Meghal Raval

Meghal Raval

1588947180

Frustrations with Node.js

Introduction

Just to clarify, I don’t hate Node.js. I actually like Node.js and enjoy being a full-stack JavaScript developer. However, it does not mean I do not get frustrated by it. Before I get into some frustrations with Node.js, let me say some of the things Node.js is awesome at:

However, there are some quirks about Node.js you should know:

  • Type checking — Node.js inherits the dynamic type checking from JavaScript. But, sometimes writing Node.js code in a real-life application makes you wish for stricter type checking to catch bugs sooner. You might have used one of the static type checking tools like Flow or TypeScript, but Flow frustrates a lot of developers with performance, compatibility, and intelliSense issues  and TypeScript, despite its appeal in the community, tends to be heavy and can cause issues in places you never imagined
  • Debugging — I am not an expert on this but I always had issues with properly debugging my Node.js applications. I am not saying debugging is not supported or possible, but code inspections and breakpoints tend to be ignored from time to time and you can get frustrated with lack of support on this important task, compared to other frameworks. I usually end up placing console.log and debugger statements all over my code for this purpose, which is not ideal

The above pain points are not limited to Node.js by any means. However, in my experience with Node.js as of today, I came to have two prominent frustrations that I think need to be clarified in more detail. Please also comment if you felt similar or additional frustrations with Node.js and how you manage to cope with them.

Error handling

Frustration

Throwing errors in Node.js is not as straightforward as other languages (and frameworks). We have a lot of asynchronous code in Node.js and it requires you to pass the error in your callbacks and promises, instead of throwing exceptions or simply using try/catch blocks. Debugging the true nature of the error becomes much more difficult when you have to go a few callbacks deep or cannot figure out how an unhandled exception can cause your app to silently fail, and it is then when you wish for a smoother error handling process.

Background

Before diving into error handling, we need to define some basics.

Node.js is built on top of JavaScript which is a single thread language. You get something called a call stack when having function calls. If any of your function calls take time to get resolved, we have to block the whole thread while we are waiting for the result to come back, which is not ideal in scenarios when we have to interact with a web application in browsers. The user still wants to work with the app, while we are waiting for some data to come back to us.

Here is where we get to the concept of asynchronous JavaScript, which helps us handle blocking code. To put simply, this is a mechanism to assign a callback to be performed when your registered function call is resolved. There are few options to handle this:

  • Using function callback — the idea is simple. You pass a function called callback to your async function call. When the result of the async function call comes back, we trigger the callback. A good example of this is the async addEventListener which takes a callback as the second parameter:
function clickHandler {
  alert('Button is clicked');
}

btn.addEventListener(‘click’, clickHandler);

  • Using promise — when using a promise on async function, you get an object representing the state of the operation. We don’t know when the promise will come back to us with either a result or error, but we have the mechanism to handle either scenario. For example, calling node-fetch would generate a promise object which we can handle with its methods:
const fetch = require("node-fetch");

fetch(“https://jsonplaceholder.typicode.com/todos/1”)
.then(res => res.json())
.then(json => console.log(json))
.catch(error => console.log(“error”, error));

// { userId: 1, id: 1, title: ‘delectus aut autem’, completed: false }

We have other options like async iterators and generators  or new async/await feature in ES2017 which is just syntactic sugar on top of the promise. But for simplicity, we just stick with the above options. Let’s see how error handling is maintained for both callbacks and promises.

Asynchronous error handling

Function callback — error handling with this approach is done using a Error First Callback method. When the async function gets back with a result, the callback gets called with an Error Object as its first argument. If we have no error, this will be set as null. Let’s look at an example:

// setTimeout is faking an async call which returns an error after 0.5 seconds
const asyncFunction = (callback) => {
  setTimeout(() => {
    callback(new Error('I got an error'))
  }, 500)
}

// callback for our async function
const callbackFunction = (err, data) => {
if (err) {
console.error(err);
return;
}
console.log(data);
}

asyncFunction(callbackFunction);

When we call asyncFunction above, it approaches setTimeout as the first thing and cannot handle it synchronously. Therefore, it asks window API to resolve it and continues the program. When the result comes back (which in this case is an Error Object), it will call the function callback. Here come the frustrating parts.

