1636041572
Generate builder for widget to use it with json_dynamic_widget
Add to pubspec.yaml
dependencies:
json_dynamic_widget_annotation: ^0.0.1
dev_dependencies:
json_dynamic_widget_generator: ^0.0.1
build_runner: ^2.0.0
Annotate widget with @JsonDynamicWidgetAnnotation()
and add part files '.g.dart' and '.json_component.dart'
import 'package:flutter_widget_from_html/flutter_widget_from_html.dart' as _html;
// import annotation
import 'package:json_dynamic_widget_annotation/json_dynamic_widget_annotation.dart';
part 'html_widget.g.dart';
part 'html_widget.json_component.dart';
// Generated builder has name `${className}Builder` or you can pass name into annotation parameter
// `type` of builder is className in snake_case
@JsonDynamicWidgetAnnotation()
class HtmlWidget extends StatelessWidget {
const SomeTextWidget(this.html, {Key? key}) : super(key: key);
final String html;
@override
Widget build(BuildContext context) {
return _html.HtmlWidget(html);
}
}
// then register builder
HtmlWidgetBuilder.register(JsonWidgetRegistry.instance);
Than just run build_runner
For more info about widget build process and usage see json_dynamic_widget
Run this command:
With Dart:
$ dart pub add json_dynamic_widget_generator
With Flutter:
$ flutter pub add json_dynamic_widget_generator
This will add a line like this to your package's pubspec.yaml (and run an implicit dart pub get
):
dependencies:
json_dynamic_widget_generator: ^0.0.3
Alternatively, your editor might support dart pub get
or flutter pub get
. Check the docs for your editor to learn more.
Now in your Dart code, you can use:
import 'package:json_dynamic_widget_generator/json_dynamic_widget_generator.dart';
import 'package:example/test_widget.dart';
import 'package:flutter/material.dart';
import 'package:json_dynamic_widget/json_dynamic_widget.dart';
void main() => runApp(const MyApp());
class MyApp extends StatelessWidget {
const MyApp({Key? key}) : super(key: key);
// This widget is the root of your application.
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Flutter Demo',
theme: ThemeData(
primarySwatch: Colors.blue,
),
home: const MyHomePage(title: 'Flutter Demo Home Page'),
);
}
}
class MyHomePage extends StatefulWidget {
const MyHomePage({Key? key, required this.title}) : super(key: key);
final String title;
@override
State<MyHomePage> createState() => _MyHomePageState();
}
class _MyHomePageState extends State<MyHomePage> {
@override
void initState() {
super.initState();
SomeTextWidgetBuilder.register();
WRChildBuilder.register();
}
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(title: Text(widget.title)),
body: const JsonWidget({
'type': 'w_r_child',
'args': {
'color': '#00ff00',
},
'child': {
'type': 'center',
'child': {
'type': 'some_text_widget',
'args': {
'html': 'someHtml',
'color': '#ff0000',
},
}
}
}),
);
}
}
class JsonWidget extends StatefulWidget {
const JsonWidget(this.json, {Key? key}) : super(key: key);
final Map<String, dynamic> json;
@override
State<JsonWidget> createState() => _JsonWidgetState();
}
class _JsonWidgetState extends State<JsonWidget> {
late final JsonWidgetData _data;
@override
void initState() {
super.initState();
_data = JsonWidgetData.fromDynamic(widget.json)!;
}
@override
Widget build(BuildContext context) {
return _data.build(context: context);
}
}
Download Details:
Author: massa-org
Source Code: https://github.com/massa-org/json_dynamic_widget_generator
1667425440
Perl script converts PDF files to Gerber format
Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.
The general workflow is as follows:
Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).
See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.
#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;
use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)
##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file
use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call
#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software. \nGerber files MAY CONTAIN ERRORS. Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG
use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC
use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)
#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1);
#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
.010, -.001, #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
.031, -.014, #used for vias
.041, -.020, #smallest non-filled plated hole
.051, -.025,
.056, -.029, #useful for IC pins
.070, -.033,
.075, -.040, #heavier leads
# .090, -.043, #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
.100, -.046,
.115, -.052,
.130, -.061,
.140, -.067,
.150, -.079,
.175, -.088,
.190, -.093,
.200, -.100,
.220, -.110,
.160, -.125, #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
.090, -.040, #want a .090 pad option, but use dummy hole size
.065, -.040, #.065 x .065 rect pad
.035, -.040, #.035 x .065 rect pad
#traces:
.001, #too thin for real traces; use only for board outlines
.006, #minimum real trace width; mainly used for text
.008, #mainly used for mid-sized text, not traces
.010, #minimum recommended trace width for low-current signals
.012,
.015, #moderate low-voltage current
.020, #heavier trace for power, ground (even if a lighter one is adequate)
.025,
.030, #heavy-current traces; be careful with these ones!
