-bit uint #1 ........ 0.0043 ........ 0.0081
8-bit uint #2 ........ 0.0043 ........ 0.0079
8-bit uint #3 ........ 0.0041 ........ 0.0080
16-bit uint #1 ....... 0.0064 ........ 0.0095
16-bit uint #2 ....... 0.0064 ........ 0.0091
16-bit uint #3 ....... 0.0064 ........ 0.0094
32-bit uint #1 ....... 0.0085 ........ 0.0114
32-bit uint #2 ....... 0.0077 ........ 0.0122
32-bit uint #3 ....... 0.0077 ........ 0.0120
64-bit uint #1 ....... 0.0085 ........ 0.0159
64-bit uint #2 ....... 0.0086 ........ 0.0157
64-bit uint #3 ....... 0.0086 ........ 0.0158
8-bit int #1 ......... 0.0042 ........ 0.0080
8-bit int #2 ......... 0.0042 ........ 0.0080
8-bit int #3 ......... 0.0042 ........ 0.0081
16-bit int #1 ........ 0.0065 ........ 0.0095
16-bit int #2 ........ 0.0065 ........ 0.0090
16-bit int #3 ........ 0.0056 ........ 0.0085
32-bit int #1 ........ 0.0067 ........ 0.0107
32-bit int #2 ........ 0.0066 ........ 0.0106
32-bit int #3 ........ 0.0063 ........ 0.0104
64-bit int #1 ........ 0.0072 ........ 0.0162
64-bit int #2 ........ 0.0073 ........ 0.0174
64-bit int #3 ........ 0.0072 ........ 0.0164
64-bit int #4 ........ 0.0077 ........ 0.0161
64-bit float #1 ...... 0.0053 ........ 0.0135
64-bit float #2 ...... 0.0053 ........ 0.0135
64-bit float #3 ...... 0.0052 ........ 0.0135
fix string #1 ....... -0.0002 ........ 0.0044
fix string #2 ........ 0.0035 ........ 0.0067
fix string #3 ........ 0.0035 ........ 0.0077
fix string #4 ........ 0.0033 ........ 0.0078
8-bit string #1 ...... 0.0059 ........ 0.0110
8-bit string #2 ...... 0.0063 ........ 0.0121
8-bit string #3 ...... 0.0064 ........ 0.0124
16-bit string #1 ..... 0.0099 ........ 0.0146
16-bit string #2 ..... 0.1522 ........ 0.1474
32-bit string ........ 0.1511 ........ 0.1483
wide char string #1 .. 0.0039 ........ 0.0084
wide char string #2 .. 0.0073 ........ 0.0123
8-bit binary #1 ...... 0.0040 ........ 0.0112
8-bit binary #2 ...... 0.0075 ........ 0.0123
8-bit binary #3 ...... 0.0077 ........ 0.0129
16-bit binary ........ 0.0096 ........ 0.0145
32-bit binary ........ 0.1535 ........ 0.1479
fix array #1 ......... 0.0008 ........ 0.0061
fix array #2 ......... 0.0121 ........ 0.0165
fix array #3 ......... 0.0193 ........ 0.0222
16-bit array #1 ...... 0.0607 ........ 0.0479
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.0749 ........ 0.0824
fix map #1 ........... 0.0329 ........ 0.0431
fix map #2 ........... 0.0161 ........ 0.0189
fix map #3 ........... 0.0205 ........ 0.0262
fix map #4 ........... 0.0252 ........ 0.0205
16-bit map #1 ........ 0.1016 ........ 0.0927
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.1096 ........ 0.1030
fixext 1 ............. 0.0157 ........ 0.0161
fixext 2 ............. 0.0175 ........ 0.0183
fixext 4 ............. 0.0156 ........ 0.0185
fixext 8 ............. 0.0163 ........ 0.0184
fixext 16 ............ 0.0164 ........ 0.0182
8-bit ext ............ 0.0158 ........ 0.0207
16-bit ext ........... 0.0203 ........ 0.0219
32-bit ext ........... 0.1614 ........ 0.1539
32-bit timestamp #1 .. 0.0195 ........ 0.0249
32-bit timestamp #2 .. 0.0188 ........ 0.0260
64-bit timestamp #1 .. 0.0207 ........ 0.0281
64-bit timestamp #2 .. 0.0212 ........ 0.0291
64-bit timestamp #3 .. 0.0207 ........ 0.0295
96-bit timestamp #1 .. 0.0222 ........ 0.0358
96-bit timestamp #2 .. 0.0228 ........ 0.0353
96-bit timestamp #3 .. 0.0210 ........ 0.0319
=============================================
Total                  1.6432          1.9674
Skipped                     4               4
Failed                      0               0
Ignored                     0               0

