AWS Amplify CI/CD: Code Lint & End-to-End Testing

After my first approach to AWS Amplify, I want to deal with the implementation of source code linters and end-to-end tests with Cypress, obviously automated in the AWS Amplify CI/CD pipeline. Let’s face up this new challenge!

Image for post

Photo by Yancy Min on Unsplash

References: this is the link to the GitHub repository and this is the link to the web application related to this post.

Linter

The linter is a tool that analyzes the source code to flag programming errors, bugs, stylistic errors and suspicious constructs — wikipedia

Linter tools allows to increase the quality of the source code. Using these tools in a CI/CD pipeline also allows to deploy an application when its source code meets certain quality levels.

The web application I created with AWS Amplify includes a React frontend and few Python lambdas in backend. For this reason I need two different tools, specific to the two technologies used.

ESLint

One of the best linters I’ve had the chance to test for JavaScript is ESLint: its functions are not limited to test but it includes automatic fix of a large number of problems.

ESLint installation is simple: from the main directory of our project, we can install the linter with the following command:

npm install eslint --save-dev

Once the installation is complete, we can run the first configuration wizard:

npx eslint --init

You will be asked for various information: in general you can choose whether to use ESLint for:

  • syntax checking
  • syntax checking and problem finding
  • syntax checking, problem finding and code style checking

This last option is interesting and includes most popular styles, such as Airbnb and Google source code styles. Once the configuration is complete, the required packages are installed. In my case:

"devDependencies": {
    "eslint": "^7.8.1",
    "eslint-config-google": "^0.14.0",
    "eslint-plugin-react": "^7.20.6"
  }

Now that we’ve set up ESLint, let’s check the code:

npx eslint src/*.js

Depending on the options chosen during configuration, the result may not be the most optimistic, revealing a long series of problems.

Image for post

But as I said initially, ESLint allows us to automatically correct some of these, using the following command:

npx eslint src/*.js --fix

Great! Of the 87 problems initially detected, only 6 require our intervention to be corrected.

Image for post

#cypress #react #eslint #pylint #aws-amplify

What is GEEK

Buddha Community

AWS Amplify CI/CD: Code Lint & End-to-End Testing
Hermann  Frami

Hermann Frami

1651383480

A Simple Wrapper Around Amplify AppSync Simulator

This serverless plugin is a wrapper for amplify-appsync-simulator made for testing AppSync APIs built with serverless-appsync-plugin.

Install

npm install serverless-appsync-simulator
# or
yarn add serverless-appsync-simulator

Usage

This plugin relies on your serverless yml file and on the serverless-offline plugin.

plugins:
  - serverless-dynamodb-local # only if you need dynamodb resolvers and you don't have an external dynamodb
  - serverless-appsync-simulator
  - serverless-offline

Note: Order is important serverless-appsync-simulator must go before serverless-offline

To start the simulator, run the following command:

sls offline start

You should see in the logs something like:

...
Serverless: AppSync endpoint: http://localhost:20002/graphql
Serverless: GraphiQl: http://localhost:20002
...

Configuration

Put options under custom.appsync-simulator in your serverless.yml file

| option | default | description | | ------------------------ | -------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------- | | apiKey | 0123456789 | When using API_KEY as authentication type, the key to authenticate to the endpoint. | | port | 20002 | AppSync operations port; if using multiple APIs, the value of this option will be used as a starting point, and each other API will have a port of lastPort + 10 (e.g. 20002, 20012, 20022, etc.) | | wsPort | 20003 | AppSync subscriptions port; if using multiple APIs, the value of this option will be used as a starting point, and each other API will have a port of lastPort + 10 (e.g. 20003, 20013, 20023, etc.) | | location | . (base directory) | Location of the lambda functions handlers. | | refMap | {} | A mapping of resource resolutions for the Ref function | | getAttMap | {} | A mapping of resource resolutions for the GetAtt function | | importValueMap | {} | A mapping of resource resolutions for the ImportValue function | | functions | {} | A mapping of external functions for providing invoke url for external fucntions | | dynamoDb.endpoint | http://localhost:8000 | Dynamodb endpoint. Specify it if you're not using serverless-dynamodb-local. Otherwise, port is taken from dynamodb-local conf | | dynamoDb.region | localhost | Dynamodb region. Specify it if you're connecting to a remote Dynamodb intance. | | dynamoDb.accessKeyId | DEFAULT_ACCESS_KEY | AWS Access Key ID to access DynamoDB | | dynamoDb.secretAccessKey | DEFAULT_SECRET | AWS Secret Key to access DynamoDB | | dynamoDb.sessionToken | DEFAULT_ACCESS_TOKEEN | AWS Session Token to access DynamoDB, only if you have temporary security credentials configured on AWS | | dynamoDb.* | | You can add every configuration accepted by DynamoDB SDK | | rds.dbName | | Name of the database | | rds.dbHost | | Database host | | rds.dbDialect | | Database dialect. Possible values (mysql | postgres) | | rds.dbUsername | | Database username | | rds.dbPassword | | Database password | | rds.dbPort | | Database port | | watch | - *.graphql
- *.vtl | Array of glob patterns to watch for hot-reloading. |

Example:

custom:
  appsync-simulator:
    location: '.webpack/service' # use webpack build directory
    dynamoDb:
      endpoint: 'http://my-custom-dynamo:8000'

Hot-reloading

By default, the simulator will hot-relad when changes to *.graphql or *.vtl files are detected. Changes to *.yml files are not supported (yet? - this is a Serverless Framework limitation). You will need to restart the simulator each time you change yml files.