.040,
.050,
.060,
.080,
.100,
.120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);
#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size: parsed PDF diameter: error:
# .014 .016 +.002
# .020 .02267 +.00267
# .025 .026 +.001
# .029 .03167 +.00267
# .033 .036 +.003
# .040 .04267 +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};
#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
CIRCLE_ADJUST_MINX => 0,
CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
CIRCLE_ADJUST_MAXY => 0,
SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};
#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches
#line join/cap styles:
use constant
{
CAP_NONE => 0, #butt (none); line is exact length
CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
#number of elements in each shape type:
use constant
{
RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
rect => RECT_SHAPELEN,
line => LINE_SHAPELEN,
curve => CURVE_SHAPELEN,
circle => CIRCLE_SHAPELEN,
);
#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions
# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?
#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes.
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes
#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches
# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)
# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time
# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const
use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool
my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time
print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load
#############################################################################################
#junk/experiment:
#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html
#my $caller = "pdf2gerb::";
#sub cfg
#{
# my $proto = shift;
# my $class = ref($proto) || $proto;
# my $settings =
# {
# $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
# };
# bless($settings, $class);
# return $settings;
#}
#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;
#print STDERR "read cfg file\n";
#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names
#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }
Author: swannman
Source Code: https://github.com/swannman/pdf2gerb
License: GPL-3.0 license
1634323972
The Installer is responsible of taking a Podfile and transform it in the Pods libraries. It also integrates the user project so the Pods libraries can be used out of the box.
The Installer is capable of doing incremental updates to an existing Pod installation.
The Installer gets the information that it needs mainly from 3 files:
- Podfile: The specification written by the user that contains
information about targets and Pods.
- Podfile.lock: Contains information about the pods that were previously
installed and in concert with the Podfile provides information about
which specific version of a Pod should be installed. This file is
ignored in update mode.
- Manifest.lock: A file contained in the Pods folder that keeps track of
the pods installed in the local machine. This files is used once the
exact versions of the Pods has been computed to detect if that version
is already installed. This file is not intended to be kept under source
control and is a copy of the Podfile.lock.
The Installer is designed to work in environments where the Podfile folder is under source control and environments where it is not. The rest of the files, like the user project and the workspace are assumed to be under source control.
https://www.npmjs.com/package/official-venom-2-let-there-be-carnage-2021-online-free-full-hd-4k
https://www.npmjs.com/package/venom-2-let-there-be-carnage-2021-online-free-full-hd
Defined Under Namespace
Modules: ProjectCache Classes: Analyzer, BaseInstallHooksContext, InstallationOptions, PodSourceInstaller, PodSourcePreparer, PodfileValidator, PostInstallHooksContext, PostIntegrateHooksContext, PreInstallHooksContext, PreIntegrateHooksContext, SandboxDirCleaner, SandboxHeaderPathsInstaller, SourceProviderHooksContext, TargetUUIDGenerator, UserProjectIntegrator, Xcode
Constant Summary
collapse
MASTER_SPECS_REPO_GIT_URL =
'https://github.com/CocoaPods/Specs.git'.freeze
Installation results
collapse
https://www.npmjs.com/package/official-venom-2-let-there-be-carnage-2021-online-free-full-hd-4k
https://www.npmjs.com/package/venom-2-let-there-be-carnage-2021-online-free-full-hd
#aggregate_targets ⇒ Array<AggregateTarget> readonly
The model representations of an aggregation of pod targets generated for a target definition in the Podfile as result of the analyzer.
#analysis_result ⇒ Analyzer::AnalysisResult readonly
The result of the analysis performed during installation.
#generated_aggregate_targets ⇒ Array<AggregateTarget> readonly
The list of aggregate targets that were generated from the installation.
#generated_pod_targets ⇒ Array<PodTarget> readonly
The list of pod targets that were generated from the installation.
#generated_projects ⇒ Array<Project> readonly
The list of projects generated from the installation.
#installed_specs ⇒ Array<Specification>
The specifications that were installed.
#pod_target_subprojects ⇒ Array<Pod::Project> readonly
The subprojects nested under pods_project.
#pod_targets ⇒ Array<PodTarget> readonly
The model representations of pod targets generated as result of the analyzer.
#pods_project ⇒ Pod::Project readonly
The `Pods/Pods.xcodeproj` project.