You may change default benchmark settings by defining the following environment variables:

NameDefault
MP_BENCH_TARGETSpure_p,pure_u, see a list of available targets
MP_BENCH_ITERATIONS100_000
MP_BENCH_DURATIONnot set
MP_BENCH_ROUNDS3
MP_BENCH_TESTS-@slow, see a list of available tests

For example:

export MP_BENCH_TARGETS=pure_p
export MP_BENCH_ITERATIONS=1000000
export MP_BENCH_ROUNDS=5
# a comma separated list of test names
export MP_BENCH_TESTS='complex array, complex map'
# or a group name
# export MP_BENCH_TESTS='-@slow' // @pecl_comp
# or a regexp
# export MP_BENCH_TESTS='/complex (array|map)/'

Another example, benchmarking both the library and the PECL extension:

MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

===========================================================================
Test/Target            Packer  BufferUnpacker  msgpack_pack  msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0031 ........ 0.0141 ...... 0.0055 ........ 0.0064
false ................ 0.0039 ........ 0.0154 ...... 0.0056 ........ 0.0053
true ................. 0.0038 ........ 0.0139 ...... 0.0056 ........ 0.0044
7-bit uint #1 ........ 0.0061 ........ 0.0110 ...... 0.0059 ........ 0.0046
7-bit uint #2 ........ 0.0065 ........ 0.0119 ...... 0.0042 ........ 0.0029
7-bit uint #3 ........ 0.0054 ........ 0.0117 ...... 0.0045 ........ 0.0025
5-bit sint #1 ........ 0.0047 ........ 0.0103 ...... 0.0038 ........ 0.0022
5-bit sint #2 ........ 0.0048 ........ 0.0117 ...... 0.0038 ........ 0.0022
5-bit sint #3 ........ 0.0046 ........ 0.0102 ...... 0.0038 ........ 0.0023
8-bit uint #1 ........ 0.0063 ........ 0.0174 ...... 0.0039 ........ 0.0031
8-bit uint #2 ........ 0.0063 ........ 0.0167 ...... 0.0040 ........ 0.0029
8-bit uint #3 ........ 0.0063 ........ 0.0168 ...... 0.0039 ........ 0.0030
16-bit uint #1 ....... 0.0092 ........ 0.0222 ...... 0.0049 ........ 0.0030
16-bit uint #2 ....... 0.0096 ........ 0.0227 ...... 0.0042 ........ 0.0046
16-bit uint #3 ....... 0.0123 ........ 0.0274 ...... 0.0059 ........ 0.0051
32-bit uint #1 ....... 0.0136 ........ 0.0331 ...... 0.0060 ........ 0.0048
32-bit uint #2 ....... 0.0130 ........ 0.0336 ...... 0.0070 ........ 0.0048
32-bit uint #3 ....... 0.0127 ........ 0.0329 ...... 0.0051 ........ 0.0048
64-bit uint #1 ....... 0.0126 ........ 0.0268 ...... 0.0055 ........ 0.0049
64-bit uint #2 ....... 0.0135 ........ 0.0281 ...... 0.0052 ........ 0.0046
64-bit uint #3 ....... 0.0131 ........ 0.0274 ...... 0.0069 ........ 0.0044
8-bit int #1 ......... 0.0077 ........ 0.0236 ...... 0.0058 ........ 0.0044
8-bit int #2 ......... 0.0087 ........ 0.0244 ...... 0.0058 ........ 0.0048
8-bit int #3 ......... 0.0084 ........ 0.0241 ...... 0.0055 ........ 0.0049
16-bit int #1 ........ 0.0112 ........ 0.0271 ...... 0.0048 ........ 0.0045
16-bit int #2 ........ 0.0124 ........ 0.0292 ...... 0.0057 ........ 0.0049