Hot-reloading relies on watchman. Make sure it is installed on your system.

You can change the files being watched with the watch option, which is then passed to watchman as the match expression.

e.g.

custom:
  appsync-simulator:
    watch:
      - ["match", "handlers/**/*.vtl", "wholename"] # => array is interpreted as the literal match expression
      - "*.graphql"                                 # => string like this is equivalent to `["match", "*.graphql"]`

Or you can opt-out by leaving an empty array or set the option to false

Note: Functions should not require hot-reloading, unless you are using a transpiler or a bundler (such as webpack, babel or typescript), un which case you should delegate hot-reloading to that instead.

Resource CloudFormation functions resolution

This plugin supports some resources resolution from the Ref, Fn::GetAtt and Fn::ImportValue functions in your yaml file. It also supports some other Cfn functions such as Fn::Join, Fb::Sub, etc.

Note: Under the hood, this features relies on the cfn-resolver-lib package. For more info on supported cfn functions, refer to the documentation

Basic usage

You can reference resources in your functions' environment variables (that will be accessible from your lambda functions) or datasource definitions. The plugin will automatically resolve them for you.

provider:
  environment:
    BUCKET_NAME:
      Ref: MyBucket # resolves to `my-bucket-name`

resources:
  Resources:
    MyDbTable:
      Type: AWS::DynamoDB::Table
      Properties:
        TableName: myTable
      ...
    MyBucket:
      Type: AWS::S3::Bucket
      Properties:
        BucketName: my-bucket-name
    ...

# in your appsync config
dataSources:
  - type: AMAZON_DYNAMODB
    name: dynamosource
    config:
      tableName:
        Ref: MyDbTable # resolves to `myTable`

Override (or mock) values

Sometimes, some references cannot be resolved, as they come from an Output from Cloudformation; or you might want to use mocked values in your local environment.

In those cases, you can define (or override) those values using the refMap, getAttMap and importValueMap options.

  • refMap takes a mapping of resource name to value pairs
  • getAttMap takes a mapping of resource name to attribute/values pairs
  • importValueMap takes a mapping of import name to values pairs

Example:

custom:
  appsync-simulator:
    refMap:
      # Override `MyDbTable` resolution from the previous example.
      MyDbTable: 'mock-myTable'
    getAttMap:
      # define ElasticSearchInstance DomainName
      ElasticSearchInstance:
        DomainEndpoint: 'localhost:9200'
    importValueMap:
      other-service-api-url: 'https://other.api.url.com/graphql'

# in your appsync config
dataSources:
  - type: AMAZON_ELASTICSEARCH
    name: elasticsource
    config:
      # endpoint resolves as 'http://localhost:9200'
      endpoint:
        Fn::Join:
          - ''
          - - https://
            - Fn::GetAtt:
                - ElasticSearchInstance
                - DomainEndpoint

Key-value mock notation

In some special cases you will need to use key-value mock nottation. Good example can be case when you need to include serverless stage value (${self:provider.stage}) in the import name.

This notation can be used with all mocks - refMap, getAttMap and importValueMap

provider:
  environment:
    FINISH_ACTIVITY_FUNCTION_ARN:
      Fn::ImportValue: other-service-api-${self:provider.stage}-url

custom:
  serverless-appsync-simulator:
    importValueMap:
      - key: other-service-api-${self:provider.stage}-url
        value: 'https://other.api.url.com/graphql'

Limitations

This plugin only tries to resolve the following parts of the yml tree:

  • provider.environment
  • functions[*].environment
  • custom.appSync

If you have the need of resolving others, feel free to open an issue and explain your use case.

For now, the supported resources to be automatically resovled by Ref: are:

  • DynamoDb tables
  • S3 Buckets

Feel free to open a PR or an issue to extend them as well.

External functions

When a function is not defined withing the current serverless file you can still call it by providing an invoke url which should point to a REST method. Make sure you specify "get" or "post" for the method. Default is "get", but you probably want "post".

custom:
  appsync-simulator:
    functions:
      addUser:
        url: http://localhost:3016/2015-03-31/functions/addUser/invocations
        method: post
      addPost:
        url: https://jsonplaceholder.typicode.com/posts
        method: post

Supported Resolver types

This plugin supports resolvers implemented by amplify-appsync-simulator, as well as custom resolvers.

