Laravel 7 Tutorial For Beginners - Show All Todo

Todo list mini project. In Laravel 7 tutorial for beginners we will see how to create a todo list mini project using Laravel

#laravel #php #web-development

What is GEEK

Buddha Community

Laravel 7 Tutorial For Beginners - Show All Todo
Callum Slater

Callum Slater

1653465344

PySpark Cheat Sheet: Spark DataFrames in Python

This PySpark SQL cheat sheet is your handy companion to Apache Spark DataFrames in Python and includes code samples.

You'll probably already know about Apache Spark, the fast, general and open-source engine for big data processing; It has built-in modules for streaming, SQL, machine learning and graph processing. Spark allows you to speed analytic applications up to 100 times faster compared to other technologies on the market today. Interfacing Spark with Python is easy with PySpark: this Spark Python API exposes the Spark programming model to Python. 

Now, it's time to tackle the Spark SQL module, which is meant for structured data processing, and the DataFrame API, which is not only available in Python, but also in Scala, Java, and R.

Without further ado, here's the cheat sheet:

PySpark SQL cheat sheet

This PySpark SQL cheat sheet covers the basics of working with the Apache Spark DataFrames in Python: from initializing the SparkSession to creating DataFrames, inspecting the data, handling duplicate values, querying, adding, updating or removing columns, grouping, filtering or sorting data. You'll also see that this cheat sheet also on how to run SQL Queries programmatically, how to save your data to parquet and JSON files, and how to stop your SparkSession.

Spark SGlL is Apache Spark's module for working with structured data.

Initializing SparkSession 
 

A SparkSession can be used create DataFrame, register DataFrame as tables, execute SGL over tables, cache tables, and read parquet files.

>>> from pyspark.sql import SparkSession
>>> spark a SparkSession \
     .builder\
     .appName("Python Spark SQL basic example") \
     .config("spark.some.config.option", "some-value") \
     .getOrCreate()

Creating DataFrames
 

Fromm RDDs

>>> from pyspark.sql.types import*

Infer Schema

>>> sc = spark.sparkContext
>>> lines = sc.textFile(''people.txt'')
>>> parts = lines.map(lambda l: l.split(","))
>>> people = parts.map(lambda p: Row(nameap[0],ageaint(p[l])))
>>> peopledf = spark.createDataFrame(people)

Specify Schema

>>> people = parts.map(lambda p: Row(name=p[0],
               age=int(p[1].strip())))
>>>  schemaString = "name age"
>>> fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split()]
>>> schema = StructType(fields)
>>> spark.createDataFrame(people, schema).show()

 

From Spark Data Sources
JSON

>>>  df = spark.read.json("customer.json")
>>> df.show()

>>>  df2 = spark.read.load("people.json", format="json")

Parquet files

>>> df3 = spark.read.load("users.parquet")

TXT files

>>> df4 = spark.read.text("people.txt")

Filter 

#Filter entries of age, only keep those records of which the values are >24
>>> df.filter(df["age"]>24).show()

Duplicate Values 

>>> df = df.dropDuplicates()

Queries 
 

>>> from pyspark.sql import functions as F

Select

>>> df.select("firstName").show() #Show all entries in firstName column
>>> df.select("firstName","lastName") \
      .show()
>>> df.select("firstName", #Show all entries in firstName, age and type
              "age",
              explode("phoneNumber") \
              .alias("contactInfo")) \
      .select("contactInfo.type",
              "firstName",
              "age") \
      .show()
>>> df.select(df["firstName"],df["age"]+ 1) #Show all entries in firstName and age, .show() add 1 to the entries of age
>>> df.select(df['age'] > 24).show() #Show all entries where age >24

When

>>> df.select("firstName", #Show firstName and 0 or 1 depending on age >30
               F.when(df.age > 30, 1) \
              .otherwise(0)) \
      .show()
>>> df[df.firstName.isin("Jane","Boris")] #Show firstName if in the given options
.collect()

Like 

>>> df.select("firstName", #Show firstName, and lastName is TRUE if lastName is like Smith
              df.lastName.like("Smith")) \
     .show()

Startswith - Endswith 

>>> df.select("firstName", #Show firstName, and TRUE if lastName starts with Sm
              df.lastName \
                .startswith("Sm")) \
      .show()
>>> df.select(df.lastName.endswith("th"))\ #Show last names ending in th
      .show()