16-bit int #3 ........ 0.0118 ........ 0.0270 ...... 0.0058 ........ 0.0050
32-bit int #1 ........ 0.0137 ........ 0.0366 ...... 0.0058 ........ 0.0051
32-bit int #2 ........ 0.0133 ........ 0.0366 ...... 0.0056 ........ 0.0049
32-bit int #3 ........ 0.0129 ........ 0.0350 ...... 0.0052 ........ 0.0048
64-bit int #1 ........ 0.0145 ........ 0.0254 ...... 0.0034 ........ 0.0025
64-bit int #2 ........ 0.0097 ........ 0.0214 ...... 0.0034 ........ 0.0025
64-bit int #3 ........ 0.0096 ........ 0.0287 ...... 0.0059 ........ 0.0050
64-bit int #4 ........ 0.0143 ........ 0.0277 ...... 0.0059 ........ 0.0046
64-bit float #1 ...... 0.0134 ........ 0.0281 ...... 0.0057 ........ 0.0052
64-bit float #2 ...... 0.0141 ........ 0.0281 ...... 0.0057 ........ 0.0050
64-bit float #3 ...... 0.0144 ........ 0.0282 ...... 0.0057 ........ 0.0050
fix string #1 ........ 0.0036 ........ 0.0143 ...... 0.0066 ........ 0.0053
fix string #2 ........ 0.0107 ........ 0.0222 ...... 0.0065 ........ 0.0068
fix string #3 ........ 0.0116 ........ 0.0245 ...... 0.0063 ........ 0.0069
fix string #4 ........ 0.0105 ........ 0.0253 ...... 0.0083 ........ 0.0077
8-bit string #1 ...... 0.0126 ........ 0.0318 ...... 0.0075 ........ 0.0088
8-bit string #2 ...... 0.0121 ........ 0.0295 ...... 0.0076 ........ 0.0086
8-bit string #3 ...... 0.0125 ........ 0.0293 ...... 0.0130 ........ 0.0093
16-bit string #1 ..... 0.0159 ........ 0.0368 ...... 0.0117 ........ 0.0086
16-bit string #2 ..... 0.1547 ........ 0.1686 ...... 0.1516 ........ 0.1373
32-bit string ........ 0.1558 ........ 0.1729 ...... 0.1511 ........ 0.1396
wide char string #1 .. 0.0098 ........ 0.0237 ...... 0.0066 ........ 0.0065
wide char string #2 .. 0.0128 ........ 0.0291 ...... 0.0061 ........ 0.0082
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0040 ........ 0.0129 ...... 0.0120 ........ 0.0058
fix array #2 ......... 0.0279 ........ 0.0390 ...... 0.0143 ........ 0.0165
fix array #3 ......... 0.0415 ........ 0.0463 ...... 0.0162 ........ 0.0187
16-bit array #1 ...... 0.1349 ........ 0.1628 ...... 0.0334 ........ 0.0341
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0345 ........ 0.0391 ...... 0.0143 ........ 0.0168
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0459 ........ 0.0473 ...... 0.0151 ........ 0.0163
16-bit map #1 ........ 0.2518 ........ 0.2962 ...... 0.0400 ........ 0.0490
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.2380 ........ 0.2682 ...... 0.0545 ........ 0.0579
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total                  1.5625          2.3866        0.7735          0.7243
Skipped                     4               4             4               4
Failed                      0               0            24              17
Ignored                    24              24             0               7

