1659712980
Package to add SVG rendering support for the Flame game engine.
Run this command:
With Flutter:
$ flutter pub add flame_svg
This will add a line like this to your package's pubspec.yaml (and run an implicit flutter pub get
):
dependencies:
flame_svg: ^1.4.0
Alternatively, your editor might support flutter pub get
. Check the docs for your editor to learn more.
Now in your Dart code, you can use:
import 'package:flame_svg/flame_svg.dart';
example/lib/main.dart
import 'package:flame/game.dart';
import 'package:flame_svg/flame_svg.dart';
import 'package:flutter/material.dart';
void main() {
runApp(GameWidget(game: MyGame()));
}
class MyGame extends FlameGame {
late Svg svgInstance;
@override
void render(Canvas canvas) {
super.render(canvas);
svgInstance.renderPosition(canvas, Vector2(100, 200), Vector2.all(300));
}
@override
Future<void> onLoad() async {
await super.onLoad();
svgInstance = await loadSvg('android.svg');
final android = SvgComponent(
svg: svgInstance,
position: Vector2.all(100),
size: Vector2.all(100),
);
add(android);
}
}
More here.
Original article source at: https://pub.dev/packages/flame_svg
1659712980
Package to add SVG rendering support for the Flame game engine.
Run this command:
With Flutter:
$ flutter pub add flame_svg
This will add a line like this to your package's pubspec.yaml (and run an implicit flutter pub get
):
dependencies:
flame_svg: ^1.4.0
Alternatively, your editor might support flutter pub get
. Check the docs for your editor to learn more.
Now in your Dart code, you can use:
import 'package:flame_svg/flame_svg.dart';
example/lib/main.dart
import 'package:flame/game.dart';
import 'package:flame_svg/flame_svg.dart';
import 'package:flutter/material.dart';
void main() {
runApp(GameWidget(game: MyGame()));
}
class MyGame extends FlameGame {
late Svg svgInstance;
@override
void render(Canvas canvas) {
super.render(canvas);
svgInstance.renderPosition(canvas, Vector2(100, 200), Vector2.all(300));
}
@override
Future<void> onLoad() async {
await super.onLoad();
svgInstance = await loadSvg('android.svg');
final android = SvgComponent(
svg: svgInstance,
position: Vector2.all(100),
size: Vector2.all(100),
);
add(android);
}
}
More here.
Original article source at: https://pub.dev/packages/flame_svg
1602565700
We’ve launched a new Game Development with .NET section on our site. It’s designed for current .NET developers to explore all the choices available to them when developing games. It’s also designed for new developers trying to learn how to use .NET by making games. We’ve also launched a new game development Learn portal for .NET filled with tutorials, videos, and documentation provided by Microsoft and others in the .NET game development community. Finally, we launched a step-by-step Unity get-started tutorial that will get you started with Unity and writing C## scripts for it in no time. We are excited to show you what .NET has to offer to you when making games. .NET is also part of Microsoft Game Stack, a comprehensive suite of tools and services just for game development.
.NET is cross-platform. With .NET you can target over 25+ different platforms with a single code base. You can make games for, but not limited to, Windows, macOS, Linux, Android, iOS, Xbox, PlayStation, Nintendo, and mixed reality devices.
C## is the most popular programming language in game development. The wider .NET community is also big. There is no lack of expertise and support you can find from individuals and user groups, locally or online.
.NET does not just cover building your game. You can also use it to build your game’s website with ASP.NET, your mobile app using Xamarin, and even do remote rendering with Microsoft Azure. Your skills will transfer across the entire game development pipeline.
The first step to developing games in .NET is to choose a game engine. You can think of engines as the frameworks and tools you use for developing your game. There are many game engines that use .NET and they differ widely. Some of the engines are commercial and some are completely royalty free and open source. I am excited to see some of them planning to adopt .NET 5 soon. Just choose the engine that better works for you and your game. Would you like to read a blog post to help you learn about .NET game engines, and which one would be best for you?
#.net #.net core #azure #c# #game development #azure #cryengine #game developers #game development #game development with .net #game engines #games #monogame #playfab #stride #unity #visual studio #waveengine
1664775764
How to create a game app is a comprehensive guide, explaining the entire process of creating and publishing games for iOS and Android. Covering all the essential information a budding game developer needs to know.
Read More - https://www.brsoftech.com/blog/how-to-create-a-game-app/
1659694200
public_activity
provides easy activity tracking for your ActiveRecord, Mongoid 3 and MongoMapper models in Rails 3 and 4.
Simply put: it can record what happens in your application and gives you the ability to present those recorded activities to users - in a similar way to how GitHub does it.
You probably don't want to read the docs for this unreleased version 2.0.
For the stable 1.5.X
readme see: https://github.com/chaps-io/public_activity/blob/1-5-stable/README.md
Here is a simple example showing what this gem is about:
Ryan Bates made a great screencast describing how to integrate Public Activity.
A great step-by-step guide on implementing activity feeds using public_activity by Ilya Bodrov.