We cannot use a try/catch in the context of asynchronous function calls to catch errors. So we cannot just throw an error, in our Error First Callback approach:

const callbackFunction = (err, data) => {
  if (err) {
    throw err;
  }
  console.log(data);
}

try {
asyncFunction(callbackFunction);
} catch(err) {
// we are not catching the error here
// and the Node.js process will crash
console.error(err);
}

  • Forgetting to return in our callback function will let the program continue and cause more errors. The main point here is there are so many quirks to remember and handle here that might cause the code to get into a state that is hard to reason about and debug
if (err) {
    console.error(err);
    return;
  }

Promises are amazing at chaining multiple async functions together and help you avoid callback hell that can be caused by using the previous method. For error handling, promises use .catch method in the chain to handle exceptions. However, handling errors in them still comes with some concerns:

  • You might get swallowed errors if you forget to use .catch methods in your promise chain. This will cause such an error to be categorized as unhandled error. In that case, we need to have a mechanism in Node.js to handle promise rejections that are not handled. This is done when unhandledRejection event is emitted in Node.js:
const fetch = require("node-fetch");
const url = "https://wrongAPI.github.com/users/github";

const unhandledRejections = new Map();
process.on(“unhandledRejection”, (reason, promise) => {
unhandledRejections.set(promise, reason);
console.log(“unhandledRejections”, unhandledRejections);
});

const asyncFunction = () => fetch(url);

asyncFunction()
.then(res => res.json())
.then(json => console.log(json))

  • Another issue is the traceability of large async function chains. In short, what was the source, origin, and context of thrown error? For example, if you have a long chain of async function calls to handle an API fetch request and several higher-level components that depend on it. These higher-level components also have several children underneath them. An error thrown in any of them can make the traceability of the issue difficult

It is not straightforward how this needs to be handled in Node.js, but one common pattern is to add an immediate .catch methods to the async task in higher-level components and re-throw the error in them again. This helps massively in tracing an error in case it happens in any of their children, since we chain another .catch to the instances that calls the higher-level async task. Let’s see this with an example:

const fetch = require("node-fetch");
const url = "https://wrongAPI.github.com/users/github";

// higher level async task
const asynFunction = () => {
return fetch(url).catch(error => {
// re-throwing the error
throw new Error(error);
});
};

// error thrown in this intacen 1 is much bette traceable
// returns: instace 1 error: invalid json response body at https://wrongapi.github.com/users/github reason: Unexpected token < in JSON at position 0
try {
return await asyncFunction();
} catch(error) {
console.error(“instace 1 error:”, error.message)
}

Package manager

Frustration

There are several tools for package management in Node.js like npm, yarn, and pnpm, which help you install tools, packages, and dependencies for your application to make the process of software development faster and easier.

However, as it is usually with the JavaScript community, defining good and universal standards are happening less and less compared to other languages and frameworks. Just Googling “JavaScript standards” show the lack of standard as people tend not to agree on how to approach JavaScript, except in few cases like Mozilla JS reference — which is very solid. Therefore, it is easy to feel confused which package manager you need to pick for your project in Node.js.

Additionally, there are complaints about the low quality of packages in the Node.js community, which makes it harder for developers to decide if they need to re-invent the wheel and build a needed tooling themselves or can they trust the maintained packages.

Finally, with JavaScript’s rapid changes, it is no surprise that a lot of packages that our applications are dependent on are changing as well. This requires a smoother package version management in Node.js which sometimes can be troublesome.

This, by no means, indicates that Node.js is any worse than other frameworks when it comes to packages and package management, but just a mere reflection of some frustrations that comes with Node.js package managers. We will discuss few of these frustrations like lack of standards, quality of packages, and version management in more detail, but first, we need to have a background on some of the most famous Node.js package managers.