With JIT:

MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

===========================================================================
Test/Target            Packer  BufferUnpacker  msgpack_pack  msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0001 ........ 0.0052 ...... 0.0053 ........ 0.0042
false ................ 0.0007 ........ 0.0060 ...... 0.0057 ........ 0.0043
true ................. 0.0008 ........ 0.0060 ...... 0.0056 ........ 0.0041
7-bit uint #1 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0041
7-bit uint #2 ........ 0.0021 ........ 0.0043 ...... 0.0062 ........ 0.0041
7-bit uint #3 ........ 0.0022 ........ 0.0044 ...... 0.0061 ........ 0.0040
5-bit sint #1 ........ 0.0030 ........ 0.0048 ...... 0.0062 ........ 0.0040
5-bit sint #2 ........ 0.0032 ........ 0.0046 ...... 0.0062 ........ 0.0040
5-bit sint #3 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0040
8-bit uint #1 ........ 0.0054 ........ 0.0079 ...... 0.0062 ........ 0.0050
8-bit uint #2 ........ 0.0051 ........ 0.0079 ...... 0.0064 ........ 0.0044
8-bit uint #3 ........ 0.0051 ........ 0.0082 ...... 0.0062 ........ 0.0044
16-bit uint #1 ....... 0.0077 ........ 0.0094 ...... 0.0065 ........ 0.0045
16-bit uint #2 ....... 0.0077 ........ 0.0094 ...... 0.0063 ........ 0.0045
16-bit uint #3 ....... 0.0077 ........ 0.0095 ...... 0.0064 ........ 0.0047
32-bit uint #1 ....... 0.0088 ........ 0.0119 ...... 0.0063 ........ 0.0043
32-bit uint #2 ....... 0.0089 ........ 0.0117 ...... 0.0062 ........ 0.0039
32-bit uint #3 ....... 0.0089 ........ 0.0118 ...... 0.0063 ........ 0.0044
64-bit uint #1 ....... 0.0097 ........ 0.0155 ...... 0.0063 ........ 0.0045
64-bit uint #2 ....... 0.0095 ........ 0.0153 ...... 0.0061 ........ 0.0045
64-bit uint #3 ....... 0.0096 ........ 0.0156 ...... 0.0063 ........ 0.0047
8-bit int #1 ......... 0.0053 ........ 0.0083 ...... 0.0062 ........ 0.0044
8-bit int #2 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0044
8-bit int #3 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0043
16-bit int #1 ........ 0.0089 ........ 0.0097 ...... 0.0069 ........ 0.0046
16-bit int #2 ........ 0.0075 ........ 0.0093 ...... 0.0063 ........ 0.0043
16-bit int #3 ........ 0.0075 ........ 0.0094 ...... 0.0062 ........ 0.0046
32-bit int #1 ........ 0.0086 ........ 0.0122 ...... 0.0063 ........ 0.0044
32-bit int #2 ........ 0.0087 ........ 0.0120 ...... 0.0066 ........ 0.0046
32-bit int #3 ........ 0.0086 ........ 0.0121 ...... 0.0060 ........ 0.0044
64-bit int #1 ........ 0.0096 ........ 0.0149 ...... 0.0060 ........ 0.0045
64-bit int #2 ........ 0.0096 ........ 0.0157 ...... 0.0062 ........ 0.0044
64-bit int #3 ........ 0.0096 ........ 0.0160 ...... 0.0063 ........ 0.0046
64-bit int #4 ........ 0.0097 ........ 0.0157 ...... 0.0061 ........ 0.0044
64-bit float #1 ...... 0.0079 ........ 0.0153 ...... 0.0056 ........ 0.0044
64-bit float #2 ...... 0.0079 ........ 0.0152 ...... 0.0057 ........ 0.0045
64-bit float #3 ...... 0.0079 ........ 0.0155 ...... 0.0057 ........ 0.0044
fix string #1 ........ 0.0010 ........ 0.0045 ...... 0.0071 ........ 0.0044
fix string #2 ........ 0.0048 ........ 0.0075 ...... 0.0070 ........ 0.0060
fix string #3 ........ 0.0048 ........ 0.0086 ...... 0.0068 ........ 0.0060
fix string #4 ........ 0.0050 ........ 0.0088 ...... 0.0070 ........ 0.0059
8-bit string #1 ...... 0.0081 ........ 0.0129 ...... 0.0069 ........ 0.0062
8-bit string #2 ...... 0.0086 ........ 0.0128 ...... 0.0069 ........ 0.0065
8-bit string #3 ...... 0.0086 ........ 0.0126 ...... 0.0115 ........ 0.0065
16-bit string #1 ..... 0.0105 ........ 0.0137 ...... 0.0128 ........ 0.0068
16-bit string #2 ..... 0.1510 ........ 0.1486 ...... 0.1526 ........ 0.1391
32-bit string ........ 0.1517 ........ 0.1475 ...... 0.1504 ........ 0.1370
wide char string #1 .. 0.0044 ........ 0.0085 ...... 0.0067 ........ 0.0057
wide char string #2 .. 0.0081 ........ 0.0125 ...... 0.0069 ........ 0.0063
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0014 ........ 0.0059 ...... 0.0132 ........ 0.0055
fix array #2 ......... 0.0146 ........ 0.0156 ...... 0.0155 ........ 0.0148
fix array #3 ......... 0.0211 ........ 0.0229 ...... 0.0179 ........ 0.0180
16-bit array #1 ...... 0.0673 ........ 0.0498 ...... 0.0343 ........ 0.0388
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0148 ........ 0.0180 ...... 0.0156 ........ 0.0179
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0252 ........ 0.0201 ...... 0.0214 ........ 0.0167
16-bit map #1 ........ 0.1027 ........ 0.0836 ...... 0.0388 ........ 0.0510
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.1104 ........ 0.1010 ...... 0.0556 ........ 0.0602
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total                  0.9642          1.0909        0.8224          0.7213
Skipped                     4               4             4               4
Failed                      0               0            24              17
Ignored                    24              24             0               7