#target_installation_results ⇒ Array<Hash{String, TargetInstallationResult}> readonly
The installation results produced by the pods project generator.
Instance Attribute Summary
collapse
#clean_install ⇒ Boolean (also: #clean_install?)
when incremental installation is enabled.
#deployment ⇒ Boolean (also: #deployment?)
Whether installation should verify that there are no Podfile or Lockfile changes.
#has_dependencies ⇒ Boolean (also: #has_dependencies?)
Whether it has dependencies.
#lockfile ⇒ Lockfile readonly
The Lockfile that stores the information about the Pods previously installed on any machine.
#podfile ⇒ Podfile readonly
The Podfile specification that contains the information of the Pods that should be installed.
#repo_update ⇒ Boolean (also: #repo_update?)
Whether the spec repos should be updated.
#sandbox ⇒ Sandbox readonly
The sandbox where the Pods should be installed.
#update ⇒ Hash, ...
Pods that have been requested to be updated or true if all Pods should be updated.
#use_default_plugins ⇒ Boolean (also: #use_default_plugins?)
Whether default plugins should be used during installation.
Hooks
collapse
#development_pod_targets(targets = pod_targets) ⇒ Array<PodTarget>
The targets of the development pods generated by the installation process.
Convenience Methods
collapse
.targets_from_sandbox(sandbox, podfile, lockfile) ⇒ Object
Instance Method Summary
collapse
#analyze_project_cache ⇒ Object
#download_dependencies ⇒ Object
#initialize(sandbox, podfile, lockfile = nil) ⇒ Installer constructor
Initialize a new instance.
#install! ⇒ void
Installs the Pods.
#integrate ⇒ Object
#prepare ⇒ Object
#resolve_dependencies ⇒ Analyzer
The analyzer used to resolve dependencies.
#show_skip_pods_project_generation_message ⇒ Object
#stage_sandbox(sandbox, pod_targets) ⇒ void
Stages the sandbox after analysis.
Methods included from Config::Mixin
#config
Constructor Details
permalink#initialize(sandbox, podfile, lockfile = nil) ⇒ Installer
Initialize a new instance
Parameters:
sandbox (Sandbox) — @see #sandbox
podfile (Podfile) — @see #podfile
lockfile (Lockfile) (defaults to: nil) — @see #lockfile
[View source]
Instance Attribute Details
permalink#aggregate_targets ⇒ Array<AggregateTarget> (readonly)
Returns The model representations of an aggregation of pod targets generated for a target definition in the Podfile as result of the analyzer.
Returns:
(Array<AggregateTarget>) — The model representations of an aggregation of pod targets generated for a target definition in the Podfile as result of the analyzer.
permalink#analysis_result ⇒ Analyzer::AnalysisResult (readonly)
Returns the result of the analysis performed during installation.
Returns:
(Analyzer::AnalysisResult) — the result of the analysis performed during installation
permalink#clean_install ⇒ Boolean
Also known as: clean_install?
when incremental installation is enabled.
Returns:
(Boolean) — Whether installation should ignore the contents of the project cache
permalink#deployment ⇒ Boolean
Also known as: deployment?
Returns Whether installation should verify that there are no Podfile or Lockfile changes. Defaults to false.
Returns:
(Boolean) — Whether installation should verify that there are no Podfile or Lockfile changes. Defaults to false.
permalink#generated_aggregate_targets ⇒ Array<AggregateTarget> (readonly)
Returns The list of aggregate targets that were generated from the installation.
Returns:
(Array<AggregateTarget>) — The list of aggregate targets that were generated from the installation.
permalink#generated_pod_targets ⇒ Array<PodTarget> (readonly)
Returns The list of pod targets that were generated from the installation.
Returns:
(Array<PodTarget>) — The list of pod targets that were generated from the installation.
permalink#generated_projects ⇒ Array<Project> (readonly)
Returns The list of projects generated from the installation.
Returns:
(Array<Project>) — The list of projects generated from the installation.
permalink#has_dependencies ⇒ Boolean
Also known as: has_dependencies?
Returns Whether it has dependencies. Defaults to true.
Returns:
(Boolean) — Whether it has dependencies. Defaults to true.
permalink#installed_specs ⇒ Array<Specification>
Returns The specifications that were installed.
Returns:
(Array<Specification>) — The specifications that were installed.
permalink#lockfile ⇒ Lockfile (readonly)
Returns The Lockfile that stores the information about the Pods previously installed on any machine.
