1625757660
This video covers the usage of Istio on EKS with a hands-on example provided by the Istio team. We also look at Kiali Dashboard and Jaeger for Distributed tracing.
🔗 Istio Getting Started: https://istio.io/latest/docs/setup/getting-started/
🔗AWS Primer: https://www.youtube.com/playlist?list=PLTyWtrsGknYdyi0JR7c1wsuv-Plrwrzqj
🔗 System Design Primer: https://www.youtube.com/playlist?list=PLTyWtrsGknYeX_wV9ysDuuAxvxfSBfVSI
🔗 Containers Primer: https://www.youtube.com/watch?v=yo2g_CZZWL4&list=PLTyWtrsGknYf_Oee7YOvom5Ev0F3-E2zB
🔗 Kubernetes Primer: https://www.youtube.com/playlist?list=PLTyWtrsGknYfanKF33E12LdJvl5q5PZGp
💥 Join TechPrimers Slack Community: https://bit.ly/JoinTechPrimers
💥 Telegram: https://t.me/TechPrimers
💥 TechPrimer HindSight (Blog): https://medium.com/TechPrimers
💥 Website: http://techprimers.com
💥 Slack Community: https://techprimers.slack.com
💥 Twitter: https://twitter.com/TechPrimers
💥 Facebook: http://fb.me/TechPrimers
💥 GitHub: https://github.com/TechPrimers or https://techprimers.github.io/
🎬Video Editing: FCP
🔥 Disclaimer/Policy:
The content/views/opinions posted here are solely mine and the code samples created by me are open sourced.
You are free to use the code samples in Github after forking and you can modify it for your own use.
All the videos posted here are copyrighted. You cannot re-distribute videos on this channel in other channels or platforms.
#Istio #EKS #ServiceMesh
#istio #eks #kiali #jaeger
1625757660
This video covers the usage of Istio on EKS with a hands-on example provided by the Istio team. We also look at Kiali Dashboard and Jaeger for Distributed tracing.
🔗 Istio Getting Started: https://istio.io/latest/docs/setup/getting-started/
🔗AWS Primer: https://www.youtube.com/playlist?list=PLTyWtrsGknYdyi0JR7c1wsuv-Plrwrzqj
🔗 System Design Primer: https://www.youtube.com/playlist?list=PLTyWtrsGknYeX_wV9ysDuuAxvxfSBfVSI
🔗 Containers Primer: https://www.youtube.com/watch?v=yo2g_CZZWL4&list=PLTyWtrsGknYf_Oee7YOvom5Ev0F3-E2zB
🔗 Kubernetes Primer: https://www.youtube.com/playlist?list=PLTyWtrsGknYfanKF33E12LdJvl5q5PZGp
💥 Join TechPrimers Slack Community: https://bit.ly/JoinTechPrimers
💥 Telegram: https://t.me/TechPrimers
💥 TechPrimer HindSight (Blog): https://medium.com/TechPrimers
💥 Website: http://techprimers.com
💥 Slack Community: https://techprimers.slack.com
💥 Twitter: https://twitter.com/TechPrimers
💥 Facebook: http://fb.me/TechPrimers
💥 GitHub: https://github.com/TechPrimers or https://techprimers.github.io/
🎬Video Editing: FCP
🔥 Disclaimer/Policy:
The content/views/opinions posted here are solely mine and the code samples created by me are open sourced.
You are free to use the code samples in Github after forking and you can modify it for your own use.
All the videos posted here are copyrighted. You cannot re-distribute videos on this channel in other channels or platforms.
#Istio #EKS #ServiceMesh
#istio #eks #kiali #jaeger
1656280800
This package allows users to jump to local IDE code directly from browser React component by just a simple click, which is similar to Chrome inspector but more advanced.
press hotkey (
ctrl⌃ + shift⇧ + commmand⌘ + c
), then click the HTML element you wish to inspect.
screen record gif (8M size):
npm i -D react-dev-inspector
Users need to add React component and apply webpack config before connecting your React project with 'react-dev-inspector'.
Note: You should NOT use this package, and React component, webpack config in production mode
import React from 'react'
import { Inspector, InspectParams } from 'react-dev-inspector'
const InspectorWrapper = process.env.NODE_ENV === 'development'
? Inspector
: React.Fragment
export const Layout = () => {
// ...
return (
{}}
onClickElement={(params: InspectParams) => {}}
>
...
)
}
You should add:
react-dev-inspector/plugins/babel
import { launchEditorMiddleware } from 'react-dev-inspector/plugins/webpack'
to your current project development config.
Such as add babel plugin into your .babelrc
or webpack babel-loader
config,
add api middleware into your webpack-dev-server
config or other server setup.
There are some example ways to set up, please pick the one fit your project best.
