1582765800
In this video on OpenCV Python Tutorial For Beginners, we are going to see How to Use Background Subtraction Methods in OpenCV. Corner detection with Harris Corner Detection method using OpenCV and python is very easy. Shi Tomasi Corner Detector is the modification of Harris Corner Detection.
OpenCV is an image processing library created by Intel and later supported by Willow Garage and now maintained by Itseez. opencv is available on Mac, Windows, Linux. Works in C, C++, and Python.
it is Open Source and free. opencv is easy to use and install.
Starting with an overview of what the course will be covering, we move on to discussing morphological operations and practically learn how they work on images. We will then learn contrast enhancement using equalization and contrast limiting. Finally we will learn 3 methods to subtract the background from the video and implement them using OpenCV.
At the end of this course, you will have a firm grasp of Computer Vision techniques using OpenCV libraries. This course will be your gateway to the world of data science.
Feel the real power of Python and programming! The course offers you a unique approach of learning how to code by solving real world problems.
GitHub: https://gist.github.com/pknowledge/e1e0e87dcae282d0d0913605bd12ced6
#opencv #python #machinelearning
1667425440
Perl script converts PDF files to Gerber format
Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.
The general workflow is as follows:
Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).
See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.
#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;
use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)
##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file
use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call
#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software. \nGerber files MAY CONTAIN ERRORS. Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG
use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC
use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)
#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1);
#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
.010, -.001, #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
.031, -.014, #used for vias
.041, -.020, #smallest non-filled plated hole
.051, -.025,
.056, -.029, #useful for IC pins
.070, -.033,
.075, -.040, #heavier leads
# .090, -.043, #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
.100, -.046,
.115, -.052,
.130, -.061,
.140, -.067,
.150, -.079,
.175, -.088,
.190, -.093,
.200, -.100,
.220, -.110,
.160, -.125, #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
.090, -.040, #want a .090 pad option, but use dummy hole size
.065, -.040, #.065 x .065 rect pad
.035, -.040, #.035 x .065 rect pad
#traces:
.001, #too thin for real traces; use only for board outlines
.006, #minimum real trace width; mainly used for text
.008, #mainly used for mid-sized text, not traces
.010, #minimum recommended trace width for low-current signals
.012,
.015, #moderate low-voltage current
.020, #heavier trace for power, ground (even if a lighter one is adequate)
.025,
.030, #heavy-current traces; be careful with these ones!
.040,
.050,
.060,
.080,
.100,
.120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);
#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size: parsed PDF diameter: error:
# .014 .016 +.002
# .020 .02267 +.00267
# .025 .026 +.001
# .029 .03167 +.00267
# .033 .036 +.003
# .040 .04267 +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};
#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
CIRCLE_ADJUST_MINX => 0,
CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
CIRCLE_ADJUST_MAXY => 0,
SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};
#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches
#line join/cap styles:
use constant
{
CAP_NONE => 0, #butt (none); line is exact length
CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
#number of elements in each shape type:
use constant
{
RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
rect => RECT_SHAPELEN,
line => LINE_SHAPELEN,
curve => CURVE_SHAPELEN,
circle => CIRCLE_SHAPELEN,
);
#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions
# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?
#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes.
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes
#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches
# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)
# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time
# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const
use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool
my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time
print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load
#############################################################################################
#junk/experiment:
#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html
#my $caller = "pdf2gerb::";
#sub cfg
#{
# my $proto = shift;
# my $class = ref($proto) || $proto;
# my $settings =
# {
# $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
# };
# bless($settings, $class);
# return $settings;
#}
#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;
#print STDERR "read cfg file\n";
#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names
#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }
Author: swannman
Source Code: https://github.com/swannman/pdf2gerb
License: GPL-3.0 license
1679035563
When your app is opened, there is a brief time while the native app loads Flutter. By default, during this time, the native app displays a white splash screen. This package automatically generates iOS, Android, and Web-native code for customizing this native splash screen background color and splash image. Supports dark mode, full screen, and platform-specific options.