You can see an actual application using this gem here: http://public-activity-example.herokuapp.com/feed
The source code of the demo is hosted here: https://github.com/pokonski/activity_blog
You can install public_activity
as you would any other gem:
gem install public_activity
or in your Gemfile:
gem 'public_activity'
By default public_activity
uses Active Record. If you want to use Mongoid or MongoMapper as your backend, create an initializer file in your Rails application with the corresponding code inside:
For Mongoid:
# config/initializers/public_activity.rb
PublicActivity.configure do |config|
config.orm = :mongoid
end
For MongoMapper:
# config/initializers/public_activity.rb
PublicActivity.configure do |config|
config.orm = :mongo_mapper
end
(ActiveRecord only) Create migration for activities and migrate the database (in your Rails project):
rails g public_activity:migration
rake db:migrate
Include PublicActivity::Model
and add tracked
to the model you want to keep track of:
For ActiveRecord:
class Article < ActiveRecord::Base
include PublicActivity::Model
tracked
end
For Mongoid:
class Article
include Mongoid::Document
include PublicActivity::Model
tracked
end
For MongoMapper:
class Article
include MongoMapper::Document
include PublicActivity::Model
tracked
end
And now, by default create/update/destroy activities are recorded in activities table. This is all you need to start recording activities for basic CRUD actions.
Optional: If you don't need #tracked
but still want the comfort of #create_activity
, you can include only the lightweight Common
module instead of Model
.
You can trigger custom activities by setting all your required parameters and triggering create_activity
on the tracked model, like this:
@article.create_activity key: 'article.commented_on', owner: current_user
See this entry http://rubydoc.info/gems/public_activity/PublicActivity/Common:create_activity for more details.
To display them you simply query the PublicActivity::Activity
model:
# notifications_controller.rb
def index
@activities = PublicActivity::Activity.all
end
And in your views:
<%= render_activities(@activities) %>
Note: render_activities
is an alias for render_activity
and does the same.
You can also pass options to both activity#render
and #render_activity
methods, which are passed deeper to the internally used render_partial
method. A useful example would be to render activities wrapped in layout, which shares common elements of an activity, like a timestamp, owner's avatar etc:
<%= render_activities(@activities, layout: :activity) %>
The activity will be wrapped with the app/views/layouts/_activity.html.erb
layout, in the above example.
Important: please note that layouts for activities are also partials. Hence the _
prefix.
Sometimes, it's desirable to pass additional local variables to partials. It can be done this way:
<%= render_activity(@activity, locals: {friends: current_user.friends}) %>
Note: Before 1.4.0, one could pass variables directly to the options hash for #render_activity
and access it from activity parameters. This functionality is retained in 1.4.0 and later, but the :locals
method is preferred, since it prevents bugs from shadowing variables from activity parameters in the database.
public_activity
looks for views in app/views/public_activity
.
For example, if you have an activity with :key
set to "activity.user.changed_avatar"
, the gem will look for a partial in app/views/public_activity/user/_changed_avatar.html.(|erb|haml|slim|something_else)
.
Hint: the "activity."
prefix in :key
is completely optional and kept for backwards compatibility, you can skip it in new projects.
If you would like to fallback to a partial, you can utilize the fallback
parameter to specify the path of a partial to use when one is missing:
<%= render_activity(@activity, fallback: 'default') %>
When used in this manner, if a partial with the specified :key
cannot be located it will use the partial defined in the fallback
instead. In the example above this would resolve to public_activity/_default.html.(|erb|haml|slim|something_else)
.
If a view file does not exist then ActionView::MisingTemplate will be raised. If you wish to fallback to the old behaviour and use an i18n based translation in this situation you can specify a :fallback
parameter of text
to fallback to this mechanism like such:
<%= render_activity(@activity, fallback: :text) %>
Translations are used by the #text
method, to which you can pass additional options in form of a hash. #render
method uses translations when view templates have not been provided. You can render pure i18n strings by passing {display: :i18n}
to #render_activity
or #render
.
Translations should be put in your locale .yml
files. To render pure strings from I18n Example structure:
activity:
article:
create: 'Article has been created'
update: 'Someone has edited the article'
destroy: 'Some user removed an article!'
This structure is valid for activities with keys "activity.article.create"
or "article.create"
. As mentioned before, "activity."
part of the key is optional.
For RSpec you can first disable public_activity
and add require helper methods in the rails_helper.rb
with:
#rails_helper.rb
require 'public_activity/testing'
PublicActivity.enabled = false
In your specs you can then blockwise decide whether to turn public_activity
on or off.
# file_spec.rb
PublicActivity.with_tracking do
# your test code goes here
end
PublicActivity.without_tracking do
# your test code goes here
end
For more documentation go here
You can set up a default value for :owner
by doing this:
PublicActivity::StoreController
in your ApplicationController
like this:class ApplicationController < ActionController::Base
include PublicActivity::StoreController
end
:owner
attribute for tracked
class method in your desired model. For example:class Article < ActiveRecord::Base
tracked owner: Proc.new{ |controller, model| controller.current_user }
end
Note: current_user
applies to Devise, if you are using a different authentication gem or your own code, change the current_user
to a method you use.