Note that the msgpack extension (v2.1.2) doesn't support ext, bin and UTF-8 str types.

License

The library is released under the MIT License. See the bundled LICENSE file for details.

Author: rybakit
Source Code: https://github.com/rybakit/msgpack.php
License: MIT License

#php 

John  Smith

John Smith

1657107416

Find the Best Restaurant Mobile App Development Company in Abu Dhbai

The era of mobile app development has completely changed the scenario for businesses in regions like Abu Dhabi. Restaurants and food delivery businesses are experiencing huge benefits via smart business applications. The invention and development of the food ordering app have helped all-scale businesses reach new customers and boost sales and profit. 

As a result, many business owners are searching for the best restaurant mobile app development company in Abu Dhabi. If you are also searching for the same, this article is helpful for you. It will let you know the step-by-step process to hire the right team of restaurant mobile app developers. 

Step-by-Step Process to Find the Best Restaurant App Development Company

Searching for the top mobile app development company in Abu Dhabi? Don't know the best way to search for professionals? Don't panic! Here is the step-by-step process to hire the best professionals. 

#Step 1 – Know the Company's Culture

Knowing the organization's culture is very crucial before finalizing a food ordering app development company in Abu Dhabi. An organization's personality is shaped by its common beliefs, goals, practices, or company culture. So, digging into the company culture reveals the core beliefs of the organization, its objectives, and its development team. 

