Dylan  Iqbal

Dylan Iqbal

1630996646

A Look at an ES2022 Feature: Class Static Initialization Blocks

ECMAScript class static initialization blocks

Class static blocks provide a mechanism to perform additional static initialization during class definition evaluation.

This is not intended as a replacement for public fields, as they provide useful information for static analysis tools and are a valid target for decorators. Rather, this is intended to augment existing use cases and enable new use cases not currently handled by that proposal.

Status

Stage: 4
Champion: Ron Buckton (@rbuckton)

For detailed status of this proposal see TODO, below.

Authors

  • Ron Buckton (@rbuckton)

Motivations

The current proposals for static fields and static private fields provide a mechanism to perform per-field initialization of the static-side of a class during ClassDefinitionEvaluation, however there are some cases that cannot be covered easily. For example, if you need to evaluate statements during initialization (such as try..catch), or set two fields from a single value, you have to perform that logic outside of the class definition.

// without static blocks:
class C {
  static x = ...;
  static y;
  static z;
}

try {
  const obj = doSomethingWith(C.x);
  C.y = obj.y
  C.z = obj.z;
}
catch {
  C.y = ...;
  C.z = ...;
}

// with static blocks:
class C {
  static x = ...;
  static y;
  static z;
  static {
    try {
      const obj = doSomethingWith(this.x);
      this.y = obj.y;
      this.z = obj.z;
    }
    catch {
      this.y = ...;
      this.z = ...;
    }
  }
}

In addition, there are cases where information sharing needs to occur between a class with an instance private field and another class or function declared in the same scope.

Static blocks provide an opportunity to evaluate statements in the context of the current class declaration, with privileged access to private state (be they instance-private or static-private):

let getX;

export class C {
  #x
  constructor(x) {
    this.#x = { data: x };
  }

  static {
    // getX has privileged access to #x
    getX = (obj) => obj.#x;
  }
}

export function readXData(obj) {
  return getX(obj).data;
}

Relation to "Private Declarations"

The Private Declarations proposal also intends to address the issue of privileged access between two classes, by lifting the private name out of the class declaration and into the enclosing scope. While there is some overlap in that respect, private declarations do not solve the issue of multi-step static initialization without potentially exposing a private name to the outer scope purely for initialization purposes:

// with private declarations
private #z; // exposed purely for post-declaration initialization
class C {
  static y;
  static outer #z;
}
const obj = ...;
C.y = obj.y;
C.#z = obj.z;

// with static block
class C {
  static y;
  static #z; // not exposed outside of class
  static {
    const obj = ...;
    this.y = obj.y;
    this.#z = obj.z;
  }
}

In addition, Private Declarations expose a private name that potentially allows both read and write access to shared private state when read-only access might be desireable. To work around this with private declarations requires additional complexity (though there is a similar cost for static{} as well):

// with private declarations
private #zRead;
class C {
  #z = ...; // only writable inside of the class
  get #zRead() { return this.#z; } // wrapper needed to ensure read-only access
}

// with static
let zRead;
class C {
  #z = ...; // only writable inside of the class
  static { zRead = obj => obj.#z; } // callback needed to ensure read-only access
}

In the long run, however, there is nothing that prevents these two proposals from working side-by-side:

private #shared;
class C {
  static outer #shared;
  static #local;
  static {
    const obj = ...;
    this.#shared = obj.shared;
    this.#local = obj.local;
  }
}
class D {
  method() {
    C.#shared; // ok
    C.#local; // no access
  }
}

Prior Art

Syntax

class C {
  static {
    // statements
  }
}

Semantics

  • A static {} initialization block creates a new lexical scope (e.g. var, function, and block-scoped declarations are local to the static {} initialization block. This lexical scope is nested within the lexical scope of the class body (granting privileged access to instance private state for the class).
  • A class may have any number of static {} initialization blocks in its class body.
  • static {} initialization blocks are evaluated in document order interleaved with static field initializers.
  • A static {} initialization block may not have decorators (instead you would decorate the class itself).
  • When evaluated, a static {} initialization block's this receiver is the constructor object of the class (as with static field initializers).
  • It is a Syntax Error to reference arguments from within a static {} initialization block.
  • It is a Syntax Error to include a SuperCall (i.e., super()) from within a static {} initialization block.
  • A static {} initialization block may contain SuperProperty references as a means to access or invoke static members on a base class that may have been overridden by the derived class containing the static {} initialization block.
  • A static {} initialization block should be represented as an independent stack frame in debuggers and exception traces.