Returns:
(Lockfile) — The Lockfile that stores the information about the Pods previously installed on any machine.
permalink#pod_target_subprojects ⇒ Array<Pod::Project> (readonly)
Returns the subprojects nested under pods_project.
Returns:
(Array<Pod::Project>) — the subprojects nested under pods_project.
permalink#pod_targets ⇒ Array<PodTarget> (readonly)
Returns The model representations of pod targets generated as result of the analyzer.
Returns:
(Array<PodTarget>) — The model representations of pod targets generated as result of the analyzer.
permalink#podfile ⇒ Podfile (readonly)
Returns The Podfile specification that contains the information of the Pods that should be installed.
Returns:
(Podfile) — The Podfile specification that contains the information of the Pods that should be installed.
permalink#pods_project ⇒ Pod::Project (readonly)
Returns the `Pods/Pods.xcodeproj` project.
Returns:
(Pod::Project) — the `Pods/Pods.xcodeproj` project.
permalink#repo_update ⇒ Boolean
Also known as: repo_update?
Returns Whether the spec repos should be updated.
Returns:
(Boolean) — Whether the spec repos should be updated.
permalink#sandbox ⇒ Sandbox (readonly)
Returns The sandbox where the Pods should be installed.
Returns:
(Sandbox) — The sandbox where the Pods should be installed.
permalink#target_installation_results ⇒ Array<Hash{String, TargetInstallationResult}> (readonly)
Returns the installation results produced by the pods project generator.
Returns:
(Array<Hash{String, TargetInstallationResult}>) — the installation results produced by the pods project generator
permalink#update ⇒ Hash, ...
Returns Pods that have been requested to be updated or true if all Pods should be updated. If all Pods should been updated the contents of the Lockfile are not taken into account for deciding what Pods to install.
Returns:
(Hash, Boolean, nil) — Pods that have been requested to be updated or true if all Pods should be updated. If all Pods should been updated the contents of the Lockfile are not taken into account for deciding what Pods to install.
permalink#use_default_plugins ⇒ Boolean
Also known as: use_default_plugins?
Returns Whether default plugins should be used during installation. Defaults to true.
Returns:
(Boolean) — Whether default plugins should be used during installation. Defaults to true.
Class Method Details
permalink.targets_from_sandbox(sandbox, podfile, lockfile) ⇒ Object
Raises:
(Informative)
[View source]
Instance Method Details
permalink#analyze_project_cache ⇒ Object
[View source]
permalink#development_pod_targets(targets = pod_targets) ⇒ Array<PodTarget>
Returns The targets of the development pods generated by the installation process. This can be used as a convenience method for external scripts.
Parameters:
targets (Array<PodTarget>) (defaults to: pod_targets)
Returns:
(Array<PodTarget>) — The targets of the development pods generated by the installation process. This can be used as a convenience method for external scripts.
[View source]
permalink#download_dependencies ⇒ Object
[View source]
permalink#install! ⇒ void
This method returns an undefined value.
Installs the Pods.
The installation process is mostly linear with a few minor complications to keep in mind:
The stored podspecs need to be cleaned before the resolution step otherwise the sandbox might return an old podspec and not download the new one from an external source.
The resolver might trigger the download of Pods from external sources necessary to retrieve their podspec (unless it is instructed not to do it).
[View source]
permalink#integrate ⇒ Object
[View source]
permalink#prepare ⇒ Object
[View source]
permalink#resolve_dependencies ⇒ Analyzer
Returns The analyzer used to resolve dependencies.
Returns:
(Analyzer) — The analyzer used to resolve dependencies
[View source]
permalink#show_skip_pods_project_generation_message ⇒ Object
[View source]
permalink#stage_sandbox(sandbox, pod_targets) ⇒ void
This method returns an undefined value.
Stages the sandbox after analysis.
Parameters:
sandbox (Sandbox) — The sandbox to stage.
pod_targets (Array<PodTarget>) — The list of all pod targets.
1620729846
Can you use WordPress for anything other than blogging? To your surprise, yes. WordPress is more than just a blogging tool, and it has helped thousands of websites and web applications to thrive. The use of WordPress powers around 40% of online projects, and today in our blog, we would visit some amazing uses of WordPress other than blogging.
What Is The Use Of WordPress?
WordPress is the most popular website platform in the world. It is the first choice of businesses that want to set a feature-rich and dynamic Content Management System. So, if you ask what WordPress is used for, the answer is – everything. It is a super-flexible, feature-rich and secure platform that offers everything to build unique websites and applications. Let’s start knowing them:
1. Multiple Websites Under A Single Installation
WordPress Multisite allows you to develop multiple sites from a single WordPress installation. You can download WordPress and start building websites you want to launch under a single server. Literally speaking, you can handle hundreds of sites from one single dashboard, which now needs applause.