[BETA] Support for flavors is in beta. Currently only Android and iOS are supported. See instructions below.
You can now keep the splash screen up while your app initializes! No need for a secondary splash screen anymore. Just use the preserve
and remove
methods together to remove the splash screen after your initialization is complete. See details below.
Would you prefer a video tutorial instead? Check out Johannes Milke's tutorial.
First, add flutter_native_splash
as a dependency in your pubspec.yaml file.
dependencies:
flutter_native_splash: ^2.2.19
Don't forget to flutter pub get
.
Customize the following settings and add to your project's pubspec.yaml
file or place in a new file in your root project folder named flutter_native_splash.yaml
.
flutter_native_splash:
# This package generates native code to customize Flutter's default white native splash screen
# with background color and splash image.
# Customize the parameters below, and run the following command in the terminal:
# flutter pub run flutter_native_splash:create
# To restore Flutter's default white splash screen, run the following command in the terminal:
# flutter pub run flutter_native_splash:remove
# color or background_image is the only required parameter. Use color to set the background
# of your splash screen to a solid color. Use background_image to set the background of your
# splash screen to a png image. This is useful for gradients. The image will be stretch to the
# size of the app. Only one parameter can be used, color and background_image cannot both be set.
color: "#42a5f5"
#background_image: "assets/background.png"
# Optional parameters are listed below. To enable a parameter, uncomment the line by removing
# the leading # character.
# The image parameter allows you to specify an image used in the splash screen. It must be a
# png file and should be sized for 4x pixel density.
#image: assets/splash.png
# The branding property allows you to specify an image used as branding in the splash screen.
# It must be a png file. It is supported for Android, iOS and the Web. For Android 12,
# see the Android 12 section below.
#branding: assets/dart.png
# To position the branding image at the bottom of the screen you can use bottom, bottomRight,
# and bottomLeft. The default values is bottom if not specified or specified something else.
#branding_mode: bottom
# The color_dark, background_image_dark, image_dark, branding_dark are parameters that set the background
# and image when the device is in dark mode. If they are not specified, the app will use the
# parameters from above. If the image_dark parameter is specified, color_dark or
# background_image_dark must be specified. color_dark and background_image_dark cannot both be
# set.
#color_dark: "#042a49"
#background_image_dark: "assets/dark-background.png"
#image_dark: assets/splash-invert.png
#branding_dark: assets/dart_dark.png
# Android 12 handles the splash screen differently than previous versions. Please visit
# https://developer.android.com/guide/topics/ui/splash-screen
# Following are Android 12 specific parameter.
android_12:
# The image parameter sets the splash screen icon image. If this parameter is not specified,
# the app's launcher icon will be used instead.
# Please note that the splash screen will be clipped to a circle on the center of the screen.
# App icon with an icon background: This should be 960×960 pixels, and fit within a circle
# 640 pixels in diameter.
# App icon without an icon background: This should be 1152×1152 pixels, and fit within a circle
# 768 pixels in diameter.
#image: assets/android12splash.png
# Splash screen background color.
#color: "#42a5f5"
# App icon background color.
#icon_background_color: "#111111"
# The branding property allows you to specify an image used as branding in the splash screen.
#branding: assets/dart.png
# The image_dark, color_dark, icon_background_color_dark, and branding_dark set values that
# apply when the device is in dark mode. If they are not specified, the app will use the
# parameters from above.
#image_dark: assets/android12splash-invert.png
#color_dark: "#042a49"
#icon_background_color_dark: "#eeeeee"