Examples

// "friend" access (same module)
let A, B;
{
  let friendA;

  A = class A {
    #x;

    static {
        friendA = {
          getX(obj) { return obj.#x },
          setX(obj, value) { obj.#x = value }
        };
    }
  };

  B = class B {
    constructor(a) {
      const x = friendA.getX(a); // ok
      friendA.setX(a, x); // ok
    }
  };
}

References

TODO

The following is a high-level list of tasks to progress through each stage of the TC39 proposal process:

Stage 1 Entrance Criteria

  • Identified a "champion" who will advance the addition.
  • Prose outlining the problem or need and the general shape of a solution.
  • Illustrative examples of usage.
  • High-level API.

Stage 2 Entrance Criteria

Stage 3 Entrance Criteria

Stage 4 Entrance Criteria

For up-to-date information on Stage 4 criteria, check: #48

  • Test262 acceptance tests have been written for mainline usage scenarios and merged.
  • Two compatible implementations which pass the acceptance tests:
  • A pull request has been sent to tc39/ecma262 with the integrated spec text.
  • The ECMAScript editor has signed off on the pull request.

Download Details:
Author: tc39
The Demo/Documentation: View The Demo/Documentation
Download Link: Download The Source Code
Official Website: https://github.com/tc39/proposal-class-static-block 
License: BSD-3
#javascript #es2022 #ecmascript 

What is GEEK

Buddha Community

A Look at an ES2022 Feature: Class Static Initialization Blocks
Dylan  Iqbal

Dylan Iqbal

1630996646

A Look at an ES2022 Feature: Class Static Initialization Blocks

ECMAScript class static initialization blocks

Class static blocks provide a mechanism to perform additional static initialization during class definition evaluation.

This is not intended as a replacement for public fields, as they provide useful information for static analysis tools and are a valid target for decorators. Rather, this is intended to augment existing use cases and enable new use cases not currently handled by that proposal.

Status

Stage: 4
Champion: Ron Buckton (@rbuckton)

For detailed status of this proposal see TODO, below.

Authors

  • Ron Buckton (@rbuckton)

Motivations

The current proposals for static fields and static private fields provide a mechanism to perform per-field initialization of the static-side of a class during ClassDefinitionEvaluation, however there are some cases that cannot be covered easily. For example, if you need to evaluate statements during initialization (such as try..catch), or set two fields from a single value, you have to perform that logic outside of the class definition.

// without static blocks:
class C {
  static x = ...;
  static y;
  static z;
}

try {
  const obj = doSomethingWith(C.x);
  C.y = obj.y
  C.z = obj.z;
}
catch {
  C.y = ...;
  C.z = ...;
}

// with static blocks:
class C {
  static x = ...;
  static y;
  static z;
  static {
    try {
      const obj = doSomethingWith(this.x);
      this.y = obj.y;
      this.z = obj.z;
    }
    catch {
      this.y = ...;
      this.z = ...;
    }
  }
}

In addition, there are cases where information sharing needs to occur between a class with an instance private field and another class or function declared in the same scope.

Static blocks provide an opportunity to evaluate statements in the context of the current class declaration, with privileged access to private state (be they instance-private or static-private):

let getX;

export class C {
  #x
  constructor(x) {
    this.#x = { data: x };
  }

  static {
    // getX has privileged access to #x
    getX = (obj) => obj.#x;
  }
}

export function readXData(obj) {
  return getX(obj).data;
}

Relation to "Private Declarations"

The Private Declarations proposal also intends to address the issue of privileged access between two classes, by lifting the private name out of the class declaration and into the enclosing scope. While there is some overlap in that respect, private declarations do not solve the issue of multi-step static initialization without potentially exposing a private name to the outer scope purely for initialization purposes:

// with private declarations
private #z; // exposed purely for post-declaration initialization
class C {
  static y;
  static outer #z;
}
const obj = ...;
C.y = obj.y;
C.#z = obj.z;