Substring 

>>> df.select(df.firstName.substr(1, 3) \ #Return substrings of firstName
                          .alias("name")) \
        .collect()

Between 

>>> df.select(df.age.between(22, 24)) \ #Show age: values are TRUE if between 22 and 24
          .show()

Add, Update & Remove Columns 

Adding Columns

 >>> df = df.withColumn('city',df.address.city) \
            .withColumn('postalCode',df.address.postalCode) \
            .withColumn('state',df.address.state) \
            .withColumn('streetAddress',df.address.streetAddress) \
            .withColumn('telePhoneNumber', explode(df.phoneNumber.number)) \
            .withColumn('telePhoneType', explode(df.phoneNumber.type)) 

Updating Columns

>>> df = df.withColumnRenamed('telePhoneNumber', 'phoneNumber')

Removing Columns

  >>> df = df.drop("address", "phoneNumber")
 >>> df = df.drop(df.address).drop(df.phoneNumber)
 

Missing & Replacing Values 
 

>>> df.na.fill(50).show() #Replace null values
 >>> df.na.drop().show() #Return new df omitting rows with null values
 >>> df.na \ #Return new df replacing one value with another
       .replace(10, 20) \
       .show()

GroupBy 

>>> df.groupBy("age")\ #Group by age, count the members in the groups
      .count() \
      .show()

Sort 
 

>>> peopledf.sort(peopledf.age.desc()).collect()
>>> df.sort("age", ascending=False).collect()
>>> df.orderBy(["age","city"],ascending=[0,1])\
     .collect()

Repartitioning 

>>> df.repartition(10)\ #df with 10 partitions
      .rdd \
      .getNumPartitions()
>>> df.coalesce(1).rdd.getNumPartitions() #df with 1 partition

Running Queries Programmatically 
 

Registering DataFrames as Views

>>> peopledf.createGlobalTempView("people")
>>> df.createTempView("customer")
>>> df.createOrReplaceTempView("customer")

Query Views

>>> df5 = spark.sql("SELECT * FROM customer").show()
>>> peopledf2 = spark.sql("SELECT * FROM global_temp.people")\
               .show()

Inspect Data 
 

>>> df.dtypes #Return df column names and data types
>>> df.show() #Display the content of df
>>> df.head() #Return first n rows
>>> df.first() #Return first row
>>> df.take(2) #Return the first n rows >>> df.schema Return the schema of df
>>> df.describe().show() #Compute summary statistics >>> df.columns Return the columns of df
>>> df.count() #Count the number of rows in df
>>> df.distinct().count() #Count the number of distinct rows in df
>>> df.printSchema() #Print the schema of df
>>> df.explain() #Print the (logical and physical) plans

Output

Data Structures 
 

 >>> rdd1 = df.rdd #Convert df into an RDD
 >>> df.toJSON().first() #Convert df into a RDD of string
 >>> df.toPandas() #Return the contents of df as Pandas DataFrame

Write & Save to Files 

>>> df.select("firstName", "city")\
       .write \
       .save("nameAndCity.parquet")
 >>> df.select("firstName", "age") \
       .write \
       .save("namesAndAges.json",format="json")

Stopping SparkSession 

>>> spark.stop()

Have this Cheat Sheet at your fingertips

Original article source at https://www.datacamp.com

#pyspark #cheatsheet #spark #dataframes #python #bigdata

I am Developer

1617089618

Laravel 8 Tutorial for Beginners

Hello everyone! I just updated this tutorial for Laravel 8. In this tutorial, we’ll go through the basics of the Laravel framework by building a simple blogging system. Note that this tutorial is only for beginners who are interested in web development but don’t know where to start. Check it out if you are interested: Laravel Tutorial For Beginners

Laravel is a very powerful framework that follows the MVC structure. It is designed for web developers who need a simple, elegant yet powerful toolkit to build a fully-featured website.