# The android, ios and web parameters can be used to disable generating a splash screen on a given
# platform.
#android: false
#ios: false
#web: false
# Platform specific images can be specified with the following parameters, which will override
# the respective parameter. You may specify all, selected, or none of these parameters:
#color_android: "#42a5f5"
#color_dark_android: "#042a49"
#color_ios: "#42a5f5"
#color_dark_ios: "#042a49"
#color_web: "#42a5f5"
#color_dark_web: "#042a49"
#image_android: assets/splash-android.png
#image_dark_android: assets/splash-invert-android.png
#image_ios: assets/splash-ios.png
#image_dark_ios: assets/splash-invert-ios.png
#image_web: assets/splash-web.png
#image_dark_web: assets/splash-invert-web.png
#background_image_android: "assets/background-android.png"
#background_image_dark_android: "assets/dark-background-android.png"
#background_image_ios: "assets/background-ios.png"
#background_image_dark_ios: "assets/dark-background-ios.png"
#background_image_web: "assets/background-web.png"
#background_image_dark_web: "assets/dark-background-web.png"
#branding_android: assets/brand-android.png
#branding_dark_android: assets/dart_dark-android.png
#branding_ios: assets/brand-ios.png
#branding_dark_ios: assets/dart_dark-ios.png
# The position of the splash image can be set with android_gravity, ios_content_mode, and
# web_image_mode parameters. All default to center.
#
# android_gravity can be one of the following Android Gravity (see
# https://developer.android.com/reference/android/view/Gravity): bottom, center,
# center_horizontal, center_vertical, clip_horizontal, clip_vertical, end, fill, fill_horizontal,
# fill_vertical, left, right, start, or top.
#android_gravity: center
#
# ios_content_mode can be one of the following iOS UIView.ContentMode (see
# https://developer.apple.com/documentation/uikit/uiview/contentmode): scaleToFill,
# scaleAspectFit, scaleAspectFill, center, top, bottom, left, right, topLeft, topRight,
# bottomLeft, or bottomRight.
#ios_content_mode: center
#
# web_image_mode can be one of the following modes: center, contain, stretch, and cover.
#web_image_mode: center
# The screen orientation can be set in Android with the android_screen_orientation parameter.
# Valid parameters can be found here:
# https://developer.android.com/guide/topics/manifest/activity-element#screen
#android_screen_orientation: sensorLandscape
# To hide the notification bar, use the fullscreen parameter. Has no effect in web since web
# has no notification bar. Defaults to false.
# NOTE: Unlike Android, iOS will not automatically show the notification bar when the app loads.
# To show the notification bar, add the following code to your Flutter app:
# WidgetsFlutterBinding.ensureInitialized();
# SystemChrome.setEnabledSystemUIOverlays([SystemUiOverlay.bottom, SystemUiOverlay.top]);
#fullscreen: true
# If you have changed the name(s) of your info.plist file(s), you can specify the filename(s)
# with the info_plist_files parameter. Remove only the # characters in the three lines below,
# do not remove any spaces:
#info_plist_files:
# - 'ios/Runner/Info-Debug.plist'
# - 'ios/Runner/Info-Release.plist'
After adding your settings, run the following command in the terminal:
flutter pub run flutter_native_splash:create
When the package finishes running, your splash screen is ready.
To specify the YAML file location just add --path with the command in the terminal:
flutter pub run flutter_native_splash:create --path=path/to/my/file.yaml
By default, the splash screen will be removed when Flutter has drawn the first frame. If you would like the splash screen to remain while your app initializes, you can use the preserve()
and remove()
methods together. Pass the preserve()
method the value returned from WidgetsFlutterBinding.ensureInitialized()
to keep the splash on screen. Later, when your app has initialized, make a call to remove()
to remove the splash screen.
import 'package:flutter_native_splash/flutter_native_splash.dart';
void main() {
WidgetsBinding widgetsBinding = WidgetsFlutterBinding.ensureInitialized();
FlutterNativeSplash.preserve(widgetsBinding: widgetsBinding);
runApp(const MyApp());
}
// whenever your initialization is completed, remove the splash screen:
FlutterNativeSplash.remove();
NOTE: If you do not need to use the preserve()
and remove()
methods, you can place the flutter_native_splash
dependency in the dev_dependencies
section of pubspec.yaml
.