In common cases, if you're using webpack, you can see #raw-webpack-config,
If your project happen to use vite / nextjs / create-react-app and so on, you can also try out our integrated plugins / examples with
Example:
// .babelrc.js
module.exports = {
plugins: [
/**
* react-dev-inspector plugin, options docs see:
* https://github.com/zthxxx/react-dev-inspector#inspector-babel-plugin-options
*/
'react-dev-inspector/plugins/babel',
],
}
// webpack.config.ts
import type { Configuration } from 'webpack'
import { launchEditorMiddleware } from 'react-dev-inspector/plugins/webpack'
const config: Configuration = {
/**
* [server side] webpack dev server side middleware for launch IDE app
*/
devServer: {
before: (app) => {
app.use(launchEditorMiddleware)
},
},
}
example project see: https://github.com/zthxxx/react-dev-inspector/tree/master/examples/vite2
example vite.config.ts
:
import { defineConfig } from 'vite'
import { inspectorServer } from 'react-dev-inspector/plugins/vite'
export default defineConfig({
plugins: [
inspectorServer(),
],
})
use Next.js Custom Server + Customizing Babel Config
example project see: https://github.com/zthxxx/react-dev-inspector/tree/master/examples/nextjs
in server.js
, example:
...
const {
queryParserMiddleware,
launchEditorMiddleware,
} = require('react-dev-inspector/plugins/webpack')
app.prepare().then(() => {
createServer((req, res) => {
/**
* middlewares, from top to bottom
*/
const middlewares = [
/**
* react-dev-inspector configuration two middlewares for nextjs
*/
queryParserMiddleware,
launchEditorMiddleware,
/** Next.js default app handle */
(req, res) => handle(req, res),
]
const middlewarePipeline = middlewares.reduceRight(
(next, middleware) => (
() => { middleware(req, res, next) }
),
() => {},
)
middlewarePipeline()
}).listen(PORT, (err) => {
if (err) throw err
console.debug(`> Ready on http://localhost:${PORT}`)
})
})
in package.json
, example:
"scripts": {
- "dev": "next dev",
+ "dev": "node server.js",
"build": "next build"
}
in .babelrc.js
, example:
module.exports = {
plugins: [
/**
* react-dev-inspector plugin, options docs see:
* https://github.com/zthxxx/react-dev-inspector#inspector-babel-plugin-options
*/
'react-dev-inspector/plugins/babel',
],
}
cra + react-app-rewired + customize-cra example config-overrides.js
:
example project see: https://github.com/zthxxx/react-dev-inspector/tree/master/examples/cra
const { ReactInspectorPlugin } = require('react-dev-inspector/plugins/webpack')
const {
addBabelPlugin,
addWebpackPlugin,
} = require('customize-cra')
module.exports = override(
addBabelPlugin([
'react-dev-inspector/plugins/babel',
// plugin options docs see:
// https://github.com/zthxxx/react-dev-inspector#inspector-babel-plugin-options
{
excludes: [
/xxxx-want-to-ignore/,
],
},
]),
addWebpackPlugin(
new ReactInspectorPlugin(),
),
)
example project see: https://github.com/zthxxx/react-dev-inspector/tree/master/examples/umi3
Example .umirc.dev.ts
:
// https://umijs.org/config/
import { defineConfig } from 'umi'
export default defineConfig({
plugins: [
'react-dev-inspector/plugins/umi/react-inspector',
],
inspectorConfig: {
// babel plugin options docs see:
// https://github.com/zthxxx/react-dev-inspector#inspector-babel-plugin-options
excludes: [],
},
})
Example .umirc.dev.js
:
import { launchEditorMiddleware } from 'react-dev-inspector/plugins/webpack'
export default {
// ...
extraBabelPlugins: [
// plugin options docs see:
// https://github.com/zthxxx/react-dev-inspector#inspector-babel-plugin-options
'react-dev-inspector/plugins/babel',
],
/**
* And you need to set `false` to `dll` in `umi-plugin-react`,
* becase these is a umi2 bug that `dll` cannot work with `devServer.before`
*
* https://github.com/umijs/umi/issues/2599
* https://github.com/umijs/umi/issues/2161
*/
chainWebpack(config, { webpack }) {
const originBefore = config.toConfig().devServer
config.devServer.before((app, server, compiler) => {
app.use(launchEditorMiddleware)
originBefore?.before?.(app, server, compiler)
})
return config
},
}
Example build.json
:
// https://ice.work/docs/guide/basic/build
{
"plugins": [
"react-dev-inspector/plugins/ice",
]
}
checkout TS definition under react-dev-inspector/es/Inspector.d.ts
.