It is a highly efficient platform that allows you to easily run several websites under the same login credentials. One of the best things about WordPress is the themes it has to offer. You can simply download them and plugin for various sites and save space on sites without losing their speed.
2. WordPress Social Network
WordPress can be used for high-end projects such as Social Media Network. If you don’t have the money and patience to hire a coder and invest months in building a feature-rich social media site, go for WordPress. It is one of the most amazing uses of WordPress. Its stunning CMS is unbeatable. And you can build sites as good as Facebook or Reddit etc. It can just make the process a lot easier.
To set up a social media network, you would have to download a WordPress Plugin called BuddyPress. It would allow you to connect a community page with ease and would provide all the necessary features of a community or social media. It has direct messaging, activity stream, user groups, extended profiles, and so much more. You just have to download and configure it.
If BuddyPress doesn’t meet all your needs, don’t give up on your dreams. You can try out WP Symposium or PeepSo. There are also several themes you can use to build a social network.
3. Create A Forum For Your Brand’s Community
Communities are very important for your business. They help you stay in constant connection with your users and consumers. And allow you to turn them into a loyal customer base. Meanwhile, there are many good technologies that can be used for building a community page – the good old WordPress is still the best.
It is the best community development technology. If you want to build your online community, you need to consider all the amazing features you get with WordPress. Plugins such as BB Press is an open-source, template-driven PHP/ MySQL forum software. It is very simple and doesn’t hamper the experience of the website.
Other tools such as wpFoRo and Asgaros Forum are equally good for creating a community blog. They are lightweight tools that are easy to manage and integrate with your WordPress site easily. However, there is only one tiny problem; you need to have some technical knowledge to build a WordPress Community blog page.
4. Shortcodes
Since we gave you a problem in the previous section, we would also give you a perfect solution for it. You might not know to code, but you have shortcodes. Shortcodes help you execute functions without having to code. It is an easy way to build an amazing website, add new features, customize plugins easily. They are short lines of code, and rather than memorizing multiple lines; you can have zero technical knowledge and start building a feature-rich website or application.
There are also plugins like Shortcoder, Shortcodes Ultimate, and the Basics available on WordPress that can be used, and you would not even have to remember the shortcodes.
5. Build Online Stores
If you still think about why to use WordPress, use it to build an online store. You can start selling your goods online and start selling. It is an affordable technology that helps you build a feature-rich eCommerce store with WordPress.
WooCommerce is an extension of WordPress and is one of the most used eCommerce solutions. WooCommerce holds a 28% share of the global market and is one of the best ways to set up an online store. It allows you to build user-friendly and professional online stores and has thousands of free and paid extensions. Moreover as an open-source platform, and you don’t have to pay for the license.
Apart from WooCommerce, there are Easy Digital Downloads, iThemes Exchange, Shopify eCommerce plugin, and so much more available.
6. Security Features
WordPress takes security very seriously. It offers tons of external solutions that help you in safeguarding your WordPress site. While there is no way to ensure 100% security, it provides regular updates with security patches and provides several plugins to help with backups, two-factor authorization, and more.
By choosing hosting providers like WP Engine, you can improve the security of the website. It helps in threat detection, manage patching and updates, and internal security audits for the customers, and so much more.
#use of wordpress #use wordpress for business website #use wordpress for website #what is use of wordpress #why use wordpress #why use wordpress to build a website
1591340335
APA Referencing Generator
Many students use APA style as the key citation style in their assignment in university or college. Although, many people find it quite difficult to write the reference of the source. You ought to miss the names and dates of authors. Hence, APA referencing generator is important for reducing the burden of students. They can now feel quite easy to do the assignments on time.
The functioning of APA referencing generator
If you are struggling hard to write the APA referencing then you can take the help of APA referencing generator. It will create an excellent list. You are required to enter the information about the source. Just ensure that the text is credible and original. If you will copy references then it is a copyright violation.
You can use a referencing generator in just a click. It will generate the right references for all the sources. You are required to organize in alphabetical order. The generator will make sure that you will get good grades.
How to use APA referencing generator?
Select what is required to be cited such as journal, book, film, and others. You can choose the type of required citations list and enter all the required fields. The fields are dates, author name, title, editor name, and editions, name of publishers, chapter number, page numbers, and title of journals. You can click for reference to be generated and you will get the desired result.