If you need to disable tracking temporarily, for example in tests or db/seeds.rb
then you can use PublicActivity.enabled=
attribute like below:
# Disable p_a globally
PublicActivity.enabled = false
# Perform some operations that would normally be tracked by p_a:
Article.create(title: 'New article')
# Switch it back on
PublicActivity.enabled = true
You can also disable public_activity for a specific class:
# Disable p_a for Article class
Article.public_activity_off
# p_a will not do anything here:
@article = Article.create(title: 'New article')
# But will be enabled for other classes:
# (creation of the comment will be recorded if you are tracking the Comment class)
@article.comments.create(body: 'some comment!')
# Enable it again for Article:
Article.public_activity_on
Besides standard, automatic activities created on CRUD actions on your model (deactivatable), you can post your own activities that can be triggered without modifying the tracked model. There are a few ways to do this, as PublicActivity gives three tiers of options to be set.
Because every activity needs a key (otherwise: NoKeyProvided
is raised), the shortest and minimal way to post an activity is:
@user.create_activity :mood_changed
# the key of the action will be user.mood_changed
@user.create_activity action: :mood_changed # this is exactly the same as above
Besides assigning your key (which is obvious from the code), it will take global options from User class (given in #tracked
method during class definition) and overwrite them with instance options (set on @user
by #activity
method). You can read more about options and how PublicActivity inherits them for you here.
Note the action parameter builds the key like this: "#{model_name}.#{action}"
. You can read further on options for #create_activity
here.
To provide more options, you can do:
@user.create_activity action: 'poke', parameters: {reason: 'bored'}, recipient: @friend, owner: current_user
In this example, we have provided all the things we could for a standard Activity.
Besides the few fields that every Activity has (key
, owner
, recipient
, trackable
, parameters
), you can also set custom fields. This could be very beneficial, as parameters
are a serialized hash, which cannot be queried easily from the database. That being said, use custom fields when you know that you will set them very often and search by them (don't forget database indexes :) ).
owner
and recipient
based on associationsclass Comment < ActiveRecord::Base
include PublicActivity::Model
tracked owner: :commenter, recipient: :commentee
belongs_to :commenter, :class_name => "User"
belongs_to :commentee, :class_name => "User"
end
class Post < ActiveRecord::Base
include PublicActivity::Model
tracked only: [:update], parameters: :tracked_values
def tracked_values
{}.tap do |hash|
hash[:tags] = tags if tags_changed?
end
end
end
Skip this step if you are using ActiveRecord in Rails 4 or Mongoid
The first step is similar in every ORM available (except mongoid):
PublicActivity::Activity.class_eval do
attr_accessible :custom_field
end
place this code under config/initializers/public_activity.rb
, you have to create it first.
To be able to assign to that field, we need to move it to the mass assignment sanitizer's whitelist.
If you're using ActiveRecord, you will also need to provide a migration to add the actual field to the Activity
. Taken from our tests:
class AddCustomFieldToActivities < ActiveRecord::Migration
def change
change_table :activities do |t|
t.string :custom_field
end
end
end
Assigning is done by the same methods that you use for normal parameters: #tracked
, #create_activity
. You can just pass the name of your custom variable and assign its value. Even better, you can pass it to #tracked
to tell us how to harvest your data for custom fields so we can do that for you.
class Article < ActiveRecord::Base
include PublicActivity::Model
tracked custom_field: proc {|controller, model| controller.some_helper }
end
If you need help with using public_activity please visit our discussion group and ask a question there:
https://groups.google.com/forum/?fromgroups#!forum/public-activity
Please do not ask general questions in the Github Issues.
Author: public-activity
Source code: https://github.com/public-activity/public_activity
License: MIT license
1622631378
For some years, artificial intelligence (AI) has been penetrating almost all digital spaces. After playing an instrumental role in digital communication and real-time problem-solving in many industries, AI in game development is expanding too. The significant impact of AI has played an instrumental role in the mobile and console game industry’s success.
AI has taken game development to new heights. AI helps to ensure greater satisfaction for gamers by addressing their objectives and concerns. AI also helps game developers come with higher-value additions and revisions based on data-driven insights,
AI is now showcasing many unprecedented opportunities in the gaming industry besides fulfilling its primary promise of delivering a great gaming experience. Here are some of the key ways AI is affecting the development of modern games.
**AI-Based Player Profiling **
Game developers now include AI-based player profiling within the game frameworks. This offers a game-playing experience that suits the target player profiles’ characteristic elements. You can hire game developers in India who are experts in creating AI-based player profiles equipped and thoroughly trained with game playing styles and different in-game player behaviors. These talented game developers can deliver a highly real-life environment within the game thanks to precise player profiling based on AI technology.
Read More: https://itchronicles.com/artificial-intelligence/ai-in-game-development/
#game development #game programming #game algorithms #game character design