Property | Description | Type | Default |
---|---|---|---|
keys | inspector hotkeys supported keys see: https://github.com/jaywcjlove/hotkeys#supported-keys | string[] | ['control', 'shift', 'command', 'c'] |
disableLaunchEditor | disable editor launching (launch by default in dev Mode, but not in production mode) | boolean | false |
onHoverElement | triggered when mouse hover in inspector mode | (params: InspectParams) => void | - |
onClickElement | triggered when mouse hover in inspector mode | (params: InspectParams) => void | - |
// import type { InspectParams } from 'react-dev-inspector'
interface InspectParams {
/** hover / click event target dom element */
element: HTMLElement,
/** nearest named react component fiber for dom element */
fiber?: React.Fiber,
/** source file line / column / path info for react component */
codeInfo?: {
lineNumber: string,
columnNumber: string,
/**
* code source file relative path to dev-server cwd(current working directory)
* need use with `react-dev-inspector/plugins/babel`
*/
relativePath?: string,
/**
* code source file absolute path
* just need use with `@babel/plugin-transform-react-jsx-source` which auto set by most framework
*/
absolutePath?: string,
},
/** react component name for dom element */
name?: string,
}
interface InspectorPluginOptions {
/** override process.cwd() */
cwd?: string,
/** patterns to exclude matched files */
excludes?: (string | RegExp)[],
}
// import type { ParserPlugin, ParserOptions } from '@babel/parser'
// import type { InspectorConfig } from 'react-dev-inspector/plugins/webpack'
interface InspectorConfig {
/** patterns to exclude matched files */
excludes?: (string | RegExp)[],
/**
* add extra plugins for babel parser
* default is ['typescript', 'jsx', 'decorators-legacy', 'classProperties']
*/
babelPlugins?: ParserPlugin[],
/** extra babel parser options */
babelOptions?: ParserOptions,
}
This package uses react-dev-utils
to launch your local IDE application, but, which one will be open?
In fact, it uses an environment variable named REACT_EDITOR
to specify an IDE application, but if you do not set this variable, it will try to open a common IDE that you have open or installed once it is certified.
For example, if you want it always open VSCode when inspection clicked, set export REACT_EDITOR=code
in your shell.
install VSCode command line tools, see the official docs
set env to shell, like .bashrc
or .zshrc
export REACT_EDITOR=code
.bashrc
or .zshrc
(only MacOS)export REACT_EDITOR='/Applications/WebStorm.app/Contents/MacOS/webstorm'
OR
install WebStorm command line tools
then set env to shell, like .bashrc
or .zshrc
export REACT_EDITOR=webstorm
Yes! you can also use vim if you want, just set env to shell
export REACT_EDITOR=vim
Stage 1 - Compile Time
Stage 2 - Web React Runtime
[React component] Inspector
Component in react, for listen hotkeys, and request api to dev-server for open IDE.
Specific, when you click a component DOM, the Inspector
will try to obtain its source file info (path/line/column), then request launch-editor api (in stage 3) with absolute file path.
Stage 3 - Dev-server Side
[middleware] setup launchEditorMiddleware
in webpack dev-server (or other dev-server), to open file in IDE according to the request params.
Only need in development mode,and you want to open IDE when click a component element.
Not need in prod mode, or you just want inspect dom without open IDE (set disableLaunchEditor={true}
to Inspector component props)
Author: zthxxx
Source code: https://github.com/zthxxx/react-dev-inspector
License: MIT license
1598169240
Over the last 10 years, the rapid adoption of microservices architecture has resulted in enterprises with hundreds or (sometimes even thousands) of services. With the growth of containerization technologies like Docker and Kubernetes, microservice patterns have seen the strongest growth; resulting in a complex dependency matrix between these micro-services. For teams to monitor, support, and to maintain these services is becoming a challenge so most enterprises have invested in some kind of microservices management tool.
This article will explore some of the common aspects of microservice management. Then we’ll take a closer look at the centralized gateway pattern, as well as its limitations (most enterprises have started with or currently still use this pattern). Then we will look into a new pattern called “Service Mesh” which has gained a lot of attention in the last 3–4 years. Often this pattern is also referred to as the “Side Car Proxy”. So lets get started!
As enterprises start building more and more microservices, it’s becoming clear that some of the aspects of microservices are common across all microservices. So it makes sense to provide a common platform for managing these common aspects. Below are some of the key common aspects:
Service Registration and Discovery: A commonplace to register, document, search and discover microservices
Service Version Management: Ability to run multiple versions of a microservice.
**Authentication and Authorization: **Handle authentication and authorization including Mutual TLS (MTLS) between services.
Service Observability: Ability to monitor end to end traffic between services, response times, and quickly identify failures and bottlenecks.
**Rate Limiting: **Define threshold limits that traffic services can handle.
Circuit Breaker: Ability to configure and introduce a circuit breaker in case of failure scenarios (to avoid flooding downstream services with requests).
**Retry Logic: **Ability to configure and introduce retry logic dynamically in services.
So it’s a good idea to build these concerns as part of a common framework or service management tool. As a result, micro-service development teams don’t have to build these aspects in the service itself.
#service-mesh #istio-service-mesh #microservices #gateway-service #envoy-proxy
1667468640
BUILD STATUS
NAME
Perl::Critic - Critique Perl source code for best-practices.
SYNOPSIS
use Perl::Critic;
my $file = shift;
my $critic = Perl::Critic->new();
my @violations = $critic->critique($file);
print @violations;
DESCRIPTION
Perl::Critic is an extensible framework for creating and applying coding standards to Perl source code. Essentially, it is a static source code analysis engine. Perl::Critic is distributed with a number of Perl::Critic::Policy modules that attempt to enforce various coding guidelines. Most Policy modules are based on Damian Conway's book Perl Best Practices. However, Perl::Critic is not limited to PBP and will even support Policies that contradict Conway. You can enable, disable, and customize those Polices through the Perl::Critic interface. You can also create new Policy modules that suit your own tastes.