From Aws Amplify:

  • NONE
  • AWS_LAMBDA
  • AMAZON_DYNAMODB
  • PIPELINE

Implemented by this plugin

  • AMAZON_ELASTIC_SEARCH
  • HTTP
  • RELATIONAL_DATABASE

Relational Database

Sample VTL for a create mutation

#set( $cols = [] )
#set( $vals = [] )
#foreach( $entry in $ctx.args.input.keySet() )
  #set( $regex = "([a-z])([A-Z]+)")
  #set( $replacement = "$1_$2")
  #set( $toSnake = $entry.replaceAll($regex, $replacement).toLowerCase() )
  #set( $discard = $cols.add("$toSnake") )
  #if( $util.isBoolean($ctx.args.input[$entry]) )
      #if( $ctx.args.input[$entry] )
        #set( $discard = $vals.add("1") )
      #else
        #set( $discard = $vals.add("0") )
      #end
  #else
      #set( $discard = $vals.add("'$ctx.args.input[$entry]'") )
  #end
#end
#set( $valStr = $vals.toString().replace("[","(").replace("]",")") )
#set( $colStr = $cols.toString().replace("[","(").replace("]",")") )
#if ( $valStr.substring(0, 1) != '(' )
  #set( $valStr = "($valStr)" )
#end
#if ( $colStr.substring(0, 1) != '(' )
  #set( $colStr = "($colStr)" )
#end
{
  "version": "2018-05-29",
  "statements":   ["INSERT INTO <name-of-table> $colStr VALUES $valStr", "SELECT * FROM    <name-of-table> ORDER BY id DESC LIMIT 1"]
}

Sample VTL for an update mutation

#set( $update = "" )
#set( $equals = "=" )
#foreach( $entry in $ctx.args.input.keySet() )
  #set( $cur = $ctx.args.input[$entry] )
  #set( $regex = "([a-z])([A-Z]+)")
  #set( $replacement = "$1_$2")
  #set( $toSnake = $entry.replaceAll($regex, $replacement).toLowerCase() )
  #if( $util.isBoolean($cur) )
      #if( $cur )
        #set ( $cur = "1" )
      #else
        #set ( $cur = "0" )
      #end
  #end
  #if ( $util.isNullOrEmpty($update) )
      #set($update = "$toSnake$equals'$cur'" )
  #else
      #set($update = "$update,$toSnake$equals'$cur'" )
  #end
#end
{
  "version": "2018-05-29",
  "statements":   ["UPDATE <name-of-table> SET $update WHERE id=$ctx.args.input.id", "SELECT * FROM <name-of-table> WHERE id=$ctx.args.input.id"]
}

Sample resolver for delete mutation

{
  "version": "2018-05-29",
  "statements":   ["UPDATE <name-of-table> set deleted_at=NOW() WHERE id=$ctx.args.id", "SELECT * FROM <name-of-table> WHERE id=$ctx.args.id"]
}

Sample mutation response VTL with support for handling AWSDateTime

#set ( $index = -1)
#set ( $result = $util.parseJson($ctx.result) )
#set ( $meta = $result.sqlStatementResults[1].columnMetadata)
#foreach ($column in $meta)
    #set ($index = $index + 1)
    #if ( $column["typeName"] == "timestamptz" )
        #set ($time = $result["sqlStatementResults"][1]["records"][0][$index]["stringValue"] )
        #set ( $nowEpochMillis = $util.time.parseFormattedToEpochMilliSeconds("$time.substring(0,19)+0000", "yyyy-MM-dd HH:mm:ssZ") )
        #set ( $isoDateTime = $util.time.epochMilliSecondsToISO8601($nowEpochMillis) )
        $util.qr( $result["sqlStatementResults"][1]["records"][0][$index].put("stringValue", "$isoDateTime") )
    #end
#end
#set ( $res = $util.parseJson($util.rds.toJsonString($util.toJson($result)))[1][0] )
#set ( $response = {} )
#foreach($mapKey in $res.keySet())
    #set ( $s = $mapKey.split("_") )
    #set ( $camelCase="" )
    #set ( $isFirst=true )
    #foreach($entry in $s)
        #if ( $isFirst )
          #set ( $first = $entry.substring(0,1) )
        #else
          #set ( $first = $entry.substring(0,1).toUpperCase() )
        #end
        #set ( $isFirst=false )
        #set ( $stringLength = $entry.length() )
        #set ( $remaining = $entry.substring(1, $stringLength) )
        #set ( $camelCase = "$camelCase$first$remaining" )
    #end
    $util.qr( $response.put("$camelCase", $res[$mapKey]) )
#end
$utils.toJson($response)

Using Variable Map

Variable map support is limited and does not differentiate numbers and strings data types, please inject them directly if needed.

Will be escaped properly: null, true, and false values.

{
  "version": "2018-05-29",
  "statements":   [
    "UPDATE <name-of-table> set deleted_at=NOW() WHERE id=:ID",
    "SELECT * FROM <name-of-table> WHERE id=:ID and unix_timestamp > $ctx.args.newerThan"
  ],
  variableMap: {
    ":ID": $ctx.args.id,
##    ":TIMESTAMP": $ctx.args.newerThan -- This will be handled as a string!!!
  }
}

Requires

Author: Serverless-appsync
Source Code: https://github.com/serverless-appsync/serverless-appsync-simulator 
License: MIT License

#serverless #sync #graphql 

Monty  Boehm

Monty Boehm

1675304280

How to Use Hotwire Rails

Introduction

We are back with another exciting and much-talked-about Rails tutorial on how to use Hotwire with the Rails application. This Hotwire Rails tutorial is an alternate method for building modern web applications that consume a pinch of JavaScript.