Now, you might be wondering, how will you identify the company's culture? Well, you can take reference from the following sources – 

  • Social media posts 
  • App development process
  • About us Page
  • Client testimonials

#Step 2 - Refer to Clients' Reviews

Another best way to choose the On-demand app development firm for your restaurant business is to refer to the clients' reviews. Reviews are frequently available on the organization's website with a tag of "Reviews" or "Testimonials." It's important to read the reviews as they will help you determine how happy customers are with the company's app development process. 

You can also assess a company's abilities through reviews and customer testimonials. They can let you know if the mobile app developers create a valuable app or not. 

#Step 3 – Analyze the App Development Process

Regardless of the company's size or scope, adhering to the restaurant delivery app development process will ensure the success of your business application. Knowing the processes an app developer follows in designing and producing a top-notch app will help you know the working process. Organizations follow different app development approaches, so getting well-versed in the process is essential before finalizing any mobile app development company. 

#Step 4 – Consider Previous Experience

Besides considering other factors, considering the previous experience of the developers is a must. You can obtain a broad sense of the developer's capacity to assist you in creating a unique mobile application for a restaurant business.

You can also find out if the developers' have contributed to the creation of other successful applications or not. It will help you know the working capacity of a particular developer or organization. Prior experience is essential to evaluating their work. For instance, whether they haven't previously produced an app similar to yours or not. 

#Step 5 – Check for Their Technical Support

As you expect a working and successful restaurant mobile app for your business, checking on this factor is a must. A well-established organization is nothing without a good technical support team. So, ensure whatever restaurant mobile app development company you choose they must be well-equipped with a team of dedicated developers, designers, and testers. 

Strong tech support from your mobile app developers will help you identify new bugs and fix them bugs on time. All this will ensure the application's success. 

#Step 6 – Analyze Design Standards

Besides focusing on an organization's development, testing, and technical support, you should check the design standards. An appealing design is crucial in attracting new users and keeping the existing ones stick to your services. So, spend some time analyzing the design standards of an organization. Now, you might be wondering, how will you do it? Simple! By looking at the organization's portfolio. 

Whether hiring an iPhone app development company or any other, these steps apply to all. So, don't miss these steps. 

#Step 7 – Know Their Location

Finally, the last yet very crucial factor that will not only help you finalize the right person for your restaurant mobile app development but will also decide the mobile app development cost. So, you have to choose the location of the developers wisely, as it is a crucial factor in defining the cost. 

Summing Up!!!

Restaurant mobile applications have taken the food industry to heights none have ever considered. As a result, the demand for restaurant mobile app development companies has risen greatly, which is why businesses find it difficult to finalize the right person. But, we hope that after referring to this article, it will now be easier to hire dedicated developers under the desired budget. So, begin the hiring process now and get a well-craft food ordering app in hand. 

Dylan  Iqbal

Dylan Iqbal

1561523460

Matplotlib Cheat Sheet: Plotting in Python

This Matplotlib cheat sheet introduces you to the basics that you need to plot your data with Python and includes code samples.

Data visualization and storytelling with your data are essential skills that every data scientist needs to communicate insights gained from analyses effectively to any audience out there. 

For most beginners, the first package that they use to get in touch with data visualization and storytelling is, naturally, Matplotlib: it is a Python 2D plotting library that enables users to make publication-quality figures. But, what might be even more convincing is the fact that other packages, such as Pandas, intend to build more plotting integration with Matplotlib as time goes on.

However, what might slow down beginners is the fact that this package is pretty extensive. There is so much that you can do with it and it might be hard to still keep a structure when you're learning how to work with Matplotlib.   

DataCamp has created a Matplotlib cheat sheet for those who might already know how to use the package to their advantage to make beautiful plots in Python, but that still want to keep a one-page reference handy. Of course, for those who don't know how to work with Matplotlib, this might be the extra push be convinced and to finally get started with data visualization in Python. 

You'll see that this cheat sheet presents you with the six basic steps that you can go through to make beautiful plots. 