For a command-line interface to Perl::Critic, see the documentation for perlcritic. If you want to integrate Perl::Critic with your build process, Test::Perl::Critic provides an interface that is suitable for test programs. Also, Test::Perl::Critic::Progressive is useful for gradually applying coding standards to legacy code. For the ultimate convenience (at the expense of some flexibility) see the criticism pragma.
If you'd like to try Perl::Critic without installing anything, there is a web-service available at http://perlcritic.com. The web-service does not yet support all the configuration features that are available in the native Perl::Critic API, but it should give you a good idea of what it does.
Also, ActivePerl includes a very slick graphical interface to Perl-Critic called perlcritic-gui
. You can get a free community edition of ActivePerl from http://www.activestate.com.
PREREQUISITES
Perl::Critic runs on Perl back to Perl 5.6.1. It relies on the PPI module to do the heavy work of parsing Perl.
INTERFACE SUPPORT
The Perl::Critic
module is considered to be a public class. Any changes to its interface will go through a deprecation cycle.
CONSTRUCTOR
new( [ -profile => $FILE, -severity => $N, -theme => $string, -include => \@PATTERNS, -exclude => \@PATTERNS, -top => $N, -only => $B, -profile-strictness => $PROFILE_STRICTNESS_{WARN|FATAL|QUIET}, -force => $B, -verbose => $N ], -color => $B, -pager => $string, -allow-unsafe => $B, -criticism-fatal => $B)
new()
Returns a reference to a new Perl::Critic object. Most arguments are just passed directly into Perl::Critic::Config, but I have described them here as well. The default value for all arguments can be defined in your .perlcriticrc
file. See the "CONFIGURATION" section for more information about that. All arguments are optional key-value pairs as follows:
-profile is a path to a configuration file. If $FILE
is not defined, Perl::Critic::Config attempts to find a .perlcriticrc
configuration file in the current directory, and then in your home directory. Alternatively, you can set the PERLCRITIC
environment variable to point to a file in another location. If a configuration file can't be found, or if $FILE
is an empty string, then all Policies will be loaded with their default configuration. See "CONFIGURATION" for more information.
-severity is the minimum severity level. Only Policy modules that have a severity greater than $N
will be applied. Severity values are integers ranging from 1 (least severe violations) to 5 (most severe violations). The default is 5. For a given -profile
, decreasing the -severity
will usually reveal more Policy violations. You can set the default value for this option in your .perlcriticrc
file. Users can redefine the severity level for any Policy in their .perlcriticrc
file. See "CONFIGURATION" for more information.
If it is difficult for you to remember whether severity "5" is the most or least restrictive level, then you can use one of these named values:
SEVERITY NAME ...is equivalent to... SEVERITY NUMBER
--------------------------------------------------------
-severity => 'gentle' -severity => 5
-severity => 'stern' -severity => 4
-severity => 'harsh' -severity => 3
-severity => 'cruel' -severity => 2
-severity => 'brutal' -severity => 1
The names reflect how severely the code is criticized: a gentle
criticism reports only the most severe violations, and so on down to a brutal
criticism which reports even the most minor violations.
-theme is special expression that determines which Policies to apply based on their respective themes. For example, the following would load only Policies that have a 'bugs' AND 'pbp' theme:
my $critic = Perl::Critic->new( -theme => 'bugs && pbp' );
Unless the -severity
option is explicitly given, setting -theme
silently causes the -severity
to be set to 1. You can set the default value for this option in your .perlcriticrc
file. See the "POLICY THEMES" section for more information about themes.
-include is a reference to a list of string @PATTERNS
. Policy modules that match at least one m/$PATTERN/ixms
will always be loaded, irrespective of all other settings. For example:
my $critic = Perl::Critic->new(-include => ['layout'], -severity => 4);
This would cause Perl::Critic to apply all the CodeLayout::*
Policy modules even though they have a severity level that is less than 4. You can set the default value for this option in your .perlcriticrc
file. You can also use -include
in conjunction with the -exclude
option. Note that -exclude
takes precedence over -include
when a Policy matches both patterns.
-exclude is a reference to a list of string @PATTERNS
. Policy modules that match at least one m/$PATTERN/ixms
will not be loaded, irrespective of all other settings. For example:
my $critic = Perl::Critic->new(-exclude => ['strict'], -severity => 1);
This would cause Perl::Critic to not apply the RequireUseStrict
and ProhibitNoStrict
Policy modules even though they have a severity level that is greater than 1. You can set the default value for this option in your .perlcriticrc
file. You can also use -exclude
in conjunction with the -include
option. Note that -exclude
takes precedence over -include
when a Policy matches both patterns.
-single-policy is a string PATTERN
. Only one policy that matches m/$PATTERN/ixms
will be used. Policies that do not match will be excluded. This option has precedence over the -severity
, -theme
, -include
, -exclude
, and -only
options. You can set the default value for this option in your .perlcriticrc
file.