// with static block
class C {
  static y;
  static #z; // not exposed outside of class
  static {
    const obj = ...;
    this.y = obj.y;
    this.#z = obj.z;
  }
}

In addition, Private Declarations expose a private name that potentially allows both read and write access to shared private state when read-only access might be desireable. To work around this with private declarations requires additional complexity (though there is a similar cost for static{} as well):

// with private declarations
private #zRead;
class C {
  #z = ...; // only writable inside of the class
  get #zRead() { return this.#z; } // wrapper needed to ensure read-only access
}

// with static
let zRead;
class C {
  #z = ...; // only writable inside of the class
  static { zRead = obj => obj.#z; } // callback needed to ensure read-only access
}

In the long run, however, there is nothing that prevents these two proposals from working side-by-side:

private #shared;
class C {
  static outer #shared;
  static #local;
  static {
    const obj = ...;
    this.#shared = obj.shared;
    this.#local = obj.local;
  }
}
class D {
  method() {
    C.#shared; // ok
    C.#local; // no access
  }
}

Prior Art

Syntax

class C {
  static {
    // statements
  }
}

Semantics

  • A static {} initialization block creates a new lexical scope (e.g. var, function, and block-scoped declarations are local to the static {} initialization block. This lexical scope is nested within the lexical scope of the class body (granting privileged access to instance private state for the class).
  • A class may have any number of static {} initialization blocks in its class body.
  • static {} initialization blocks are evaluated in document order interleaved with static field initializers.
  • A static {} initialization block may not have decorators (instead you would decorate the class itself).
  • When evaluated, a static {} initialization block's this receiver is the constructor object of the class (as with static field initializers).
  • It is a Syntax Error to reference arguments from within a static {} initialization block.
  • It is a Syntax Error to include a SuperCall (i.e., super()) from within a static {} initialization block.
  • A static {} initialization block may contain SuperProperty references as a means to access or invoke static members on a base class that may have been overridden by the derived class containing the static {} initialization block.
  • A static {} initialization block should be represented as an independent stack frame in debuggers and exception traces.

Examples

// "friend" access (same module)
let A, B;
{
  let friendA;

  A = class A {
    #x;

    static {
        friendA = {
          getX(obj) { return obj.#x },
          setX(obj, value) { obj.#x = value }
        };
    }
  };

  B = class B {
    constructor(a) {
      const x = friendA.getX(a); // ok
      friendA.setX(a, x); // ok
    }
  };
}

References

TODO

The following is a high-level list of tasks to progress through each stage of the TC39 proposal process:

Stage 1 Entrance Criteria

  • Identified a "champion" who will advance the addition.
  • Prose outlining the problem or need and the general shape of a solution.
  • Illustrative examples of usage.
  • High-level API.

Stage 2 Entrance Criteria

Stage 3 Entrance Criteria

Stage 4 Entrance Criteria

For up-to-date information on Stage 4 criteria, check: #48

  • Test262 acceptance tests have been written for mainline usage scenarios and merged.
  • Two compatible implementations which pass the acceptance tests:
  • A pull request has been sent to tc39/ecma262 with the integrated spec text.
  • The ECMAScript editor has signed off on the pull request.

Download Details:
Author: tc39
The Demo/Documentation: View The Demo/Documentation
Download Link: Download The Source Code
Official Website: https://github.com/tc39/proposal-class-static-block 
License: BSD-3
#javascript #es2022 #ecmascript 

Yashi Tyagi

1617449307

CA Classes - Best CA Classes Online

Chartered Accountancy course requires mental focus & discipline, coaching for CA Foundation, CA Inter and CA Finals are omnipresent, and some of the best faculty’s classes have moved online, in this blog, we are going to give the best way to find online videos lectures, various online websites provide the CA lectures, Smartnstudy one of the best site to CA preparation, here all faculty’s video lecture available.

check here : ca classes

#ca classes online #ca classes in delhi #ca classes app #ca pendrive classes #ca google drive classes #best ca classes online

Tyrique  Littel

Tyrique Littel

1604008800

Static Code Analysis: What It Is? How to Use It?

Static code analysis refers to the technique of approximating the runtime behavior of a program. In other words, it is the process of predicting the output of a program without actually executing it.