Check out the infographic by clicking on the button below:

Python Matplotlib cheat sheet

With this handy reference, you'll familiarize yourself in no time with the basics of Matplotlib: you'll learn how you can prepare your data, create a new plot, use some basic plotting routines to your advantage, add customizations to your plots, and save, show and close the plots that you make.

What might have looked difficult before will definitely be more clear once you start using this cheat sheet! Use it in combination with the Matplotlib Gallery, the documentation.

Matplotlib 

Matplotlib is a Python 2D plotting library which produces publication-quality figures in a variety of hardcopy formats and interactive environments across platforms.

Prepare the Data 

1D Data 

>>> import numpy as np
>>> x = np.linspace(0, 10, 100)
>>> y = np.cos(x)
>>> z = np.sin(x)

2D Data or Images 

>>> data = 2 * np.random.random((10, 10))
>>> data2 = 3 * np.random.random((10, 10))
>>> Y, X = np.mgrid[-3:3:100j, -3:3:100j]
>>> U = 1 X** 2 + Y
>>> V = 1 + X Y**2
>>> from matplotlib.cbook import get_sample_data
>>> img = np.load(get_sample_data('axes_grid/bivariate_normal.npy'))

Create Plot

>>> import matplotlib.pyplot as plt

Figure 

>>> fig = plt.figure()
>>> fig2 = plt.figure(figsize=plt.figaspect(2.0))

Axes 

>>> fig.add_axes()
>>> ax1 = fig.add_subplot(221) #row-col-num
>>> ax3 = fig.add_subplot(212)
>>> fig3, axes = plt.subplots(nrows=2,ncols=2)
>>> fig4, axes2 = plt.subplots(ncols=3)

Save Plot 

>>> plt.savefig('foo.png') #Save figures
>>> plt.savefig('foo.png',  transparent=True) #Save transparent figures

Show Plot

>>> plt.show()

Plotting Routines 

1D Data 

>>> fig, ax = plt.subplots()
>>> lines = ax.plot(x,y) #Draw points with lines or markers connecting them
>>> ax.scatter(x,y) #Draw unconnected points, scaled or colored
>>> axes[0,0].bar([1,2,3],[3,4,5]) #Plot vertical rectangles (constant width)
>>> axes[1,0].barh([0.5,1,2.5],[0,1,2]) #Plot horiontal rectangles (constant height)
>>> axes[1,1].axhline(0.45) #Draw a horizontal line across axes
>>> axes[0,1].axvline(0.65) #Draw a vertical line across axes
>>> ax.fill(x,y,color='blue') #Draw filled polygons
>>> ax.fill_between(x,y,color='yellow') #Fill between y values and 0

2D Data 

>>> fig, ax = plt.subplots()
>>> im = ax.imshow(img, #Colormapped or RGB arrays
      cmap= 'gist_earth', 
      interpolation= 'nearest',
      vmin=-2,
      vmax=2)
>>> axes2[0].pcolor(data2) #Pseudocolor plot of 2D array
>>> axes2[0].pcolormesh(data) #Pseudocolor plot of 2D array
>>> CS = plt.contour(Y,X,U) #Plot contours
>>> axes2[2].contourf(data1) #Plot filled contours
>>> axes2[2]= ax.clabel(CS) #Label a contour plot

Vector Fields 

>>> axes[0,1].arrow(0,0,0.5,0.5) #Add an arrow to the axes
>>> axes[1,1].quiver(y,z) #Plot a 2D field of arrows
>>> axes[0,1].streamplot(X,Y,U,V) #Plot a 2D field of arrows

Data Distributions 

>>> ax1.hist(y) #Plot a histogram
>>> ax3.boxplot(y) #Make a box and whisker plot
>>> ax3.violinplot(z)  #Make a violin plot

Plot Anatomy & Workflow 

Plot Anatomy 

 y-axis      

                           x-axis 

Workflow 

The basic steps to creating plots with matplotlib are:

1 Prepare Data
2 Create Plot
3 Plot
4 Customized Plot
5 Save Plot
6 Show Plot

>>> import matplotlib.pyplot as plt
>>> x = [1,2,3,4]  #Step 1
>>> y = [10,20,25,30] 
>>> fig = plt.figure() #Step 2
>>> ax = fig.add_subplot(111) #Step 3
>>> ax.plot(x, y, color= 'lightblue', linewidth=3)  #Step 3, 4
>>> ax.scatter([2,4,6],
          [5,15,25],
          color= 'darkgreen',
          marker= '^' )
>>> ax.set_xlim(1, 6.5)
>>> plt.savefig('foo.png' ) #Step 5
>>> plt.show() #Step 6

Close and Clear 

>>> plt.cla()  #Clear an axis
>>> plt.clf(). #Clear the entire figure
>>> plt.close(). #Close a window

Plotting Customize Plot 

Colors, Color Bars & Color Maps 

>>> plt.plot(x, x, x, x**2, x, x** 3)
>>> ax.plot(x, y, alpha = 0.4)
>>> ax.plot(x, y, c= 'k')
>>> fig.colorbar(im, orientation= 'horizontal')
>>> im = ax.imshow(img,
            cmap= 'seismic' )

Markers 

>>> fig, ax = plt.subplots()
>>> ax.scatter(x,y,marker= ".")
>>> ax.plot(x,y,marker= "o")

Linestyles 

>>> plt.plot(x,y,linewidth=4.0)
>>> plt.plot(x,y,ls= 'solid') 
>>> plt.plot(x,y,ls= '--') 
>>> plt.plot(x,y,'--' ,x**2,y**2,'-.' ) 
>>> plt.setp(lines,color= 'r',linewidth=4.0)

Text & Annotations 

>>> ax.text(1,
           -2.1, 
           'Example Graph', 
            style= 'italic' )
>>> ax.annotate("Sine", 
xy=(8, 0),
xycoords= 'data', 
xytext=(10.5, 0),
textcoords= 'data', 
arrowprops=dict(arrowstyle= "->", 
connectionstyle="arc3"),)

Mathtext 

>>> plt.title(r '$sigma_i=15$', fontsize=20)

Limits, Legends and Layouts 

Limits & Autoscaling 

>>> ax.margins(x=0.0,y=0.1) #Add padding to a plot
>>> ax.axis('equal')  #Set the aspect ratio of the plot to 1
>>> ax.set(xlim=[0,10.5],ylim=[-1.5,1.5])  #Set limits for x-and y-axis
>>> ax.set_xlim(0,10.5) #Set limits for x-axis

Legends 

>>> ax.set(title= 'An Example Axes',  #Set a title and x-and y-axis labels
            ylabel= 'Y-Axis', 
            xlabel= 'X-Axis')
>>> ax.legend(loc= 'best')  #No overlapping plot elements

Ticks 

>>> ax.xaxis.set(ticks=range(1,5),  #Manually set x-ticks
             ticklabels=[3,100, 12,"foo" ])
>>> ax.tick_params(axis= 'y', #Make y-ticks longer and go in and out
             direction= 'inout', 
              length=10)

Subplot Spacing 

>>> fig3.subplots_adjust(wspace=0.5,   #Adjust the spacing between subplots
             hspace=0.3,
             left=0.125,
             right=0.9,
             top=0.9,
             bottom=0.1)
>>> fig.tight_layout() #Fit subplot(s) in to the figure area

Axis Spines 

>>> ax1.spines[ 'top'].set_visible(False) #Make the top axis line for a plot invisible
>>> ax1.spines['bottom' ].set_position(( 'outward',10))  #Move the bottom axis line outward

Have this Cheat Sheet at your fingertips

Original article source at https://www.datacamp.com

#matplotlib #cheatsheet #python