If you find this package useful, you can support it for free by giving it a thumbs up at the top of this page. Here's another option to support the package:
Android 12 has a new method of adding splash screens, which consists of a window background, icon, and the icon background. Note that a background image is not supported.
Be aware of the following considerations regarding these elements:
1: image
parameter. By default, the launcher icon is used:
2: icon_background_color
is optional, and is useful if you need more contrast between the icon and the window background.
3: One-third of the foreground is masked.
4: color
the window background consists of a single opaque color.
PLEASE NOTE: The splash screen may not appear when you launch the app from Android Studio on API 31. However, it should appear when you launch by clicking on the launch icon in Android. This seems to be resolved in API 32+.
PLEASE NOTE: There are a number of reports that non-Google launchers do not display the launch image correctly. If the launch image does not display correctly, please try the Google launcher to confirm that this package is working.
PLEASE NOTE: The splash screen does not appear when you launch the app from a notification. Apparently this is the intended behavior on Android 12: core-splashscreen Icon not shown when cold launched from notification.
If you have a project setup that contains multiple flavors or environments, and you created more than one flavor this would be a feature for you.
Instead of maintaining multiple files and copy/pasting images, you can now, using this tool, create different splash screens for different environments.
In order to use the new feature, and generate the desired splash images for you app, a couple of changes are required.
If you want to generate just one flavor and one file you would use either options as described in Step 1. But in order to setup the flavors, you will then be required to move all your setup values to the flutter_native_splash.yaml
file, but with a prefix.
Let's assume for the rest of the setup that you have 3 different flavors, Production
, Acceptance
, Development
.
First this you will need to do is to create a different setup file for all 3 flavors with a suffix like so:
flutter_native_splash-production.yaml
flutter_native_splash-acceptance.yaml
flutter_native_splash-development.yaml
You would setup those 3 files the same way as you would the one, but with different assets depending on which environment you would be generating. For example (Note: these are just examples, you can use whatever setup you need for your project that is already supported by the package):
# flutter_native_splash-development.yaml
flutter_native_splash:
color: "#ffffff"
image: assets/logo-development.png
branding: assets/branding-development.png
color_dark: "#121212"
image_dark: assets/logo-development.png
branding_dark: assets/branding-development.png
android_12:
image: assets/logo-development.png
icon_background_color: "#ffffff"
image_dark: assets/logo-development.png
icon_background_color_dark: "#121212"
web: false
# flutter_native_splash-acceptance.yaml
flutter_native_splash:
color: "#ffffff"
image: assets/logo-acceptance.png
branding: assets/branding-acceptance.png
color_dark: "#121212"
image_dark: assets/logo-acceptance.png
branding_dark: assets/branding-acceptance.png
android_12:
image: assets/logo-acceptance.png
icon_background_color: "#ffffff"
image_dark: assets/logo-acceptance.png
icon_background_color_dark: "#121212"
web: false
# flutter_native_splash-production.yaml
flutter_native_splash:
color: "#ffffff"
image: assets/logo-production.png
branding: assets/branding-production.png
color_dark: "#121212"
image_dark: assets/logo-production.png
branding_dark: assets/branding-production.png
android_12:
image: assets/logo-production.png
icon_background_color: "#ffffff"
image_dark: assets/logo-production.png
icon_background_color_dark: "#121212"
web: false
Great, now comes the fun part running the new command!
The new command is:
# If you have a flavor called production you would do this:
flutter pub run flutter_native_splash:create --flavor production
# For a flavor with a name staging you would provide it's name like so:
flutter pub run flutter_native_splash:create --flavor staging
# And if you have a local version for devs you could do that:
flutter pub run flutter_native_splash:create --flavor development
You're done! No, really, Android doesn't need any additional setup.