-top is the maximum number of Violations to return when ranked by their severity levels. This must be a positive integer. Violations are still returned in the order that they occur within the file. Unless the -severity
option is explicitly given, setting -top
silently causes the -severity
to be set to 1. You can set the default value for this option in your .perlcriticrc
file.
-only is a boolean value. If set to a true value, Perl::Critic will only choose from Policies that are mentioned in the user's profile. If set to a false value (which is the default), then Perl::Critic chooses from all the Policies that it finds at your site. You can set the default value for this option in your .perlcriticrc
file.
-profile-strictness is an enumerated value, one of "$PROFILE_STRICTNESS_WARN" in Perl::Critic::Utils::Constants (the default), "$PROFILE_STRICTNESS_FATAL" in Perl::Critic::Utils::Constants, and "$PROFILE_STRICTNESS_QUIET" in Perl::Critic::Utils::Constants. If set to "$PROFILE_STRICTNESS_FATAL" in Perl::Critic::Utils::Constants, Perl::Critic will make certain warnings about problems found in a .perlcriticrc
or file specified via the -profile option fatal. For example, Perl::Critic normally only warn
s about profiles referring to non-existent Policies, but this value makes this situation fatal. Correspondingly, "$PROFILE_STRICTNESS_QUIET" in Perl::Critic::Utils::Constants makes Perl::Critic shut up about these things.
-force is a boolean value that controls whether Perl::Critic observes the magical "## no critic"
annotations in your code. If set to a true value, Perl::Critic will analyze all code. If set to a false value (which is the default) Perl::Critic will ignore code that is tagged with these annotations. See "BENDING THE RULES" for more information. You can set the default value for this option in your .perlcriticrc
file.
-verbose can be a positive integer (from 1 to 11), or a literal format specification. See Perl::Critic::Violation for an explanation of format specifications. You can set the default value for this option in your .perlcriticrc
file.
-unsafe directs Perl::Critic to allow the use of Policies that are marked as "unsafe" by the author. Such policies may compile untrusted code or do other nefarious things.
-color and -pager are not used by Perl::Critic but is provided for the benefit of perlcritic.
-criticism-fatal is not used by Perl::Critic but is provided for the benefit of criticism.
-color-severity-highest, -color-severity-high, -color-severity- medium, -color-severity-low, and -color-severity-lowest are not used by Perl::Critic, but are provided for the benefit of perlcritic. Each is set to the Term::ANSIColor color specification to be used to display violations of the corresponding severity.
-files-with-violations and -files-without-violations are not used by Perl::Critic, but are provided for the benefit of perlcritic, to cause only the relevant filenames to be displayed.
METHODS
critique( $source_code )
Runs the $source_code
through the Perl::Critic engine using all the Policies that have been loaded into this engine. If $source_code
is a scalar reference, then it is treated as a string of actual Perl code. If $source_code
is a reference to an instance of PPI::Document, then that instance is used directly. Otherwise, it is treated as a path to a local file containing Perl code. This method returns a list of Perl::Critic::Violation objects for each violation of the loaded Policies. The list is sorted in the order that the Violations appear in the code. If there are no violations, this method returns an empty list.
add_policy( -policy => $policy_name, -params => \%param_hash )
Creates a Policy object and loads it into this Critic. If the object cannot be instantiated, it will throw a fatal exception. Otherwise, it returns a reference to this Critic.
-policy is the name of a Perl::Critic::Policy subclass module. The 'Perl::Critic::Policy'
portion of the name can be omitted for brevity. This argument is required.
-params is an optional reference to a hash of Policy parameters. The contents of this hash reference will be passed into to the constructor of the Policy module. See the documentation in the relevant Policy module for a description of the arguments it supports.
policies()
Returns a list containing references to all the Policy objects that have been loaded into this engine. Objects will be in the order that they were loaded.
config()
Returns the Perl::Critic::Config object that was created for or given to this Critic.
statistics()
Returns the Perl::Critic::Statistics object that was created for this Critic. The Statistics object accumulates data for all files that are analyzed by this Critic.
FUNCTIONAL INTERFACE
For those folks who prefer to have a functional interface, The critique
method can be exported on request and called as a static function. If the first argument is a hashref, its contents are used to construct a new Perl::Critic object internally. The keys of that hash should be the same as those supported by the Perl::Critic::new()
method. Here are some examples:
use Perl::Critic qw(critique);
# Use default parameters...
@violations = critique( $some_file );
# Use custom parameters...
@violations = critique( {-severity => 2}, $some_file );
# As a one-liner
%> perl -MPerl::Critic=critique -e 'print critique(shift)' some_file.pm
None of the other object-methods are currently supported as static functions. Sorry.
CONFIGURATION
Most of the settings for Perl::Critic and each of the Policy modules can be controlled by a configuration file. The default configuration file is called .perlcriticrc
. Perl::Critic will look for this file in the current directory first, and then in your home directory. Alternatively, you can set the PERLCRITIC
environment variable to explicitly point to a different file in another location. If none of these files exist, and the -profile
option is not given to the constructor, then all the modules that are found in the Perl::Critic::Policy namespace will be loaded with their default configuration.
