Sudhakar  Yadav

Sudhakar Yadav

1612338960

JavaScript Advance Functions Complete Tutorial | All About Different Types of Functions in JS

JavaScript Advance Functions Complete Tutorial | All About Different Types of Functions in JS

Tutorial Cover :

  1. How to Declare Constants in JavaScript
  2. How to Add Button Click Event Directly from HTML Code
  3. How to Add Button Click Event Using EventListener Method
  4. How to Add Button Click Event from Button Object
  5. How to Create Simple Function in JavaScript
  6. How to Call Function Without Passing Argument
  7. JavaScript Function with Default Argument Value
  8. JavaScript Function Pass Array in Function
  9. JavaScript Function Use of Rest Operator (…)
  10. JavaScript Use of Arrow Function
  11. JavaScript Use of Callback Function with Example
  12. Use of bind() Method in JavaScript

Source Code : https://github.com/hackstarsj/JavaScriptCompleteTutorial

Subscribe: https://www.youtube.com/channel/UCyz5M_3Rv2jLUDs4R_yRBkw

#js #javascript

What is GEEK

Buddha Community

JavaScript Advance Functions Complete Tutorial  | All About Different Types of Functions in JS

NBB: Ad-hoc CLJS Scripting on Node.js

Nbb

Not babashka. Node.js babashka!?

Ad-hoc CLJS scripting on Node.js.

Status

Experimental. Please report issues here.

Goals and features

Nbb's main goal is to make it easy to get started with ad hoc CLJS scripting on Node.js.

Additional goals and features are:

  • Fast startup without relying on a custom version of Node.js.
  • Small artifact (current size is around 1.2MB).
  • First class macros.
  • Support building small TUI apps using Reagent.
  • Complement babashka with libraries from the Node.js ecosystem.

Requirements

Nbb requires Node.js v12 or newer.

How does this tool work?

CLJS code is evaluated through SCI, the same interpreter that powers babashka. Because SCI works with advanced compilation, the bundle size, especially when combined with other dependencies, is smaller than what you get with self-hosted CLJS. That makes startup faster. The trade-off is that execution is less performant and that only a subset of CLJS is available (e.g. no deftype, yet).

Usage

Install nbb from NPM:

$ npm install nbb -g

Omit -g for a local install.

Try out an expression:

$ nbb -e '(+ 1 2 3)'
6

And then install some other NPM libraries to use in the script. E.g.:

$ npm install csv-parse shelljs zx

Create a script which uses the NPM libraries:

(ns script
  (:require ["csv-parse/lib/sync$default" :as csv-parse]
            ["fs" :as fs]
            ["path" :as path]
            ["shelljs$default" :as sh]
            ["term-size$default" :as term-size]
            ["zx$default" :as zx]
            ["zx$fs" :as zxfs]
            [nbb.core :refer [*file*]]))

(prn (path/resolve "."))

(prn (term-size))

(println (count (str (fs/readFileSync *file*))))

(prn (sh/ls "."))

(prn (csv-parse "foo,bar"))

(prn (zxfs/existsSync *file*))

(zx/$ #js ["ls"])

Call the script:

$ nbb script.cljs
"/private/tmp/test-script"
#js {:columns 216, :rows 47}
510
#js ["node_modules" "package-lock.json" "package.json" "script.cljs"]
#js [#js ["foo" "bar"]]
true
$ ls
node_modules
package-lock.json
package.json
script.cljs

Macros

Nbb has first class support for macros: you can define them right inside your .cljs file, like you are used to from JVM Clojure. Consider the plet macro to make working with promises more palatable:

(defmacro plet
  [bindings & body]
  (let [binding-pairs (reverse (partition 2 bindings))
        body (cons 'do body)]
    (reduce (fn [body [sym expr]]
              (let [expr (list '.resolve 'js/Promise expr)]
                (list '.then expr (list 'clojure.core/fn (vector sym)
                                        body))))
            body
            binding-pairs)))

Using this macro we can look async code more like sync code. Consider this puppeteer example:

(-> (.launch puppeteer)
      (.then (fn [browser]
               (-> (.newPage browser)
                   (.then (fn [page]
                            (-> (.goto page "https://clojure.org")
                                (.then #(.screenshot page #js{:path "screenshot.png"}))
                                (.catch #(js/console.log %))
                                (.then #(.close browser)))))))))

Using plet this becomes:

(plet [browser (.launch puppeteer)
       page (.newPage browser)
       _ (.goto page "https://clojure.org")
       _ (-> (.screenshot page #js{:path "screenshot.png"})
             (.catch #(js/console.log %)))]
      (.close browser))

See the puppeteer example for the full code.