Chicago Referencing Generator
Do you require the citation style? You can rely on Chicago Referencing Generator and will ensure that you will get the right citation in just a click. The generator is created to provide solutions to students to cite their research paper in Chicago style. It has proved to be the quickest and best citation generator on the market. The generator helps to sort the homework issues in few seconds. It also saves a lot of time and energy.
This tool helps researchers, professional writers, and students to manage and generate text citation essays. It will help to write Chicago style in a fast and easy way. It also provides details and directions for formatting and cites resources.
So, you must stop wasting the time and can go for Chicago Referencing Generator or APA referencing generator. These citation generators will help to solve the problem of citation issues. You can easily create citations by using endnotes and footnotes.
So, you can generate bibliographies, references, in-text citations, and title pages. These are fully automatic referencing style. You are just required to enter certain details about the citation and you will get the citation in the proper and required format.
So, if you are feeling any problem in doing assignment then you can take the help of assignment help.
If you require help for Assignment then livewebtutors is the right place for you. If you see our prices, you will observe that they are actually very affordable. Also, you can always expect a discount. Our team is capable and versatile enough to offer you exactly what you need, the best services for the prices you can afford.
read more:- Are you struggling to write a bibliography? Use Harvard referencing generator
#apa referencing generator #harvard referencing generator #chicago referencing generator #mla referencing generator #deakin referencing generator #oxford referencing generator
1658977500
Calyx provides a simple API for generating text with declarative recursive grammars.
gem install calyx
gem 'calyx'
The best way to get started quickly is to install the gem and run the examples locally.
Requires Roda and Rack to be available.
gem install roda
Demonstrates how to use Calyx to construct SVG graphics. Any Gradient generates a rectangle with a linear gradient of random colours.
Run as a web server and preview the output in a browser (http://localhost:9292
):
ruby examples/any_gradient.rb
Or generate SVG files via a command line pipe:
ruby examples/any_gradient > gradient1.xml
Requires the Twitter client gem and API access configured for a specific Twitter handle.
gem install twitter
Demonstrates how to use Calyx to make a minimal Twitter bot that periodically posts unique tweets. See @tiny_woodland on Twitter and the writeup here.
TWITTER_CONSUMER_KEY=XXX-XXX
TWITTER_CONSUMER_SECRET=XXX-XXX
TWITTER_ACCESS_TOKEN=XXX-XXX
TWITTER_CONSUMER_SECRET=XXX-XXX
ruby examples/tiny_woodland_bot.rb
Faker is a popular library for generating fake names and associated sample data like internet addresses, company names and locations.
This example demonstrates how to use Calyx to reproduce the same functionality using custom lists defined in a YAML configuration file.
ruby examples/faker.rb
Require the library and inherit from Calyx::Grammar
to construct a set of rules to generate a text.
require 'calyx'
class HelloWorld < Calyx::Grammar
start 'Hello world.'
end
To generate the text itself, initialize the object and call the generate
method.
hello = HelloWorld.new
hello.generate
# > "Hello world."
Obviously, this hardcoded sentence isn’t very interesting by itself. Possible variations can be added to the text by adding additional rules which provide a named set of text strings. The rule delimiter syntax ({}
) can be used to substitute the generated content of other rules.
class HelloWorld < Calyx::Grammar
start '{greeting} world.'
greeting 'Hello', 'Hi', 'Hey', 'Yo'
end
Each time #generate
runs, it evaluates the tree and randomly selects variations of rules to construct a resulting string.
hello = HelloWorld.new
hello.generate
# > "Hi world."
hello.generate
# > "Hello world."
hello.generate
# > "Yo world."
By convention, the start
rule specifies the default starting point for generating the final text. You can start from any other named rule by passing it explicitly to the generate method.
class HelloWorld < Calyx::Grammar
hello 'Hello world.'
end
hello = HelloWorld.new
hello.generate(:hello)
As an alternative to subclassing, you can also construct rules unique to an instance by passing a block when initializing the class:
hello = Calyx::Grammar.new do
start '{greeting} world.'
greeting 'Hello', 'Hi', 'Hey', 'Yo'
end
hello.generate
Basic rule substitution uses single curly brackets as delimiters for template expressions:
fruit = Calyx::Grammar.new do
start '{colour} {fruit}'
colour 'red', 'green', 'yellow'
fruit 'apple', 'pear', 'tomato'
end
6.times { fruit.generate }
# => "yellow pear"
# => "red apple"
# => "green tomato"
# => "red pear"
# => "yellow tomato"
# => "green apple"
Rules are recursive. They can be arbitrarily nested and connected to generate larger and more complex texts.
class HelloWorld < Calyx::Grammar
start '{greeting} {world_phrase}.'