Note: If it didn't work, please make sure that your flavors are named the same as your config files, otherwise the setup will not work.
iOS is a bit tricky, so hang tight, it might look scary but most of the steps are just a single click, explained as much as possible to lower the possibility of mistakes.
When you run the new command, you will need to open xCode and follow the steps bellow:
Assumption
schemes
setup; production, acceptance and development.Preparation
{project root}/ios/Runner/Base.lproj
xCode
Xcode still doesn't know how to use them, so we need to specify for all the current flavors (schemes) which file to use and to use that value inside the Info.plist file.
LAUNCH_SCREEN_STORYBOARD
$(LAUNCH_SCREEN_STORYBOARD)
Congrats you finished your setup for multiple flavors,
This message is not related to this package but is related to a change in how Flutter handles splash screens in Flutter 2.5. It is caused by having the following code in your android/app/src/main/AndroidManifest.xml
, which was included by default in previous versions of Flutter:
<meta-data
android:name="io.flutter.embedding.android.SplashScreenDrawable"
android:resource="@drawable/launch_background"
/>
The solution is to remove the above code. Note that this will also remove the fade effect between the native splash screen and your app.
Not at this time. PRs are always welcome!
This attribute is only found in Android 12, so if you are getting this error, it means your project is not fully set up for Android 12. Did you update your app's build configuration?
This is caused by an iOS splash caching bug, which can be solved by uninstalling your app, powering off your device, power back on, and then try reinstalling.
removeAfter
method.No. This package creates a splash screen that is displayed before Flutter is loaded. Because of this, when the splash screen loads, internal app settings are not available to the splash screen. Unfortunately, this means that it is impossible to control light/dark settings of the splash from app settings.
Notes
If the splash screen was not updated correctly on iOS or if you experience a white screen before the splash screen, run flutter clean
and recompile your app. If that does not solve the problem, delete your app, power down the device, power up the device, install and launch the app as per this StackOverflow thread.
This package modifies launch_background.xml
and styles.xml
files on Android, LaunchScreen.storyboard
and Info.plist
on iOS, and index.html
on Web. If you have modified these files manually, this plugin may not work properly. Please open an issue if you find any bugs.
mdpi
, hdpi
, xhdpi
, xxhdpi
and xxxhdpi
drawables.<item>
tag containing a <bitmap>
for your splash image drawable will be added in launch_background.xml
colors.xml
and referenced in launch_background.xml
.styles.xml
.drawable-night
, values-night
, etc. resource folders.@3x
and @2x
images.LaunchScreen.storyboard
.Info.plist
.web/splash
folder will be created for splash screen images and CSS files.1x
, 2x
, 3x
, and 4x
sizes and placed in web/splash/img
.web/index.html
, as well as the HTML for the splash pictures.This package was originally created by Henrique Arthur and it is currently maintained by Jon Hanson.
If you encounter any problems feel free to open an issue. If you feel the library is missing a feature, please raise a ticket. Pull request are also welcome.
Run this command:
With Flutter:
$ flutter pub add flutter_native_splash
This will add a line like this to your package's pubspec.yaml (and run an implicit flutter pub get
):
dependencies:
flutter_native_splash: ^2.2.19
Alternatively, your editor might support flutter pub get
. Check the docs for your editor to learn more.
Now in your Dart code, you can use:
import 'package:flutter_native_splash/flutter_native_splash.dart';
import 'package:flutter/material.dart';
import 'package:flutter_native_splash/flutter_native_splash.dart';
void main() {
WidgetsBinding widgetsBinding = WidgetsFlutterBinding.ensureInitialized();
FlutterNativeSplash.preserve(widgetsBinding: widgetsBinding);
runApp(const MyApp());
}
class MyApp extends StatelessWidget {
const MyApp({super.key});
// This widget is the root of your application.
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Flutter Demo',
theme: ThemeData(
// This is the theme of your application.