Recommended:-Laravel Try Catch

#laravel 8 tutorial #laravel 8 tutorial crud #laravel 8 tutorial point #laravel 8 auth tutorial #laravel 8 project example #laravel 8 tutorial for beginners

I am Developer

1609729452

Laravel 8 Tutorial For Beginners Step by Step

Recommended:- Laravel Try Catch

#laravel #laravel 8 tutoral #laravel 8 tutorial for beginners #laravel 8 tutorial for beginners step by step #laravel 8 tutorial from scratch

Marcelo Kapi

1588841272

Laravel 7 Tutorial for Beginner: Create your First To-Do App

In this Laravel tutorial, we will learn how to install laravel and how to create your first app in laravel for beginners. Now you can learn laravel easily without the need of watching laravel video series or laravel video tutorials. This laravel tutorial will explain all the necessary concepts in easy language for you to learn laravel easily and understand it better.

#Laravel #laravel tutorial #laravel tutorial for beginner #learn laravel #learn laravel for free

I am Developer

1605329413

Laravel 8 Tutorial For Beginners

In this tutorial, i will provide you some useful tutorial of laravel 8 version. So, you can learn laravel 8 an easy way.

Recommended:- Laravel Eloquent whereRaw Query Example
Recommended:- How to Get Random Records in Laravel
Recommended:- Laravel InsertOrIgnore Example
Recommended:- Laravel whereIn, whereNotIn With SubQuery Example
Recommended:- Laravel Where Null and Where Not Null Query
Recommended:- Laravel Group by Example
Recommended:- Laravel Order by Example
Recommended:- Laravel 8 Joins Example Tutorial
Recommended:- Laravel 8 – Form Validation Example
Recommended:- Laravel 8 Ajax Post Form Data With Validation
Recommended:- Laravel 8 Flash Message Example Tutorial
Recommended:- Laravel 8 Auth Scaffolding using Jetstream
Recommended:- Laravel 8 Autocomplete Search from Database Tutorial
Recommended:- How to Create Controller, Model in Laravel 8 using cmd
Recommended:- How to Use Helper Function in Laravel 8
Recommended:- Laravel 8 Send Mail using Queue Tutorial
Recommended:- Laravel 8 Google Recaptcha V3 Example
Recommended:- Laravel 8 QR Code Generator Tutorial Example
Recommended:- Laravel 8 Image Upload Tutorial
Recommended:- Laravel 8 Ajax Image Upload with Preview Tutorial
Recommended:- Laravel 8 Ajax Multiple Image Upload Tutorial
Recommended:- Laravel 8 FullCalendar Ajax Tutorial Example
Recommended:- Laravel 8 Livewire File Upload Tutorial Example
Recommended:- Laravel 8 Login with Linkedin Example Tutorial
Recommended:- Laravel 8 Multi Auth (Authentication) Tutorial
Recommended:- Laravel 8 Rest API with Passport Tutorial
Recommended:- Laravel 8 JWT Rest API Authentication Example Tutorial
Recommended:- Laravel 8 Datatables with Relationship Tutorial Example
Recommended:- Laravel 8 Joins Example Tutorial
Recommended:- Laravel 8 Summernote Image Upload Tutorial Example
Recommended:- Laravel 8 Crop Image Before Upload using Cropper JS
Recommended:- Laravel 8 – Dynamically Multiple Add or Remove Input Fields using jQuery
Recommended:- Laravel 8 PHP Guzzle Http Client GET & POST Example
Recommended:- Laravel 8 Livewire Datatables Tutorial Example
Recommended:- Laravel 8 Google Chart Tutorial Example
Recommended:- Laravel 8 Generate Fake Data
Recommended:- Laravel 8 Livewire Load More OnScroll Tutorial Example
Recommended:- Laravel 8 Dynamic Dependent Dropdown using Ajax
Recommended:- Laravel 8 Auto Load More Data On Page Scroll
Recommended:- Laravel 8 Simple CRUD Example Tutorial
Recommended:- Laravel 8 Rest API CRUD with Passport Auth Tutorial
Recommended:- Laravel 8 DataTable CRUD Tutorial
Recommended:- Laravel 8 Ajax CRUD Using Datatable Tutorial
Recommended:- Laravel 8 Ajax CRUD with Image Upload Tutorial
Recommended:- Laravel 8 Livewire CRUD with Jetstream Tutorial

#laravel 8 tutorial for beginners #laravel 8 tutorial for beginners step by step #laravel 8 tutorial #laravel 8 authentication tutorial