The format of the configuration file is a series of INI-style blocks that contain key-value pairs separated by '='. Comments should start with '#' and can be placed on a separate line or after the name-value pairs if you desire.
Default settings for Perl::Critic itself can be set before the first named block. For example, putting any or all of these at the top of your configuration file will set the default value for the corresponding constructor argument.
severity = 3 #Integer or named level
only = 1 #Zero or One
force = 0 #Zero or One
verbose = 4 #Integer or format spec
top = 50 #A positive integer
theme = (pbp || security) && bugs #A theme expression
include = NamingConventions ClassHierarchies #Space-delimited list
exclude = Variables Modules::RequirePackage #Space-delimited list
criticism-fatal = 1 #Zero or One
color = 1 #Zero or One
allow-unsafe = 1 #Zero or One
pager = less #pager to pipe output to
The remainder of the configuration file is a series of blocks like this:
[Perl::Critic::Policy::Category::PolicyName]
severity = 1
set_themes = foo bar
add_themes = baz
maximum_violations_per_document = 57
arg1 = value1
arg2 = value2
Perl::Critic::Policy::Category::PolicyName
is the full name of a module that implements the policy. The Policy modules distributed with Perl::Critic have been grouped into categories according to the table of contents in Damian Conway's book Perl Best Practices. For brevity, you can omit the 'Perl::Critic::Policy'
part of the module name.
severity
is the level of importance you wish to assign to the Policy. All Policy modules are defined with a default severity value ranging from 1 (least severe) to 5 (most severe). However, you may disagree with the default severity and choose to give it a higher or lower severity, based on your own coding philosophy. You can set the severity
to an integer from 1 to 5, or use one of the equivalent names:
SEVERITY NAME ...is equivalent to... SEVERITY NUMBER
----------------------------------------------------
gentle 5
stern 4
harsh 3
cruel 2
brutal 1
The names reflect how severely the code is criticized: a gentle
criticism reports only the most severe violations, and so on down to a brutal
criticism which reports even the most minor violations.
set_themes
sets the theme for the Policy and overrides its default theme. The argument is a string of one or more whitespace-delimited alphanumeric words. Themes are case-insensitive. See "POLICY THEMES" for more information.
add_themes
appends to the default themes for this Policy. The argument is a string of one or more whitespace-delimited words. Themes are case- insensitive. See "POLICY THEMES" for more information.
maximum_violations_per_document
limits the number of Violations the Policy will return for a given document. Some Policies have a default limit; see the documentation for the individual Policies to see whether there is one. To force a Policy to not have a limit, specify "no_limit" or the empty string for the value of this parameter.
The remaining key-value pairs are configuration parameters that will be passed into the constructor for that Policy. The constructors for most Policy objects do not support arguments, and those that do should have reasonable defaults. See the documentation on the appropriate Policy module for more details.
Instead of redefining the severity for a given Policy, you can completely disable a Policy by prepending a '-' to the name of the module in your configuration file. In this manner, the Policy will never be loaded, regardless of the -severity
given to the Perl::Critic constructor.
A simple configuration might look like this:
#--------------------------------------------------------------
# I think these are really important, so always load them
[TestingAndDebugging::RequireUseStrict]
severity = 5
[TestingAndDebugging::RequireUseWarnings]
severity = 5
#--------------------------------------------------------------
# I think these are less important, so only load when asked
[Variables::ProhibitPackageVars]
severity = 2
[ControlStructures::ProhibitPostfixControls]
allow = if unless # My custom configuration
severity = cruel # Same as "severity = 2"
#--------------------------------------------------------------
# Give these policies a custom theme. I can activate just
# these policies by saying `perlcritic -theme larry`
[Modules::RequireFilenameMatchesPackage]
add_themes = larry
[TestingAndDebugging::RequireTestLables]
add_themes = larry curly moe
#--------------------------------------------------------------
# I do not agree with these at all, so never load them
[-NamingConventions::Capitalization]
[-ValuesAndExpressions::ProhibitMagicNumbers]
#--------------------------------------------------------------
# For all other Policies, I accept the default severity,
# so no additional configuration is required for them.
For additional configuration examples, see the perlcriticrc
file that is included in this examples
directory of this distribution.
Damian Conway's own Perl::Critic configuration is also included in this distribution as examples/perlcriticrc-conway
.
THE POLICIES
A large number of Policy modules are distributed with Perl::Critic. They are described briefly in the companion document Perl::Critic::PolicySummary and in more detail in the individual modules themselves. Say "perlcritic -doc PATTERN"
to see the perldoc for all Policy modules that match the regex m/PATTERN/ixms
There are a number of distributions of additional policies on CPAN. If Perl::Critic doesn't contain a policy that you want, some one may have already written it. See the "SEE ALSO" section below for a list of some of these distributions.