Rails 7 Hotwire is the default front-end framework shipped with Rails 7 after it was launched. It is used to represent HTML over the wire in the Rails application. Previously, we used to add a hotwire-rails gem in our gem file and then run rails hotwire: install. However, with the introduction of Rails 7, the gem got deprecated. Now, we use turbo-rails and stimulus rails directly, which work as Hotwire’s SPA-like page accelerator and Hotwire’s modest JavaScript framework.

What is Hotwire?

Hotwire is a package of different frameworks that help to build applications. It simplifies the developer’s work for writing web pages without the need to write JavaScript, and instead sending HTML code over the wire.

Introduction to The Hotwire Framework:

1. Turbo:

It uses simplified techniques to build web applications while decreasing the usage of JavaScript in the application. Turbo offers numerous handling methods for the HTML data sent over the wire and displaying the application’s data without actually loading the entire page. It helps to maintain the simplicity of web applications without destroying the single-page application experience by using the below techniques:

Turbo Frames: Turbo Frames help to load the different sections of our markup without any dependency as it divides the page into different contexts separately called frames and updates these frames individually.
Turbo Drive: Every link doesn’t have to make the entire page reload when clicked. Only the HTML contained within the tag will be displayed.
Turbo Streams: To add real-time features to the application, this technique is used. It helps to bring real-time data to the application using CRUD actions.

2. Stimulus

It represents the JavaScript framework, which is required when JS is a requirement in the application. The interaction with the HTML is possible with the help of a stimulus, as the controllers that help those interactions are written by a stimulus.

3. Strada

Not much information is available about Strada as it has not been officially released yet. However, it works with native applications, and by using HTML bridge attributes, interaction is made possible between web applications and native apps.

Simple diagrammatic representation of Hotwire Stack:

Hotwire Stack

Prerequisites For Hotwire Rails Tutorial

As we are implementing the Ruby on Rails Hotwire tutorial, make sure about the following installations before you can get started.

  • Ruby on Rails
  • Hotwire gem
  • PostgreSQL/SQLite (choose any one database)
  • Turbo Rails
  • Stimulus.js

Looking for an enthusiastic team of ROR developers to shape the vision of your web project?
Contact Bacancy today and hire Ruby developers to start building your dream project!

Create a new Rails Project

Find the following commands to create a rails application.

mkdir ~/projects/railshotwire
cd ~/projects/railshotwire
echo "source 'https://rubygems.org'" > Gemfile
echo "gem 'rails', '~> 7.0.0'" >> Gemfile
bundle install  
bundle exec rails new . --force -d=postgresql

Now create some files for the project, up till now no usage of Rails Hotwire can be seen.
Fire the following command in your terminal.

  • For creating a default controller for the application
echo "class HomeController < ApplicationController" > app/controllers/home_controller.rb
echo "end" >> app/controllers/home_controller.rb
  • For creating another controller for the application
echo "class OtherController < ApplicationController" > app/controllers/other_controller.rb
echo "end" >> app/controllers/home_controller.rb
  • For creating routes for the application
echo "Rails.application.routes.draw do" > config/routes.rb
echo '  get "home/index"' >> config/routes.rb
echo '  get "other/index"' >> config/routes.rb
echo '  root to: "home#index"' >> config/routes.rb
echo 'end' >> config/routes.rb
  • For creating a default view for the application
mkdir app/views/home
echo '<h1>This is Rails Hotwire homepage</h1>' > app/views/home/index.html.erb
echo '<div><%= link_to "Enter to other page", other_index_path %></div>' >> app/views/home/index.html.erb
  • For creating another view for the application
mkdir app/views/other
echo '<h1>This is Another page</h1>' > app/views/other/index.html.erb
echo '<div><%= link_to "Enter to home page", root_path %></div>' >> app/views/other/index.html.erb
  • For creating a database and schema.rb file for the application
bin/rails db:create
bin/rails db:migrate
  • For checking the application run bin/rails s and open your browser, your running application will have the below view.

Rails Hotwire Home Page

Additionally, you can clone the code and browse through the project. Here’s the source code of the repository: Rails 7 Hotwire application

Now, let’s see how Hotwire Rails can work its magic with various Turbo techniques.

Hotwire Rails: Turbo Drive

Go to your localhost:3000 on your web browser and right-click on the Inspect and open a Network tab of the DevTools of the browser.

Now click on go to another page link that appears on the home page to redirect from the home page to another page. In our Network tab, we can see that this action of navigation is achieved via XHR. It appears only the part inside HTML is reloaded, here neither the CSS is reloaded nor the JS is reloaded when the navigation action is performed.

Hotwire Rails Turbo Drive

By performing this action we can see that Turbo Drive helps to represent the HTML response without loading the full page and only follows redirect and reindeer HTML responses which helps to make the application faster to access.