//
// Try running your application with "flutter run". You'll see the
// application has a blue toolbar. Then, without quitting the app, try
// changing the primarySwatch below to Colors.green and then invoke
// "hot reload" (press "r" in the console where you ran "flutter run",
// or simply save your changes to "hot reload" in a Flutter IDE).
// Notice that the counter didn't reset back to zero; the application
// is not restarted.
primarySwatch: Colors.blue,
),
home: const MyHomePage(title: 'Flutter Demo Home Page'),
);
}
}
class MyHomePage extends StatefulWidget {
const MyHomePage({super.key, required this.title});
// This widget is the home page of your application. It is stateful, meaning
// that it has a State object (defined below) that contains fields that affect
// how it looks.
// This class is the configuration for the state. It holds the values (in this
// case the title) provided by the parent (in this case the App widget) and
// used by the build method of the State. Fields in a Widget subclass are
// always marked "final".
final String title;
@override
State<MyHomePage> createState() => _MyHomePageState();
}
class _MyHomePageState extends State<MyHomePage> {
int _counter = 0;
void _incrementCounter() {
setState(() {
// This call to setState tells the Flutter framework that something has
// changed in this State, which causes it to rerun the build method below
// so that the display can reflect the updated values. If we changed
// _counter without calling setState(), then the build method would not be
// called again, and so nothing would appear to happen.
_counter++;
});
}
@override
void initState() {
super.initState();
initialization();
}
void initialization() async {
// This is where you can initialize the resources needed by your app while
// the splash screen is displayed. Remove the following example because
// delaying the user experience is a bad design practice!
// ignore_for_file: avoid_print
print('ready in 3...');
await Future.delayed(const Duration(seconds: 1));
print('ready in 2...');
await Future.delayed(const Duration(seconds: 1));
print('ready in 1...');
await Future.delayed(const Duration(seconds: 1));
print('go!');
FlutterNativeSplash.remove();
}
@override
Widget build(BuildContext context) {
// This method is rerun every time setState is called, for instance as done
// by the _incrementCounter method above.
//
// The Flutter framework has been optimized to make rerunning build methods
// fast, so that you can just rebuild anything that needs updating rather
// than having to individually change instances of widgets.
return Scaffold(
appBar: AppBar(
// Here we take the value from the MyHomePage object that was created by
// the App.build method, and use it to set our appbar title.
title: Text(widget.title),
),
body: Center(
// Center is a layout widget. It takes a single child and positions it
// in the middle of the parent.
child: Column(
// Column is also a layout widget. It takes a list of children and
// arranges them vertically. By default, it sizes itself to fit its
// children horizontally, and tries to be as tall as its parent.
//
// Invoke "debug painting" (press "p" in the console, choose the
// "Toggle Debug Paint" action from the Flutter Inspector in Android
// Studio, or the "Toggle Debug Paint" command in Visual Studio Code)
// to see the wireframe for each widget.
//
// Column has various properties to control how it sizes itself and
// how it positions its children. Here we use mainAxisAlignment to
// center the children vertically; the main axis here is the vertical
// axis because Columns are vertical (the cross axis would be
// horizontal).
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[
const Text(
'You have pushed the button this many times:',
),
Text(
'$_counter',
style: Theme.of(context).textTheme.headlineMedium,
),
],
),
),
floatingActionButton: FloatingActionButton(
onPressed: _incrementCounter,
tooltip: 'Increment',
child: const Icon(Icons.add),
), // This trailing comma makes auto-formatting nicer for build methods.
);
}
}
Author: jonbhanson
Download Link: Download The Source Code
Official Website: https://github.com/jonbhanson/flutter_native_splash
License: MIT license
1684376340
Many types of operators exist in Bash to check the equality or inequality of two strings or numbers. The “-ne” and “!=” operators are used to check the inequality of two values in Bash. The single third brackets ([ ]) are used in the “if” condition when the “!=” operator is used to check the inequality. The double third brackets ([[ ]]) are used in the “if” condition when the “-ne” operator is used to check the inequality. The methods of comparing the string and numeric values using these operators are shown in this tutorial.