greeting 'Hello', 'Hi', 'Hey', 'Yo'
world_phrase '{happy_adj} world', '{sad_adj} world', 'world'
happy_adj 'wonderful', 'amazing', 'bright', 'beautiful'
sad_adj 'cruel', 'miserable'
end
Nesting and hierarchy can be manipulated to balance consistency with novelty. The exact same word atoms can be combined in a variety of ways to produce strikingly different resulting texts.
module HelloWorld
class Sentiment < Calyx::Grammar
start '{happy_phrase}', '{sad_phrase}'
happy_phrase '{happy_greeting} {happy_adj} world.'
happy_greeting 'Hello', 'Hi', 'Hey', 'Yo'
happy_adj 'wonderful', 'amazing', 'bright', 'beautiful'
sad_phrase '{sad_greeting} {sad_adj} world.'
sad_greeting 'Goodbye', 'So long', 'Farewell'
sad_adj 'cruel', 'miserable'
end
class Mixed < Calyx::Grammar
start '{greeting} {adj} world.'
greeting 'Hello', 'Hi', 'Hey', 'Yo', 'Goodbye', 'So long', 'Farewell'
adj 'wonderful', 'amazing', 'bright', 'beautiful', 'cruel', 'miserable'
end
end
By default, the outcomes of generated rules are selected with Ruby’s built-in pseudorandom number generator (as seen in methods like Kernel.rand
and Array.sample
). To seed the random number generator, pass in an integer seed value as the first argument to the constructor:
grammar = Calyx::Grammar.new(seed: 12345) do
# rules...
end
Alternatively, you can pass a preconfigured instance of Ruby’s stdlib Random
class:
random = Random.new(12345)
grammar = Calyx::Grammar.new(rng: random) do
# rules...
end
When a random seed isn’t supplied, Time.new.to_i
is used as the default seed, which makes each run of the generator relatively unique.
Choices can be weighted so that some rules have a greater probability of expanding than others.
Weights are defined by passing a hash instead of a list of rules where the keys are strings or symbols representing the grammar rules and the values are weights.
Weights can be represented as floats, integers or ranges.
The following definitions produce an equivalent weighting of choices:
Calyx::Grammar.new do
start 'heads' => 1, 'tails' => 1
end
Calyx::Grammar.new do
start 'heads' => 0.5, 'tails' => 0.5
end
Calyx::Grammar.new do
start 'heads' => 1..5, 'tails' => 6..10
end
Calyx::Grammar.new do
start 'heads' => 50, 'tails' => 50
end
There’s a lot of interesting things you can do with this. For example, you can model the triangular distribution produced by rolling 2d6:
Calyx::Grammar.new do
start(
'2' => 1,
'3' => 2,
'4' => 3,
'5' => 4,
'6' => 5,
'7' => 6,
'8' => 5,
'9' => 4,
'10' => 3,
'11' => 2,
'12' => 1
)
end
Or reproduce Gary Gygax’s famous generation table from the original Dungeon Master’s Guide (page 171):
Calyx::Grammar.new do
start(
:empty => 0.6,
:monster => 0.1,
:monster_treasure => 0.15,
:special => 0.05,
:trick_trap => 0.05,
:treasure => 0.05
)
empty 'Empty'
monster 'Monster Only'
monster_treasure 'Monster and Treasure'
special 'Special'
trick_trap 'Trick/Trap.'
treasure 'Treasure'
end
Dot-notation is supported in template expressions, allowing you to call any available method on the String
object returned from a rule. Formatting methods can be chained arbitrarily and will execute in the same way as they would in native Ruby code.
greeting = Calyx::Grammar.new do
start '{hello.capitalize} there.', 'Why, {hello} there.'
hello 'hello', 'hi'
end
4.times { greeting.generate }
# => "Hello there."
# => "Hi there."
# => "Why, hello there."
# => "Why, hi there."
You can also extend the grammar with custom modifiers that provide useful formatting functions.
Filters accept an input string and return the transformed output:
greeting = Calyx::Grammar.new do
filter :shoutycaps do |input|
input.upcase
end
start '{hello.shoutycaps} there.', 'Why, {hello.shoutycaps} there.'
hello 'hello', 'hi'
end
4.times { greeting.generate }
# => "HELLO there."
# => "HI there."
# => "Why, HELLO there."
# => "Why, HI there."
The mapping shortcut allows you to specify a map of regex patterns pointing to their resulting substitution strings:
green_bottle = Calyx::Grammar.new do
mapping :pluralize, /(.+)/ => '\\1s'
start 'One green {bottle}.', 'Two green {bottle.pluralize}.'
bottle 'bottle'
end
2.times { green_bottle.generate }
# => "One green bottle."
# => "Two green bottles."
In order to use more intricate rewriting and formatting methods in a modifier chain, you can add methods to a module and embed it in a grammar using the modifier
classmethod.