Lately, however, the term “Static Code Analysis” is more commonly used to refer to one of the applications of this technique rather than the technique itself — program comprehension — understanding the program and detecting issues in it (anything from syntax errors to type mismatches, performance hogs likely bugs, security loopholes, etc.). This is the usage we’d be referring to throughout this post.

“The refinement of techniques for the prompt discovery of error serves as well as any other as a hallmark of what we mean by science.”

  • J. Robert Oppenheimer

Outline

We cover a lot of ground in this post. The aim is to build an understanding of static code analysis and to equip you with the basic theory, and the right tools so that you can write analyzers on your own.

We start our journey with laying down the essential parts of the pipeline which a compiler follows to understand what a piece of code does. We learn where to tap points in this pipeline to plug in our analyzers and extract meaningful information. In the latter half, we get our feet wet, and write four such static analyzers, completely from scratch, in Python.

Note that although the ideas here are discussed in light of Python, static code analyzers across all programming languages are carved out along similar lines. We chose Python because of the availability of an easy to use ast module, and wide adoption of the language itself.

How does it all work?

Before a computer can finally “understand” and execute a piece of code, it goes through a series of complicated transformations:

static analysis workflow

As you can see in the diagram (go ahead, zoom it!), the static analyzers feed on the output of these stages. To be able to better understand the static analysis techniques, let’s look at each of these steps in some more detail:

Scanning

The first thing that a compiler does when trying to understand a piece of code is to break it down into smaller chunks, also known as tokens. Tokens are akin to what words are in a language.

A token might consist of either a single character, like (, or literals (like integers, strings, e.g., 7Bob, etc.), or reserved keywords of that language (e.g, def in Python). Characters which do not contribute towards the semantics of a program, like trailing whitespace, comments, etc. are often discarded by the scanner.

Python provides the tokenize module in its standard library to let you play around with tokens:

Python

1

import io

2

import tokenize

3

4

code = b"color = input('Enter your favourite color: ')"

5

6

for token in tokenize.tokenize(io.BytesIO(code).readline):

7

    print(token)

Python

1

TokenInfo(type=62 (ENCODING),  string='utf-8')

2

TokenInfo(type=1  (NAME),      string='color')

3

TokenInfo(type=54 (OP),        string='=')

4

TokenInfo(type=1  (NAME),      string='input')

5

TokenInfo(type=54 (OP),        string='(')

6

TokenInfo(type=3  (STRING),    string="'Enter your favourite color: '")

7

TokenInfo(type=54 (OP),        string=')')

8

TokenInfo(type=4  (NEWLINE),   string='')

9

TokenInfo(type=0  (ENDMARKER), string='')

(Note that for the sake of readability, I’ve omitted a few columns from the result above — metadata like starting index, ending index, a copy of the line on which a token occurs, etc.)

#code quality #code review #static analysis #static code analysis #code analysis #static analysis tools #code review tips #static code analyzer #static code analysis tool #static analyzer

Joseph  Murray

Joseph Murray

1624048020

How to Find All the Classes of a Package in Java

In this article let’s take a look at how to find all classes of a package in Java

To find all classes of a package in Java we can use the ClassHunter of Burningwave Core library. So we start by adding the following dependency to our pom.xml:

XML

1

<dependency>2
    <groupId>org.burningwave</groupId>3
    <artifactId>core</artifactId>4
    <version>8.4.0</version>5
</dependency>

The next steps are the following:

  • retrieving the ClassHunter through the ComponentContainer
  • defining a regular expression that we must pass to the **ClassCriteria **object that will be injected into the **SearchConfig **object
  • calling the **loadInCache **method that loads in the cache all loadable classes of the indicated paths, then applies the criteria filter and then returns the **SearchResult **object which contains the classes that match the criteria

#java #classes #class #packages #package #how to find all the classes of a package in java

NuxtJS Static Pages and Content API - The Latest Features

NuxtJS Static Pages and Content API is finally here! NuxtJS just released a brand new version full of awesome features for building static pages, working with content like Markdown files, and lots more. Debbie O’Brien, Head of Learning at NuxtJS, joins me to get hands-on with the latest and greatest features in NuxtJS

#api #nuxtjs #static #content api #features