Hotwire Rails: Turbo Frame

This technique helps to divide the current page into different sections called frames that can be updated separately independently when new data is added from the server.
Below we discuss the different use cases of Turbo frame like inline edition, sorting, searching, and filtering of data.

Let’s perform some practical actions to see the example of these use cases.

Make changes in the app/controllers/home_controller.rb file

#CODE

class HomeController < ApplicationController
   def turbo_frame_form
   end
   
   def turbo_frame submit
      extracted_anynumber = params[:any][:anynumber]
      render :turbo_frame_form, status: :ok, locals: {anynumber: extracted_anynumber,      comment: 'turbo_frame_submit ok' }
   end
end

Turbo Frame

Add app/views/home/turbo_frame_form.html.erb file to the application and add this content inside the file.

#CODE

<section>

    <%= turbo_frame_tag 'anyframe' do %>
            
      <div>
          <h2>Frame view</h2>
          <%= form_with scope: :any, url: turbo_frame_submit_path, local: true do |form| %>
              <%= form.label :anynumber, 'Type an integer (odd or even)', 'class' => 'my-0  d-inline'  %>
              <%= form.text_field :anynumber, type: 'number', 'required' => 'true', 'value' => "#{local_assigns[:anynumber] || 0}",  'aria-describedby' => 'anynumber' %>
              <%= form.submit 'Submit this number', 'id' => 'submit-number' %>
          <% end %>
      </div>
      <div>
        <h2>Data of the view</h2>
        <pre style="font-size: .7rem;"><%= JSON.pretty_generate(local_assigns) %></pre> 
      </div>
      
    <% end %>

</section>

Add the content inside file

Make some adjustments in routes.rb

#CODE

Rails.application.routes.draw do
  get 'home/index'
  get 'other/index'

  get '/home/turbo_frame_form' => 'home#turbo_frame_form', as: 'turbo_frame_form'
  post '/home/turbo_frame_submit' => 'home#turbo_frame_submit', as: 'turbo_frame_submit'


  root to: "home#index"
end
  • Next step is to change homepage view in app/views/home/index.html.erb

#CODE

<h1>This is Rails Hotwire home page</h1>
<div><%= link_to "Enter to other page", other_index_path %></div>

<%= turbo_frame_tag 'anyframe' do %>        
  <div>
      <h2>Home view</h2>
      <%= form_with scope: :any, url: turbo_frame_submit_path, local: true do |form| %>
          <%= form.label :anynumber, 'Type an integer (odd or even)', 'class' => 'my-0  d-inline'  %>
          <%= form.text_field :anynumber, type: 'number', 'required' => 'true', 'value' => "#{local_assigns[:anynumber] || 0}",  'aria-describedby' => 'anynumber' %>
          <%= form.submit 'Submit this number', 'id' => 'submit-number' %>
      <% end %>
  <div>
<% end %>

Change HomePage

After making all the changes, restart the rails server and refresh the browser, the default view will appear on the browser.

restart the rails serverNow in the field enter any digit, after entering the digit click on submit button, and as the submit button is clicked we can see the Turbo Frame in action in the below screen, we can observe that the frame part changed, the first title and first link didn’t move.

submit button is clicked

Hotwire Rails: Turbo Streams

Turbo Streams deliver page updates over WebSocket, SSE or in response to form submissions by only using HTML and a series of CRUD-like operations, you are free to say that either

  • Update the piece of HTML while responding to all the other actions like the post, put, patch, and delete except the GET action.
  • Transmit a change to all users, without reloading the browser page.

This transmit can be represented by a simple example.

  • Make changes in app/controllers/other_controller.rb file of rails application

#CODE

class OtherController < ApplicationController

  def post_something
    respond_to do |format|
      format.turbo_stream {  }
    end
  end

   end

file of rails application

Add the below line in routes.rb file of the application

#CODE

post '/other/post_something' => 'other#post_something', as: 'post_something'
Add the below line

Superb! Rails will now attempt to locate the app/views/other/post_something.turbo_stream.erb template at any moment the ‘/other/post_something’ endpoint is reached.

For this, we need to add app/views/other/post_something.turbo_stream.erb template in the rails application.

#CODE

<turbo-stream action="append" target="messages">
  <template>
    <div id="message_1">This changes the existing message!</div>
  </template>
</turbo-stream>
Add template in the rails application

This states that the response will try to append the template of the turbo frame with ID “messages”.

Now change the index.html.erb file in app/views/other paths with the below content.

#CODE

<h1>This is Another page</h1>
<div><%= link_to "Enter to home page", root_path %></div>

<div style="margin-top: 3rem;">
  <%= form_with scope: :any, url: post_something_path do |form| %>
      <%= form.submit 'Post any message %>
  <% end %>
  <turbo-frame id="messages">
    <div>An empty message</div>
  </turbo-frame>
</div>
change the index.html.erb file
  • After making all the changes, restart the rails server and refresh the browser, and go to the other page.

go to the other page

  • Once the above screen appears, click on the Post any message button

Post any message button

This action shows that after submitting the response, the Turbo Streams help the developer to append the message, without reloading the page.