Background

  • npm — This is the official package manager for Node.js. Through its repository, you can publish, search, and install packages. Specifically, in the context of a Node.js project, it does also help you with a CLI command and package.json document to manage your project dependencies and handle version management for them
  • yarn — Consider YARN as an improved version of NPM CLI with the same model of package installation. In addition, it has some other advantages:
    • It is more reliable. Unlike NPM, it uses dual registries by default (npmjs.com and https://bower.io/search/) to make sure the service is still available if any of the registries are down
    • It is faster. It can download packages in parallel instances and caches all of the installed packages, so it can retrieve them much faster the next time it wants to download. Even though NPM has also done some performance improvements with NPM cache
  • pnpm — This is the newest player among the three. PNPM officially describes itself as “fast, disk efficient package manager” that seems to be working more efficiently compared to the other two by using symlinks to build your dependencies only once and reusing them

Dealing with package managers

  • Lack of standards — As we have seen above, there are multiple options when it comes to package managers. It is common that when you want to start a project, you might get a bit confused about which one to pick. They have their similarities in 99% of the scenarios, but also possess little quirks in 1% of the instances that can cause issues down the road for maintaining the project. Having worked with all of the above options in production applications, I wish there was a bit more consistency in this area
  • Quality of packages — Even though you can find a lot of useful packages in Node.js, there are an equivalent number of options that are out-dated, poorly tested, or not maintained. Since publishing packages in NPM registry is not that difficult, it is on us developers to make sure we choose the right packages for our projects. We can simply vet a package by checking its GitHub repo and check the overall status and maintenance of it. This can be in the form of checking a good balance between a number of issues and open pull requests, good communication from maintainers in the reported issues, and overall usage of the package and its popularity reflected in a number of stars and forks. To make this job even easier, you can type in the name of your package in NPMS, and you get an overall overview of it
  • Version management — Package managers use semver to handle versioning of packages. With this approach, a sample package versions look like this Major.Minor.Patch, for example 1.0.0. Let’s see an actual package.json and list of dependencies and their versions in action:
{
  "name": "app",
  "version": "1.0.0",
  "description": "Node.js example",
  "main": "src/index.js",
  "scripts": {
    "start": "nodemon src/index.js"
  },
  "dependencies": {
    "node-fetch": "~2.6.0"
  },
  "devDependencies": {
    "nodemon": "^1.18.4"
  },
}

This is already confusing as we get two different symbols in front of package versions. What do they mean?

~ or tilde shows a range of acceptable patch versions for a package. For example, we are gonna update the app to all of the future patch updates for node-fetch ranging from 2.6.0 to 2.7.0

^ or caret shows a range of acceptable minor/patch versions for a package. For example, we are gonna update the app to all of the future patch updates for nodemon ranging from 1.18.4 to 2.0.0

This already seems like a lot of hassle for such a simple task. Additionally, we need to consider the fact that making a mistake in defining the correct range of dependency versions can break the app at some point. However, concepts like package.json.lock or yarn.lock are formed to help avoid making such mistakes by helping to make consistent dependency installs across machines. However, I wish there were more standard approaches in making sure severe problems do not happen due to flawed version control and management system in Node.js.

Conclusion

These are some frustrations I experienced with Node.js. But, here are some things to remember:

  • A large portion of Node.js frustrations come from unfamiliarity with JavaScript as the underlying language. Make yourself more familiar with its basic and advance topics and life will be much easier as a Node.js developer
  • Make sure the use case for your Node.js application is valid. For example, a chat application is an awesome candidate for using Node.js. An application with CPU intensive computations, not so much. Familiarize yourself with common use cases
  • Finally, know that any framework can come with certain pain points. Use this article and similar ones in the reference list to learn about common issues and the best ways to handle them

Originally published by Kasra Khosravi at https://blog.logrocket.com

#node-js #web-development #javascript

What is GEEK

Buddha Community

Frustrations with Node.js

NBB: Ad-hoc CLJS Scripting on Node.js

Nbb

Not babashka. Node.js babashka!?