POLICY THEMES
Each Policy is defined with one or more "themes". Themes can be used to create arbitrary groups of Policies. They are intended to provide an alternative mechanism for selecting your preferred set of Policies. For example, you may wish disable a certain subset of Policies when analyzing test programs. Conversely, you may wish to enable only a specific subset of Policies when analyzing modules.
The Policies that ship with Perl::Critic have been broken into the following themes. This is just our attempt to provide some basic logical groupings. You are free to invent new themes that suit your needs.
THEME DESCRIPTION
--------------------------------------------------------------------------
core All policies that ship with Perl::Critic
pbp Policies that come directly from "Perl Best Practices"
bugs Policies that that prevent or reveal bugs
certrec Policies that CERT recommends
certrule Policies that CERT considers rules
maintenance Policies that affect the long-term health of the code
cosmetic Policies that only have a superficial effect
complexity Policies that specifically relate to code complexity
security Policies that relate to security issues
tests Policies that are specific to test programs
Any Policy may fit into multiple themes. Say "perlcritic -list"
to get a listing of all available Policies and the themes that are associated with each one. You can also change the theme for any Policy in your .perlcriticrc
file. See the "CONFIGURATION" section for more information about that.
Using the -theme
option, you can create an arbitrarily complex rule that determines which Policies will be loaded. Precedence is the same as regular Perl code, and you can use parentheses to enforce precedence as well. Supported operators are:
Operator Alternative Example
-----------------------------------------------------------------
&& and 'pbp && core'
|| or 'pbp || (bugs && security)'
! not 'pbp && ! (portability || complexity)'
Theme names are case-insensitive. If the -theme
is set to an empty string, then it evaluates as true all Policies.
BENDING THE RULES
Perl::Critic takes a hard-line approach to your code: either you comply or you don't. In the real world, it is not always practical (nor even possible) to fully comply with coding standards. In such cases, it is wise to show that you are knowingly violating the standards and that you have a Damn Good Reason (DGR) for doing so.
To help with those situations, you can direct Perl::Critic to ignore certain lines or blocks of code by using annotations:
require 'LegacyLibaray1.pl'; ## no critic
require 'LegacyLibrary2.pl'; ## no critic
for my $element (@list) {
## no critic
$foo = ""; #Violates 'ProhibitEmptyQuotes'
$barf = bar() if $foo; #Violates 'ProhibitPostfixControls'
#Some more evil code...
## use critic
#Some good code...
do_something($_);
}
The "## no critic"
annotations direct Perl::Critic to ignore the remaining lines of code until a "## use critic"
annotation is found. If the "## no critic"
annotation is on the same line as a code statement, then only that line of code is overlooked. To direct perlcritic to ignore the "## no critic"
annotations, use the --force
option.
A bare "## no critic"
annotation disables all the active Policies. If you wish to disable only specific Policies, add a list of Policy names as arguments, just as you would for the "no strict"
or "no warnings"
pragmas. For example, this would disable the ProhibitEmptyQuotes
and ProhibitPostfixControls
policies until the end of the block or until the next "## use critic"
annotation (whichever comes first):
## no critic (EmptyQuotes, PostfixControls)
# Now exempt from ValuesAndExpressions::ProhibitEmptyQuotes
$foo = "";
# Now exempt ControlStructures::ProhibitPostfixControls
$barf = bar() if $foo;
# Still subjected to ValuesAndExpression::RequireNumberSeparators
$long_int = 10000000000;
Since the Policy names are matched against the "## no critic"
arguments as regular expressions, you can abbreviate the Policy names or disable an entire family of Policies in one shot like this:
## no critic (NamingConventions)
# Now exempt from NamingConventions::Capitalization
my $camelHumpVar = 'foo';
# Now exempt from NamingConventions::Capitalization
sub camelHumpSub {}
The argument list must be enclosed in parentheses or brackets and must contain one or more comma-separated barewords (e.g. don't use quotes). The "## no critic"
annotations can be nested, and Policies named by an inner annotation will be disabled along with those already disabled an outer annotation.
Some Policies like Subroutines::ProhibitExcessComplexity
apply to an entire block of code. In those cases, the "## no critic"
annotation must appear on the line where the violation is reported. For example:
sub complicated_function { ## no critic (ProhibitExcessComplexity)
# Your code here...
}
Policies such as Documentation::RequirePodSections
apply to the entire document, in which case violations are reported at line 1.
Use this feature wisely. "## no critic"
annotations should be used in the smallest possible scope, or only on individual lines of code. And you should always be as specific as possible about which Policies you want to disable (i.e. never use a bare "## no critic"
). If Perl::Critic complains about your code, try and find a compliant solution before resorting to this feature.
THE Perl::Critic PHILOSOPHY
Coding standards are deeply personal and highly subjective. The goal of Perl::Critic is to help you write code that conforms with a set of best practices. Our primary goal is not to dictate what those practices are, but rather, to implement the practices discovered by others. Ultimately, you make the rules -- Perl::Critic is merely a tool for encouraging consistency. If there is a policy that you think is important or that we have overlooked, we would be very grateful for contributions, or you can simply load your own private set of policies into Perl::Critic.