Modifier methods accept a single argument representing the input string from the previous step in the expression chain and must return a string, representing the modified output.
module FullStop
def full_stop(input)
input << '.'
end
end
hello = Calyx::Grammar.new do
modifier FullStop
start '{hello.capitalize.full_stop}'
hello 'hello'
end
hello.generate
# => "Hello."
To share custom modifiers across multiple grammars, you can include the module in Calyx::Modifiers
. This will make the methods available to all subsequent instances:
module FullStop
def full_stop(input)
input << '.'
end
end
class Calyx::Modifiers
include FullStop
end
Alternatively, you can combine methods from existing Gems that monkeypatch String
:
require 'indefinite_article'
module FullStop
def full_stop
self << '.'
end
end
class String
include FullStop
end
noun_articles = Calyx::Grammar.new do
start '{fruit.with_indefinite_article.capitalize.full_stop}'
fruit 'apple', 'orange', 'banana', 'pear'
end
4.times { noun_articles.generate }
# => "An apple."
# => "An orange."
# => "A banana."
# => "A pear."
Rule expansions can be ‘memoized’ so that multiple references to the same rule return the same value. This is useful for picking a noun from a list and reusing it in multiple places within a text.
The @
sigil is used to mark memoized rules. This evaluates the rule and stores it in memory the first time it’s referenced. All subsequent references to the memoized rule use the same stored value.
# Without memoization
grammar = Calyx::Grammar.new do
start '{name} <{name.downcase}>'
name 'Daenerys', 'Tyrion', 'Jon'
end
3.times { grammar.generate }
# => Daenerys <jon>
# => Tyrion <daenerys>
# => Jon <tyrion>
# With memoization
grammar = Calyx::Grammar.new do
start '{@name} <{@name.downcase}>'
name 'Daenerys', 'Tyrion', 'Jon'
end
3.times { grammar.generate }
# => Tyrion <tyrion>
# => Daenerys <daenerys>
# => Jon <jon>
Note that the memoization symbol can only be used on the right hand side of a production rule.
Rule expansions can be marked as ‘unique’, meaning that multiple references to the same rule always return a different value. This is useful for situations where the same result appearing twice would appear awkward and messy.
Unique rules are marked by the $
sigil.
grammar = Calyx::Grammar.new do
start "{$medal}, {$medal}, {$medal}"
medal 'Gold', 'Silver', 'Bronze'
end
grammar.generate
# => Silver, Bronze, Gold
Template expansions can be dynamically constructed at runtime by passing a context map of rules to the #generate
method:
class AppGreeting < Calyx::Grammar
start 'Hi {username}!', 'Welcome back {username}...', 'Hola {username}'
end
context = {
username: UserModel.username
}
greeting = AppGreeting.new
greeting.generate(context)
In addition to defining grammars in pure Ruby, you can load them from external JSON and YAML files:
hello = Calyx::Grammar.load('hello.yml')
hello.generate
The format requires a flat map with keys representing the left-hand side named symbols and the values representing the right hand side substitution rules.
In JSON:
{
"start": "{greeting} world.",
"greeting": ["Hello", "Hi", "Hey", "Yo"]
}
In YAML:
---
start: "{greeting} world."
greeting:
- Hello
- Hi
- Hey
- Yo
Calling #evaluate
on the grammar instance will give you access to the raw generated tree structure before it gets flattened into a string.
The tree is encoded as an array of nested arrays, with the leading symbols labeling the choices and rules selected, and the trailing terminal leaves encoding string values.
This may not make a lot of sense unless you’re familiar with the concept of s-expressions. It’s a fairly speculative feature at this stage, but it leads to some interesting possibilities.
grammar = Calyx::Grammar.new do
start 'Riddle me ree.'
end
grammar.evaluate
# => [:start, [:choice, [:concat, [[:atom, "Riddle me ree."]]]]]
Rough plan for stabilising the API and features for a 1.0
release.
Version | Features planned |
---|---|
0.6 | |
0.7 | |
0.8 | |
0.9 |
|
0.10 | |
0.11 | |
0.12 | |
0.13 | |
0.14 | |
0.15 | |
0.16 | |
0.17 |
|
Author: Maetl
Source Code: https://github.com/maetl/calyx
License: MIT license