Another use case we can test is that rather than appending the message, the developer replaces the message. For that, we need to change the content of app/views/other/post_something.turbo_stream.erb template file and change the value of the action attribute from append to replace and check the changes in the browser.

#CODE

<turbo-stream action="replace" target="messages">
  <template>
    <div id="message_1">This changes the existing message!</div>
  </template>
</turbo-stream>

change the value of the action attributeWhen we click on Post any message button, the message that appear below that button will get replaced with the message that is mentioned in the app/views/other/post_something.turbo_stream.erb template

click on Post any message button

Stimulus

There are some cases in an application where JS is needed, therefore to cover those scenarios we require Hotwire JS tool. Hotwire has a JS tool because in some scenarios Turbo-* tools are not sufficient. But as we know that Hotwire is used to reduce the usage of JS in an application, Stimulus considers HTML as the single source of truth. Consider the case where we have to give elements on a page some JavaScript attributes, such as data controller, data-action, and data target. For that, a stimulus controller that can access elements and receive events based on those characteristics will be created.

Make a change in app/views/other/index.html.erb template file in rails application

#CODE

<h1>This is Another page</h1>
<div><%= link_to "Enter to home page", root_path %></div>

<div style="margin-top: 2rem;">
  <%= form_with scope: :any, url: post_something_path do |form| %>
      <%= form.submit 'Post something' %>
  <% end %>
  <turbo-frame id="messages">
    <div>An empty message</div>
  </turbo-frame>
</div>

<div style="margin-top: 2rem;">
  <h2>Stimulus</h2>  
  <div data-controller="hello">
    <input data-hello-target="name" type="text">
    <button data-action="click->hello#greet">
      Greet
    </button>
    <span data-hello-target="output">
    </span>
  </div>
</div>

Make A changeMake changes in the hello_controller.js in path app/JavaScript/controllers and add a stimulus controller in the file, which helps to bring the HTML into life.

#CODE

import { Controller } from "@hotwired/stimulus"

export default class extends Controller {
  static targets = [ "name", "output" ]

  greet() {
    this.outputTarget.textContent =
      `Hello, ${this.nameTarget.value}!`
  }
}

add a stimulus controller in the fileGo to your browser after making the changes in the code and click on Enter to other page link which will navigate to the localhost:3000/other/index page there you can see the changes implemented by the stimulus controller that is designed to augment your HTML with just enough behavior to make it more responsive.

With just a little bit of work, Turbo and Stimulus together offer a complete answer for applications that are quick and compelling.

Using Rails 7 Hotwire helps to load the pages at a faster speed and allows you to render templates on the server, where you have access to your whole domain model. It is a productive development experience in ROR, without compromising any of the speed or responsiveness associated with SPA.

Conclusion

We hope you were satisfied with our Rails Hotwire tutorial. Write to us at service@bacancy.com for any query that you want to resolve, or if you want us to share a tutorial on your query.

For more such solutions on RoR, check out our Ruby on Rails Tutorials. We will always strive to amaze you and cater to your needs.

Original article source at: https://www.bacancytechnology.com/

#rails #ruby 

Generis: Versatile Go Code Generator

Generis

Versatile Go code generator.

Description

Generis is a lightweight code preprocessor adding the following features to the Go language :

  • Generics.
  • Free-form macros.
  • Conditional compilation.
  • HTML templating.
  • Allman style conversion.

Sample

package main;

// -- IMPORTS

import (
    "html"
    "io"
    "log"
    "net/http"
    "net/url"
    "strconv"
    );

// -- DEFINITIONS

#define DebugMode
#as true

// ~~

#define HttpPort
#as 8080

// ~~

#define WriteLine( {{text}} )
#as log.Println( {{text}} )

// ~~

#define local {{variable}} : {{type}};
#as var {{variable}} {{type}};

// ~~

#define DeclareStack( {{type}}, {{name}} )
#as
    // -- TYPES

    type {{name}}Stack struct
    {
        ElementArray []{{type}};
    }

    // -- INQUIRIES

    func ( stack * {{name}}Stack ) IsEmpty(
        ) bool
    {
        return len( stack.ElementArray ) == 0;
    }

    // -- OPERATIONS

    func ( stack * {{name}}Stack ) Push(
        element {{type}}
        )
    {
        stack.ElementArray = append( stack.ElementArray, element );
    }

    // ~~

    func ( stack * {{name}}Stack ) Pop(
        ) {{type}}
    {
        local
            element : {{type}};

        element = stack.ElementArray[ len( stack.ElementArray ) - 1 ];

        stack.ElementArray = stack.ElementArray[ : len( stack.ElementArray ) - 1 ];

        return element;
    }
#end

// ~~

#define DeclareStack( {{type}} )
#as DeclareStack( {{type}}, {{type:PascalCase}} )

// -- TYPES

DeclareStack( string )
DeclareStack( int32 )