EXTENDING THE CRITIC
The modular design of Perl::Critic is intended to facilitate the addition of new Policies. You'll need to have some understanding of PPI, but most Policy modules are pretty straightforward and only require about 20 lines of code. Please see the Perl::Critic::DEVELOPER file included in this distribution for a step-by-step demonstration of how to create new Policy modules.
If you develop any new Policy modules, feel free to send them to <team@perlcritic.com>
and I'll be happy to consider putting them into the Perl::Critic distribution. Or if you would like to work on the Perl::Critic project directly, you can fork our repository at https://github.com/Perl-Critic/Perl-Critic.git.
The Perl::Critic team is also available for hire. If your organization has its own coding standards, we can create custom Policies to enforce your local guidelines. Or if your code base is prone to a particular defect pattern, we can design Policies that will help you catch those costly defects before they go into production. To discuss your needs with the Perl::Critic team, just contact <team@perlcritic.com>
.
PREREQUISITES
Perl::Critic requires the following modules:
CONTACTING THE DEVELOPMENT TEAM
You are encouraged to subscribe to the public mailing list at https://groups.google.com/d/forum/perl-critic. At least one member of the development team is usually hanging around in irc://irc.perl.org/#perlcritic and you can follow Perl::Critic on Twitter, at https://twitter.com/perlcritic.
SEE ALSO
There are a number of distributions of additional Policies available. A few are listed here:
These distributions enable you to use Perl::Critic in your unit tests:
Test::Perl::Critic::Progressive
There is also a distribution that will install all the Perl::Critic related modules known to the development team:
BUGS
Scrutinizing Perl code is hard for humans, let alone machines. If you find any bugs, particularly false-positives or false-negatives from a Perl::Critic::Policy, please submit them at https://github.com/Perl-Critic/Perl-Critic/issues. Thanks.
CREDITS
Adam Kennedy - For creating PPI, the heart and soul of Perl::Critic.
Damian Conway - For writing Perl Best Practices, finally :)
Chris Dolan - For contributing the best features and Policy modules.
Andy Lester - Wise sage and master of all-things-testing.
Elliot Shank - The self-proclaimed quality freak.
Giuseppe Maxia - For all the great ideas and positive encouragement.
and Sharon, my wife - For putting up with my all-night code sessions.
Thanks also to the Perl Foundation for providing a grant to support Chris Dolan's project to implement twenty PBP policies. http://www.perlfoundation.org/april_1_2007_new_grant_awards
Thanks also to this incomplete laundry list of folks who have contributed to Perl::Critic in some way: Gregory Oschwald, Mike O'Regan, Tom Hukins, Omer Gazit, Evan Zacks, Paul Howarth, Sawyer X, Christian Walde, Dave Rolsky, Jakub Wilk, Roy Ivy III, Oliver Trosien, Glenn Fowler, Matt Creenan, Alex Balhatchet, Sebastian Paaske Tørholm, Stuart A Johnston, Dan Book, Steven Humphrey, James Raspass, Nick Tonkin, Harrison Katz, Douglas Sims, Mark Fowler, Alan Berndt, Neil Bowers, Sergey Romanov, Gabor Szabo, Graham Knop, Mike Eldridge, David Steinbrunner, Kirk Kimmel, Guillaume Aubert, Dave Cross, Anirvan Chatterjee, Todd Rinaldo, Graham Ollis, Karen Etheridge, Jonas Brømsø, Olaf Alders, Jim Keenan, Slaven Rezić, Szymon Nieznański.
AUTHOR
Jeffrey Ryan Thalhammer jeff@imaginative-software.com
COPYRIGHT
Copyright (c) 2005-2018 Imaginative Software Systems. All rights reserved.
This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself. The full text of this license can be found in the LICENSE file included with this module.
Author: Perl-Critic
Source Code: https://github.com/Perl-Critic/Perl-Critic
License: View license
1603431540
Microservices architectures are becoming the de facto way developers are thinking about how their applications are constructed. But security remains a top concern for many organizations. Given the general trends of the proliferation of threats within the production network and the increased points of privileged access, it is increasingly necessary to adopt a zero-trust network security approach for microservices architectures.
One of the most common security approaches is to set up mTLS. While this is an important security tool, it’s often difficult and time consuming to manage. To start, you have to create, distribute, and rotate keys and certificates to a large number of services. You then need to ensure you are properly implementing mTLS on all of your clients and servers. One of the compelling features of Istio is the ability to uniformly administer mTLS for all of your services without sacrificing developer productivity. While it’s true YugabyteDB provides its own TLS encryption, by having a central tool like Istio service mesh, you can set up an easy and consistent policy where Istio automatically manages the certificate rotation.
This tutorial focuses on how to deploy YugabyteDB with Istio mTLS to secure communication between services.
While you can run this setup on minikube on your local machine, we will use Google Cloud and Google Kubernetes Engine (GKE) for this blog.
The YugabyteDB Helm chart has been tested with the following software versions:
#databases #distributed sql #how to #kubernetes #istio #kiali #microservices #security #service mesh