Ad-hoc CLJS scripting on Node.js.

Status

Experimental. Please report issues here.

Goals and features

Nbb's main goal is to make it easy to get started with ad hoc CLJS scripting on Node.js.

Additional goals and features are:

  • Fast startup without relying on a custom version of Node.js.
  • Small artifact (current size is around 1.2MB).
  • First class macros.
  • Support building small TUI apps using Reagent.
  • Complement babashka with libraries from the Node.js ecosystem.

Requirements

Nbb requires Node.js v12 or newer.

How does this tool work?

CLJS code is evaluated through SCI, the same interpreter that powers babashka. Because SCI works with advanced compilation, the bundle size, especially when combined with other dependencies, is smaller than what you get with self-hosted CLJS. That makes startup faster. The trade-off is that execution is less performant and that only a subset of CLJS is available (e.g. no deftype, yet).

Usage

Install nbb from NPM:

$ npm install nbb -g

Omit -g for a local install.

Try out an expression:

$ nbb -e '(+ 1 2 3)'
6

And then install some other NPM libraries to use in the script. E.g.:

$ npm install csv-parse shelljs zx

Create a script which uses the NPM libraries:

(ns script
  (:require ["csv-parse/lib/sync$default" :as csv-parse]
            ["fs" :as fs]
            ["path" :as path]
            ["shelljs$default" :as sh]
            ["term-size$default" :as term-size]
            ["zx$default" :as zx]
            ["zx$fs" :as zxfs]
            [nbb.core :refer [*file*]]))

(prn (path/resolve "."))

(prn (term-size))

(println (count (str (fs/readFileSync *file*))))

(prn (sh/ls "."))

(prn (csv-parse "foo,bar"))

(prn (zxfs/existsSync *file*))

(zx/$ #js ["ls"])

Call the script:

$ nbb script.cljs
"/private/tmp/test-script"
#js {:columns 216, :rows 47}
510
#js ["node_modules" "package-lock.json" "package.json" "script.cljs"]
#js [#js ["foo" "bar"]]
true
$ ls
node_modules
package-lock.json
package.json
script.cljs

Macros

Nbb has first class support for macros: you can define them right inside your .cljs file, like you are used to from JVM Clojure. Consider the plet macro to make working with promises more palatable:

(defmacro plet
  [bindings & body]
  (let [binding-pairs (reverse (partition 2 bindings))
        body (cons 'do body)]
    (reduce (fn [body [sym expr]]
              (let [expr (list '.resolve 'js/Promise expr)]
                (list '.then expr (list 'clojure.core/fn (vector sym)
                                        body))))
            body
            binding-pairs)))

Using this macro we can look async code more like sync code. Consider this puppeteer example:

(-> (.launch puppeteer)
      (.then (fn [browser]
               (-> (.newPage browser)
                   (.then (fn [page]
                            (-> (.goto page "https://clojure.org")
                                (.then #(.screenshot page #js{:path "screenshot.png"}))
                                (.catch #(js/console.log %))
                                (.then #(.close browser)))))))))

Using plet this becomes:

(plet [browser (.launch puppeteer)
       page (.newPage browser)
       _ (.goto page "https://clojure.org")
       _ (-> (.screenshot page #js{:path "screenshot.png"})
             (.catch #(js/console.log %)))]
      (.close browser))

See the puppeteer example for the full code.

Since v0.0.36, nbb includes promesa which is a library to deal with promises. The above plet macro is similar to promesa.core/let.

Startup time

$ time nbb -e '(+ 1 2 3)'
6
nbb -e '(+ 1 2 3)'   0.17s  user 0.02s system 109% cpu 0.168 total

The baseline startup time for a script is about 170ms seconds on my laptop. When invoked via npx this adds another 300ms or so, so for faster startup, either use a globally installed nbb or use $(npm bin)/nbb script.cljs to bypass npx.