// -- FUNCTIONS

func HandleRootPage(
    response_writer http.ResponseWriter,
    request * http.Request
    )
{
    local
        boolean : bool;
    local
        natural : uint;
    local
        integer : int;
    local
        real : float64;
    local
        escaped_html_text,
        escaped_url_text,
        text : string;
    local
        integer_stack : Int32Stack;

    boolean = true;
    natural = 10;
    integer = 20;
    real = 30.0;
    text = "text";
    escaped_url_text = "&escaped text?";
    escaped_html_text = "<escaped text/>";

    integer_stack.Push( 10 );
    integer_stack.Push( 20 );
    integer_stack.Push( 30 );

    #write response_writer
        <!DOCTYPE html>
        <html lang="en">
            <head>
                <meta charset="utf-8">
                <title><%= request.URL.Path %></title>
            </head>
            <body>
                <% if ( boolean ) { %>
                    <%= "URL : " + request.URL.Path %>
                    <br/>
                    <%@ natural %>
                    <%# integer %>
                    <%& real %>
                    <br/>
                    <%~ text %>
                    <%^ escaped_url_text %>
                    <%= escaped_html_text %>
                    <%= "<%% ignored %%>" %>
                    <%% ignored %%>
                <% } %>
                <br/>
                Stack :
                <br/>
                <% for !integer_stack.IsEmpty() { %>
                    <%# integer_stack.Pop() %>
                <% } %>
            </body>
        </html>
    #end
}

// ~~

func main()
{
    http.HandleFunc( "/", HandleRootPage );

    #if DebugMode
        WriteLine( "Listening on http://localhost:HttpPort" );
    #end

    log.Fatal(
        http.ListenAndServe( ":HttpPort", nil )
        );
}

Syntax

#define directive

Constants and generic code can be defined with the following syntax :

#define old code
#as new code

#define old code
#as
    new
    code
#end

#define
    old
    code
#as new code

#define
    old
    code
#as
    new
    code
#end

#define parameter

The #define directive can contain one or several parameters :

{{variable name}} : hierarchical code (with properly matching brackets and parentheses)
{{variable name#}} : statement code (hierarchical code without semicolon)
{{variable name$}} : plain code
{{variable name:boolean expression}} : conditional hierarchical code
{{variable name#:boolean expression}} : conditional statement code
{{variable name$:boolean expression}} : conditional plain code

They can have a boolean expression to require they match specific conditions :

HasText text
HasPrefix prefix
HasSuffix suffix
HasIdentifier text
false
true
!expression
expression && expression
expression || expression
( expression )

The #define directive must not start or end with a parameter.

#as parameter

The #as directive can use the value of the #define parameters :

{{variable name}}
{{variable name:filter function}}
{{variable name:filter function:filter function:...}}

Their value can be changed through one or several filter functions :

LowerCase
UpperCase
MinorCase
MajorCase
SnakeCase
PascalCase
CamelCase
RemoveComments
RemoveBlanks
PackStrings
PackIdentifiers
ReplacePrefix old_prefix new_prefix
ReplaceSuffix old_suffix new_suffix
ReplaceText old_text new_text
ReplaceIdentifier old_identifier new_identifier
AddPrefix prefix
AddSuffix suffix
RemovePrefix prefix
RemoveSuffix suffix
RemoveText text
RemoveIdentifier identifier

#if directive

Conditional code can be defined with the following syntax :

#if boolean expression
    #if boolean expression
        ...
    #else
        ...
    #end
#else
    #if boolean expression
        ...
    #else
        ...
    #end
#end

The boolean expression can use the following operators :

false
true
!expression
expression && expression
expression || expression
( expression )

#write directive

Templated HTML code can be sent to a stream writer using the following syntax :

#write writer expression
    <% code %>
    <%@ natural expression %>
    <%# integer expression %>
    <%& real expression %>
    <%~ text expression %>
    <%= escaped text expression %>
    <%! removed content %>
    <%% ignored tags %%>
#end

Limitations

  • There is no operator precedence in boolean expressions.
  • The --join option requires to end the statements with a semicolon.
  • The #writer directive is only available for the Go language.

Installation

Install the DMD 2 compiler (using the MinGW setup option on Windows).

Build the executable with the following command line :

dmd -m64 generis.d

Command line

generis [options]

Options

--prefix # : set the command prefix
--parse INPUT_FOLDER/ : parse the definitions of the Generis files in the input folder
--process INPUT_FOLDER/ OUTPUT_FOLDER/ : reads the Generis files in the input folder and writes the processed files in the output folder
--trim : trim the HTML templates
--join : join the split statements
--create : create the output folders if needed
--watch : watch the Generis files for modifications
--pause 500 : time to wait before checking the Generis files again
--tabulation 4 : set the tabulation space count
--extension .go : generate files with this extension

Examples

generis --process GS/ GO/

Reads the Generis files in the GS/ folder and writes Go files in the GO/ folder.

generis --process GS/ GO/ --create

Reads the Generis files in the GS/ folder and writes Go files in the GO/ folder, creating the output folders if needed.

generis --process GS/ GO/ --create --watch

Reads the Generis files in the GS/ folder and writes Go files in the GO/ folder, creating the output folders if needed and watching the Generis files for modifications.

generis --process GS/ GO/ --trim --join --create --watch

Reads the Generis files in the GS/ folder and writes Go files in the GO/ folder, trimming the HTML templates, joining the split statements, creating the output folders if needed and watching the Generis files for modifications.