Since v0.0.36, nbb includes promesa which is a library to deal with promises. The above plet macro is similar to promesa.core/let.

Startup time

$ time nbb -e '(+ 1 2 3)'
6
nbb -e '(+ 1 2 3)'   0.17s  user 0.02s system 109% cpu 0.168 total

The baseline startup time for a script is about 170ms seconds on my laptop. When invoked via npx this adds another 300ms or so, so for faster startup, either use a globally installed nbb or use $(npm bin)/nbb script.cljs to bypass npx.

Dependencies

NPM dependencies

Nbb does not depend on any NPM dependencies. All NPM libraries loaded by a script are resolved relative to that script. When using the Reagent module, React is resolved in the same way as any other NPM library.

Classpath

To load .cljs files from local paths or dependencies, you can use the --classpath argument. The current dir is added to the classpath automatically. So if there is a file foo/bar.cljs relative to your current dir, then you can load it via (:require [foo.bar :as fb]). Note that nbb uses the same naming conventions for namespaces and directories as other Clojure tools: foo-bar in the namespace name becomes foo_bar in the directory name.

To load dependencies from the Clojure ecosystem, you can use the Clojure CLI or babashka to download them and produce a classpath:

$ classpath="$(clojure -A:nbb -Spath -Sdeps '{:aliases {:nbb {:replace-deps {com.github.seancorfield/honeysql {:git/tag "v2.0.0-rc5" :git/sha "01c3a55"}}}}}')"

and then feed it to the --classpath argument:

$ nbb --classpath "$classpath" -e "(require '[honey.sql :as sql]) (sql/format {:select :foo :from :bar :where [:= :baz 2]})"
["SELECT foo FROM bar WHERE baz = ?" 2]

Currently nbb only reads from directories, not jar files, so you are encouraged to use git libs. Support for .jar files will be added later.

Current file

The name of the file that is currently being executed is available via nbb.core/*file* or on the metadata of vars:

(ns foo
  (:require [nbb.core :refer [*file*]]))

(prn *file*) ;; "/private/tmp/foo.cljs"

(defn f [])
(prn (:file (meta #'f))) ;; "/private/tmp/foo.cljs"

Reagent

Nbb includes reagent.core which will be lazily loaded when required. You can use this together with ink to create a TUI application:

$ npm install ink

ink-demo.cljs:

(ns ink-demo
  (:require ["ink" :refer [render Text]]
            [reagent.core :as r]))

(defonce state (r/atom 0))

(doseq [n (range 1 11)]
  (js/setTimeout #(swap! state inc) (* n 500)))

(defn hello []
  [:> Text {:color "green"} "Hello, world! " @state])

(render (r/as-element [hello]))

Promesa

Working with callbacks and promises can become tedious. Since nbb v0.0.36 the promesa.core namespace is included with the let and do! macros. An example:

(ns prom
  (:require [promesa.core :as p]))

(defn sleep [ms]
  (js/Promise.
   (fn [resolve _]
     (js/setTimeout resolve ms))))

(defn do-stuff
  []
  (p/do!
   (println "Doing stuff which takes a while")
   (sleep 1000)
   1))

(p/let [a (do-stuff)
        b (inc a)
        c (do-stuff)
        d (+ b c)]
  (prn d))
$ nbb prom.cljs
Doing stuff which takes a while
Doing stuff which takes a while
3

Also see API docs.

Js-interop

Since nbb v0.0.75 applied-science/js-interop is available:

(ns example
  (:require [applied-science.js-interop :as j]))

(def o (j/lit {:a 1 :b 2 :c {:d 1}}))

(prn (j/select-keys o [:a :b])) ;; #js {:a 1, :b 2}
(prn (j/get-in o [:c :d])) ;; 1

Most of this library is supported in nbb, except the following:

  • destructuring using :syms
  • property access using .-x notation. In nbb, you must use keywords.

See the example of what is currently supported.

Examples

See the examples directory for small examples.

Also check out these projects built with nbb:

API

See API documentation.

Migrating to shadow-cljs

See this gist on how to convert an nbb script or project to shadow-cljs.

Build

Prequisites:

  • babashka >= 0.4.0
  • Clojure CLI >= 1.10.3.933
  • Node.js 16.5.0 (lower version may work, but this is the one I used to build)

To build:

  • Clone and cd into this repo
  • bb release

Run bb tasks for more project-related tasks.