Dependencies

NPM dependencies

Nbb does not depend on any NPM dependencies. All NPM libraries loaded by a script are resolved relative to that script. When using the Reagent module, React is resolved in the same way as any other NPM library.

Classpath

To load .cljs files from local paths or dependencies, you can use the --classpath argument. The current dir is added to the classpath automatically. So if there is a file foo/bar.cljs relative to your current dir, then you can load it via (:require [foo.bar :as fb]). Note that nbb uses the same naming conventions for namespaces and directories as other Clojure tools: foo-bar in the namespace name becomes foo_bar in the directory name.

To load dependencies from the Clojure ecosystem, you can use the Clojure CLI or babashka to download them and produce a classpath:

$ classpath="$(clojure -A:nbb -Spath -Sdeps '{:aliases {:nbb {:replace-deps {com.github.seancorfield/honeysql {:git/tag "v2.0.0-rc5" :git/sha "01c3a55"}}}}}')"

and then feed it to the --classpath argument:

$ nbb --classpath "$classpath" -e "(require '[honey.sql :as sql]) (sql/format {:select :foo :from :bar :where [:= :baz 2]})"
["SELECT foo FROM bar WHERE baz = ?" 2]

Currently nbb only reads from directories, not jar files, so you are encouraged to use git libs. Support for .jar files will be added later.

Current file

The name of the file that is currently being executed is available via nbb.core/*file* or on the metadata of vars:

(ns foo
  (:require [nbb.core :refer [*file*]]))

(prn *file*) ;; "/private/tmp/foo.cljs"

(defn f [])
(prn (:file (meta #'f))) ;; "/private/tmp/foo.cljs"

Reagent

Nbb includes reagent.core which will be lazily loaded when required. You can use this together with ink to create a TUI application:

$ npm install ink

ink-demo.cljs:

(ns ink-demo
  (:require ["ink" :refer [render Text]]
            [reagent.core :as r]))

(defonce state (r/atom 0))

(doseq [n (range 1 11)]
  (js/setTimeout #(swap! state inc) (* n 500)))

(defn hello []
  [:> Text {:color "green"} "Hello, world! " @state])

(render (r/as-element [hello]))

Promesa

Working with callbacks and promises can become tedious. Since nbb v0.0.36 the promesa.core namespace is included with the let and do! macros. An example:

(ns prom
  (:require [promesa.core :as p]))

(defn sleep [ms]
  (js/Promise.
   (fn [resolve _]
     (js/setTimeout resolve ms))))

(defn do-stuff
  []
  (p/do!
   (println "Doing stuff which takes a while")
   (sleep 1000)
   1))

(p/let [a (do-stuff)
        b (inc a)
        c (do-stuff)
        d (+ b c)]
  (prn d))
$ nbb prom.cljs
Doing stuff which takes a while
Doing stuff which takes a while
3

Also see API docs.

Js-interop

Since nbb v0.0.75 applied-science/js-interop is available:

(ns example
  (:require [applied-science.js-interop :as j]))

(def o (j/lit {:a 1 :b 2 :c {:d 1}}))

(prn (j/select-keys o [:a :b])) ;; #js {:a 1, :b 2}
(prn (j/get-in o [:c :d])) ;; 1

Most of this library is supported in nbb, except the following:

  • destructuring using :syms
  • property access using .-x notation. In nbb, you must use keywords.

See the example of what is currently supported.

Examples

See the examples directory for small examples.

Also check out these projects built with nbb:

API

See API documentation.

Migrating to shadow-cljs

See this gist on how to convert an nbb script or project to shadow-cljs.

Build

Prequisites:

  • babashka >= 0.4.0
  • Clojure CLI >= 1.10.3.933
  • Node.js 16.5.0 (lower version may work, but this is the one I used to build)

To build:

  • Clone and cd into this repo
  • bb release

Run bb tasks for more project-related tasks.