The “!=” operator can be used to check the inequality between two numeric values or two string values. Two uses of this operator are shown in the following examples.
Example 1: Checking the Inequality Between Numbers
Create a Bash file with the following script that takes a number input and check whether the input value is equal to 10 or not using the “!=” operator. The single third brackets ([ ]) are used in the “if” condition here.
#!/bin/bash
#Take a number
echo -n "Enter a number:"
read number
#Use '!=' operator to check the number value
if [ $number != 10 ]; then
echo "The number is not equal to 10."
else
echo "The number is equal to 10."
fi
The script is executed twice in the following output. Twelve (12) is taken as input in the first execution and “The number is not equal to 10” is printed. Ten (10) is taken as input in the second execution and “The number is equal to 10” is printed:
Example 2:
Create a Bash file with the following script that takes two string values and check whether the input values are equal or not using the “!=” operator. The single third brackets ([ ]) are used in the “if” condition here.
#!/bin/bash
#Take a number
echo -n "Enter the first string value: "
read str1
echo -n "Enter the second string value: "
read str2
#Use '!=' operator to check the string values
if [ "$str1" != "$str2" ]; then
echo "The strings are not equal."
else
echo "The strings are equal."
fi
The script is executed twice in the following output. The “Hello” and “hello” string values are taken as inputs in the first execution and these values are not equal because the string values are compared case-sensitively. In the next execution, the “hello” and “hello” string values are taken as equal inputs:
The “-ne” operator can be used to check the inequality between two numeric values but not can be used to compare the string values. Two uses of this operator to compare the numeric and string values are shown in the following examples.
Example 1:
Create a Bash file with the following script that takes the username as input. Next, the length of the input value is counted after removing the newline(\n) character. Whether the length of the username is equal to 8 or not is checked using the “-ne” operator. The double third brackets ([[ ]]) are used in the “if” condition here.
#!/bin/bash
#Take the username
echo -n "Enter username: "
read username
#Remove newline from the input value
username=`echo $username | tr -d '\n'`
#Count the total character
len=${#username}
#Use the '-ne' operator to check the number value
if [[ $len -ne 8 ]]; then
echo "Username must be 8 characters long."
else
echo "Username: $username"
fi
The script is executed twice in the following output. The “admin” is taken as input in the first execution and the “Username must be 8 characters long” is printed. The “durjoy23” is taken as input in the second execution and the “Username: durjoy23” is printed:
Example 2:
Create a Bash file with the following script that takes the username as input. Next, whether the input value is equal to “admin” or not is checked using the “-ne” operator. The double third brackets ([[ ]]) are used in the “if” condition here. The “-ne” operator does not work to compare two string values.
#!/bin/bash
#Take the username and password
echo -n "Enter username: "
read username
#Remove newline from the input value
username=`echo $username | tr -d '\n'`
#Use '-ne' operator to check the string values
if [[ "$username" -ne "admin" ]]; then
echo "Invalid user."
else
echo "Valid user."
fi
The script is executed twice in the following output. The “if” condition is returned true in both executions for the valid and invalid outputs which is a “wrong” output:
The method of comparing two values using the “!=” and “-ne” operators are shown in this tutorial using multiple examples to know the uses of these operators properly.
Original article source at: https://linuxhint.com/
1624430256
In this tutorial, we will learn how to use imread()
method of OpenCV-Python in detail and different ways to load an image using imread()
method.
Table of Contents
…
#python modules #opencv-python #python imread() #opencv.imread() #python imread(): different ways to load an image using the opencv.imread() method #load an image
1620729846
Can you use WordPress for anything other than blogging? To your surprise, yes. WordPress is more than just a blogging tool, and it has helped thousands of websites and web applications to thrive. The use of WordPress powers around 40% of online projects, and today in our blog, we would visit some amazing uses of WordPress other than blogging.
What Is The Use Of WordPress?