Download Details:
Author: borkdude
Download Link: Download The Source Code
Official Website: https://github.com/borkdude/nbb 
License: EPL-1.0

#node #javascript

Vincent Lab

Vincent Lab

1605017502

The Difference Between Regular Functions and Arrow Functions in JavaScript

Other then the syntactical differences. The main difference is the way the this keyword behaves? In an arrow function, the this keyword remains the same throughout the life-cycle of the function and is always bound to the value of this in the closest non-arrow parent function. Arrow functions can never be constructor functions so they can never be invoked with the new keyword. And they can never have duplicate named parameters like a regular function not using strict mode.

Here are a few code examples to show you some of the differences
this.name = "Bob";

const person = {
name: “Jon”,

<span style="color: #008000">// Regular function</span>
func1: <span style="color: #0000ff">function</span> () {
    console.log(<span style="color: #0000ff">this</span>);
},

<span style="color: #008000">// Arrow function</span>
func2: () =&gt; {
    console.log(<span style="color: #0000ff">this</span>);
}

}

person.func1(); // Call the Regular function
// Output: {name:“Jon”, func1:[Function: func1], func2:[Function: func2]}

person.func2(); // Call the Arrow function
// Output: {name:“Bob”}

The new keyword with an arrow function
const person = (name) => console.log("Your name is " + name);
const bob = new person("Bob");
// Uncaught TypeError: person is not a constructor

If you want to see a visual presentation on the differences, then you can see the video below:

#arrow functions #javascript #regular functions #arrow functions vs normal functions #difference between functions and arrow functions

Sudhakar  Yadav

Sudhakar Yadav

1612338960

JavaScript Advance Functions Complete Tutorial | All About Different Types of Functions in JS

JavaScript Advance Functions Complete Tutorial | All About Different Types of Functions in JS

Tutorial Cover :

  1. How to Declare Constants in JavaScript
  2. How to Add Button Click Event Directly from HTML Code
  3. How to Add Button Click Event Using EventListener Method
  4. How to Add Button Click Event from Button Object
  5. How to Create Simple Function in JavaScript
  6. How to Call Function Without Passing Argument
  7. JavaScript Function with Default Argument Value
  8. JavaScript Function Pass Array in Function
  9. JavaScript Function Use of Rest Operator (…)
  10. JavaScript Use of Arrow Function
  11. JavaScript Use of Callback Function with Example
  12. Use of bind() Method in JavaScript

Source Code : https://github.com/hackstarsj/JavaScriptCompleteTutorial

Subscribe: https://www.youtube.com/channel/UCyz5M_3Rv2jLUDs4R_yRBkw

#js #javascript

Giles  Goodwin

Giles Goodwin

1603176407

The real reason why JavaScript has arrow functions

Nowadays, all my code is based on the use of arrow functions. If you are still not using them yourself, then don’t be ashamed of who you are. That’s your parent’s job. Instead, find about all the benefits that you can get by using arrow functions like the cool kids.

This is an example of arrow function and the same code written traditionally:

const arrowFunction = (arg1, arg2) => arg1 + arg 2;

const traditionalFunction = function(arg1, arg2) {
  return arg1 + arg2;
};

You may notice that the code is shorter and that there is an arrow. Everything before the arrow is arguments of the function and everything after the arrow is always returned as the result of the function.

If you need a function that contains multiple statements you can still do this:

const arrowFunction = (arg1, arg2) => {
  const result = arg1 + arg2;
  return result;
};

#javascript #js #functional-javascript #functional-programming #javascript-tips

Terry  Tremblay

Terry Tremblay

1602147513

Now Learn JavaScript Programming Language With Microsoft

icrosoft has released a new series of video tutorials on YouTube for novice programmers to get a hands-on renowned programming language — JavaScript.

This isn’t the first attempt by Microsoft to come up with video tutorials by beginner programmers. The company also has a series of YouTube tutorials on Python for beginners.

For JavaScript, Microsoft has launched a series of 51 videos as ‘Beginner’s Series to JavaScript,’ for young programmers, developers and coders who are interested in building browser applications using JavaScript. These video tutorials will also help programmers and coders to use relevant software development kits (SDKs) and JavaScript frameworks, such as Google’s Angular.


“Learning a new framework or development environment is made even more difficult when you don’t know the programming language,” stated on the Microsoft Developer channel on YouTube. “Fortunately, we’re here to help! We’ve created this series of videos to focus on the core concepts of JavaScript.”

It further stated — while the tutorials don’t cover every aspect of JavaScript, it indeed will help in building a foundation from which one can continue to grow. By the end of this series, Microsoft claims that the novice programmers will be able to work through tutorials, quick starts, books, and other resources, continuing to grow on their own.


#news #javascript #javascript tutorial #javascript tutorials #microsoft tutorials on javascript