Download Details:
Author: borkdude
Download Link: Download The Source Code
Official Website: https://github.com/borkdude/nbb 
License: EPL-1.0

#node #javascript

Hire Dedicated Node.js Developers - Hire Node.js Developers

If you look at the backend technology used by today’s most popular apps there is one thing you would find common among them and that is the use of NodeJS Framework. Yes, the NodeJS framework is that effective and successful.

If you wish to have a strong backend for efficient app performance then have NodeJS at the backend.

WebClues Infotech offers different levels of experienced and expert professionals for your app development needs. So hire a dedicated NodeJS developer from WebClues Infotech with your experience requirement and expertise.

So what are you waiting for? Get your app developed with strong performance parameters from WebClues Infotech

For inquiry click here: https://www.webcluesinfotech.com/hire-nodejs-developer/

Book Free Interview: https://bit.ly/3dDShFg

#hire dedicated node.js developers #hire node.js developers #hire top dedicated node.js developers #hire node.js developers in usa & india #hire node js development company #hire the best node.js developers & programmers

Aria Barnes

Aria Barnes

1622719015

Why use Node.js for Web Development? Benefits and Examples of Apps

Front-end web development has been overwhelmed by JavaScript highlights for quite a long time. Google, Facebook, Wikipedia, and most of all online pages use JS for customer side activities. As of late, it additionally made a shift to cross-platform mobile development as a main technology in React Native, Nativescript, Apache Cordova, and other crossover devices. 

Throughout the most recent couple of years, Node.js moved to backend development as well. Designers need to utilize a similar tech stack for the whole web project without learning another language for server-side development. Node.js is a device that adjusts JS usefulness and syntax to the backend. 

What is Node.js? 

Node.js isn’t a language, or library, or system. It’s a runtime situation: commonly JavaScript needs a program to work, however Node.js makes appropriate settings for JS to run outside of the program. It’s based on a JavaScript V8 motor that can run in Chrome, different programs, or independently. 

The extent of V8 is to change JS program situated code into machine code — so JS turns into a broadly useful language and can be perceived by servers. This is one of the advantages of utilizing Node.js in web application development: it expands the usefulness of JavaScript, permitting designers to coordinate the language with APIs, different languages, and outside libraries.

What Are the Advantages of Node.js Web Application Development? 

Of late, organizations have been effectively changing from their backend tech stacks to Node.js. LinkedIn picked Node.js over Ruby on Rails since it took care of expanding responsibility better and decreased the quantity of servers by multiple times. PayPal and Netflix did something comparative, just they had a goal to change their design to microservices. We should investigate the motivations to pick Node.JS for web application development and when we are planning to hire node js developers. 

Amazing Tech Stack for Web Development 

The principal thing that makes Node.js a go-to environment for web development is its JavaScript legacy. It’s the most well known language right now with a great many free devices and a functioning local area. Node.js, because of its association with JS, immediately rose in ubiquity — presently it has in excess of 368 million downloads and a great many free tools in the bundle module. 

Alongside prevalence, Node.js additionally acquired the fundamental JS benefits: 

  • quick execution and information preparing; 
  • exceptionally reusable code; 
  • the code is not difficult to learn, compose, read, and keep up; 
  • tremendous asset library, a huge number of free aides, and a functioning local area. 

In addition, it’s a piece of a well known MEAN tech stack (the blend of MongoDB, Express.js, Angular, and Node.js — four tools that handle all vital parts of web application development). 

Designers Can Utilize JavaScript for the Whole Undertaking 

This is perhaps the most clear advantage of Node.js web application development. JavaScript is an unquestionable requirement for web development. Regardless of whether you construct a multi-page or single-page application, you need to know JS well. On the off chance that you are now OK with JavaScript, learning Node.js won’t be an issue. Grammar, fundamental usefulness, primary standards — every one of these things are comparable. 