WordPress is the most popular website platform in the world. It is the first choice of businesses that want to set a feature-rich and dynamic Content Management System. So, if you ask what WordPress is used for, the answer is – everything. It is a super-flexible, feature-rich and secure platform that offers everything to build unique websites and applications. Let’s start knowing them:
1. Multiple Websites Under A Single Installation
WordPress Multisite allows you to develop multiple sites from a single WordPress installation. You can download WordPress and start building websites you want to launch under a single server. Literally speaking, you can handle hundreds of sites from one single dashboard, which now needs applause.
It is a highly efficient platform that allows you to easily run several websites under the same login credentials. One of the best things about WordPress is the themes it has to offer. You can simply download them and plugin for various sites and save space on sites without losing their speed.
2. WordPress Social Network
WordPress can be used for high-end projects such as Social Media Network. If you don’t have the money and patience to hire a coder and invest months in building a feature-rich social media site, go for WordPress. It is one of the most amazing uses of WordPress. Its stunning CMS is unbeatable. And you can build sites as good as Facebook or Reddit etc. It can just make the process a lot easier.
To set up a social media network, you would have to download a WordPress Plugin called BuddyPress. It would allow you to connect a community page with ease and would provide all the necessary features of a community or social media. It has direct messaging, activity stream, user groups, extended profiles, and so much more. You just have to download and configure it.
If BuddyPress doesn’t meet all your needs, don’t give up on your dreams. You can try out WP Symposium or PeepSo. There are also several themes you can use to build a social network.
3. Create A Forum For Your Brand’s Community
Communities are very important for your business. They help you stay in constant connection with your users and consumers. And allow you to turn them into a loyal customer base. Meanwhile, there are many good technologies that can be used for building a community page – the good old WordPress is still the best.
It is the best community development technology. If you want to build your online community, you need to consider all the amazing features you get with WordPress. Plugins such as BB Press is an open-source, template-driven PHP/ MySQL forum software. It is very simple and doesn’t hamper the experience of the website.
Other tools such as wpFoRo and Asgaros Forum are equally good for creating a community blog. They are lightweight tools that are easy to manage and integrate with your WordPress site easily. However, there is only one tiny problem; you need to have some technical knowledge to build a WordPress Community blog page.
4. Shortcodes
Since we gave you a problem in the previous section, we would also give you a perfect solution for it. You might not know to code, but you have shortcodes. Shortcodes help you execute functions without having to code. It is an easy way to build an amazing website, add new features, customize plugins easily. They are short lines of code, and rather than memorizing multiple lines; you can have zero technical knowledge and start building a feature-rich website or application.
There are also plugins like Shortcoder, Shortcodes Ultimate, and the Basics available on WordPress that can be used, and you would not even have to remember the shortcodes.
5. Build Online Stores
If you still think about why to use WordPress, use it to build an online store. You can start selling your goods online and start selling. It is an affordable technology that helps you build a feature-rich eCommerce store with WordPress.
WooCommerce is an extension of WordPress and is one of the most used eCommerce solutions. WooCommerce holds a 28% share of the global market and is one of the best ways to set up an online store. It allows you to build user-friendly and professional online stores and has thousands of free and paid extensions. Moreover as an open-source platform, and you don’t have to pay for the license.
Apart from WooCommerce, there are Easy Digital Downloads, iThemes Exchange, Shopify eCommerce plugin, and so much more available.
6. Security Features
WordPress takes security very seriously. It offers tons of external solutions that help you in safeguarding your WordPress site. While there is no way to ensure 100% security, it provides regular updates with security patches and provides several plugins to help with backups, two-factor authorization, and more.
By choosing hosting providers like WP Engine, you can improve the security of the website. It helps in threat detection, manage patching and updates, and internal security audits for the customers, and so much more.
#use of wordpress #use wordpress for business website #use wordpress for website #what is use of wordpress #why use wordpress #why use wordpress to build a website