Version

2.0

Author: Senselogic
Source Code: https://github.com/senselogic/GENERIS 
License: View license

#go #golang #code 

Matt  Towne

Matt Towne

1589791867

Serverless CI/CD on the AWS Cloud

CI/CD pipelines have long played a major role in speeding up the development and deployment of cloud-native apps. Cloud services like AWS lend themselves to more agile deployment through the services they offer as well as approaches such as Infrastructure as Code. There is no shortage of tools to help you manage your CI/CD pipeline as well.

While the majority of development teams have streamlined their pipelines to take full advantage of cloud-native features, there is still so much that can be done to refine CI/CD even further. The entire pipeline can now be built as code and managed either via Git as a single source of truth or by using visual tools to help guide the process.

The entire process can be fully automated. Even better, it can be made serverless, which allows the CI/CD pipeline to operate with immense efficiency. Git branches can even be utilized as a base for multiple pipelines. Thanks to the three tools from Amazon; AWS CodeCommit, AWS CodeBuild, and AWS CodeDeploy, serverless CI/CD on the AWS cloud is now easy to set up.

#aws #aws codebuild #aws codecommit #aws codedeploy #cd #cd pipeline #ci #ci/cd processes #ci/cd workflow #serverless

Tamia  Walter

Tamia Walter

1596754901

Testing Microservices Applications

The shift towards microservices and modular applications makes testing more important and more challenging at the same time. You have to make sure that the microservices running in containers perform well and as intended, but you can no longer rely on conventional testing strategies to get the job done.

This is where new testing approaches are needed. Testing your microservices applications require the right approach, a suitable set of tools, and immense attention to details. This article will guide you through the process of testing your microservices and talk about the challenges you will have to overcome along the way. Let’s get started, shall we?

A Brave New World

Traditionally, testing a monolith application meant configuring a test environment and setting up all of the application components in a way that matched the production environment. It took time to set up the testing environment, and there were a lot of complexities around the process.

Testing also requires the application to run in full. It is not possible to test monolith apps on a per-component basis, mainly because there is usually a base code that ties everything together, and the app is designed to run as a complete app to work properly.

Microservices running in containers offer one particular advantage: universal compatibility. You don’t have to match the testing environment with the deployment architecture exactly, and you can get away with testing individual components rather than the full app in some situations.

Of course, you will have to embrace the new cloud-native approach across the pipeline. Rather than creating critical dependencies between microservices, you need to treat each one as a semi-independent module.

The only monolith or centralized portion of the application is the database, but this too is an easy challenge to overcome. As long as you have a persistent database running on your test environment, you can perform tests at any time.

Keep in mind that there are additional things to focus on when testing microservices.

  • Microservices rely on network communications to talk to each other, so network reliability and requirements must be part of the testing.
  • Automation and infrastructure elements are now added as codes, and you have to make sure that they also run properly when microservices are pushed through the pipeline
  • While containerization is universal, you still have to pay attention to specific dependencies and create a testing strategy that allows for those dependencies to be included

Test containers are the method of choice for many developers. Unlike monolith apps, which lets you use stubs and mocks for testing, microservices need to be tested in test containers. Many CI/CD pipelines actually integrate production microservices as part of the testing process.

Contract Testing as an Approach

As mentioned before, there are many ways to test microservices effectively, but the one approach that developers now use reliably is contract testing. Loosely coupled microservices can be tested in an effective and efficient way using contract testing, mainly because this testing approach focuses on contracts; in other words, it focuses on how components or microservices communicate with each other.

Syntax and semantics construct how components communicate with each other. By defining syntax and semantics in a standardized way and testing microservices based on their ability to generate the right message formats and meet behavioral expectations, you can rest assured knowing that the microservices will behave as intended when deployed.

Ways to Test Microservices

It is easy to fall into the trap of making testing microservices complicated, but there are ways to avoid this problem. Testing microservices doesn’t have to be complicated at all when you have the right strategy in place.

There are several ways to test microservices too, including:

  • Unit testing: Which allows developers to test microservices in a granular way. It doesn’t limit testing to individual microservices, but rather allows developers to take a more granular approach such as testing individual features or runtimes.
  • Integration testing: Which handles the testing of microservices in an interactive way. Microservices still need to work with each other when they are deployed, and integration testing is a key process in making sure that they do.
  • End-to-end testing: Which⁠—as the name suggests⁠—tests microservices as a complete app. This type of testing enables the testing of features, UI, communications, and other components that construct the app.

What’s important to note is the fact that these testing approaches allow for asynchronous testing. After all, asynchronous development is what makes developing microservices very appealing in the first place. By allowing for asynchronous testing, you can also make sure that components or microservices can be updated independently to one another.

#blog #microservices #testing #caylent #contract testing #end-to-end testing #hoverfly #integration testing #microservices #microservices architecture #pact #testing #unit testing #vagrant #vcr