In the event that you have JS designers in your group, it will be simpler for them to learn JS-based Node than a totally new dialect. What’s more, the front-end and back-end codebase will be basically the same, simple to peruse, and keep up — in light of the fact that they are both JS-based. 

A Quick Environment for Microservice Development 

There’s another motivation behind why Node.js got famous so rapidly. The environment suits well the idea of microservice development (spilling stone monument usefulness into handfuls or many more modest administrations). 

Microservices need to speak with one another rapidly — and Node.js is probably the quickest device in information handling. Among the fundamental Node.js benefits for programming development are its non-obstructing algorithms.

Node.js measures a few demands all at once without trusting that the first will be concluded. Many microservices can send messages to one another, and they will be gotten and addressed all the while. 

Versatile Web Application Development 

Node.js was worked in view of adaptability — its name really says it. The environment permits numerous hubs to run all the while and speak with one another. Here’s the reason Node.js adaptability is better than other web backend development arrangements. 

Node.js has a module that is liable for load adjusting for each running CPU center. This is one of numerous Node.js module benefits: you can run various hubs all at once, and the environment will naturally adjust the responsibility. 

Node.js permits even apportioning: you can part your application into various situations. You show various forms of the application to different clients, in light of their age, interests, area, language, and so on. This builds personalization and diminishes responsibility. Hub accomplishes this with kid measures — tasks that rapidly speak with one another and share a similar root. 

What’s more, Node’s non-hindering solicitation handling framework adds to fast, letting applications measure a great many solicitations. 

Control Stream Highlights

Numerous designers consider nonconcurrent to be one of the two impediments and benefits of Node.js web application development. In Node, at whatever point the capacity is executed, the code consequently sends a callback. As the quantity of capacities develops, so does the number of callbacks — and you end up in a circumstance known as the callback damnation. 

In any case, Node.js offers an exit plan. You can utilize systems that will plan capacities and sort through callbacks. Systems will associate comparable capacities consequently — so you can track down an essential component via search or in an envelope. At that point, there’s no compelling reason to look through callbacks.

 

Final Words

So, these are some of the top benefits of Nodejs in web application development. This is how Nodejs is contributing a lot to the field of web application development. 

I hope now you are totally aware of the whole process of how Nodejs is really important for your web project. If you are looking to hire a node js development company in India then I would suggest that you take a little consultancy too whenever you call. 

Good Luck!

Original Source

#node.js development company in india #node js development company #hire node js developers #hire node.js developers in india #node.js development services #node.js development

Node JS Development Company| Node JS Web Developers-SISGAIN

Top organizations and start-ups hire Node.js developers from SISGAIN for their strategic software development projects in Illinois, USA. On the off chance that you are searching for a first rate innovation to assemble a constant Node.js web application development or a module, Node.js applications are the most appropriate alternative to pick. As Leading Node.js development company, we leverage our profound information on its segments and convey solutions that bring noteworthy business results. For more information email us at hello@sisgain.com

#node.js development services #hire node.js developers #node.js web application development #node.js development company #node js application

sophia tondon

sophia tondon

1625114985

Top 10 NodeJs app Development Companies- ValueCoders

Node.js is a prominent tech trend in the space of web and mobile application development. It has been proven very efficient and useful for a variety of application development. Thus, all business owners are eager to leverage this technology for creating their applications.

Are you striving to develop an application using Node.js? But can’t decide which company to hire for NodeJS app development? Well! Don’t stress over it, as the following list of NodeJS app development companies is going to help you find the best partner.

Let’s take a glance at top NodeJS application development companies to hire developers in 2021 for developing a mind-blowing application solution.

Before enlisting companies, I would like to say that every company has a foundation on which they thrive. Their end goals, qualities, and excellence define their competence. Thus, I prepared this list by considering a number of aspects. While making this list, I have considered the following aspects:

  • Review and rating
  • Enlisted by software peer & forums
  • Hourly price
  • Offered services
  • Year of experience (Average 8+ years)
  • Credibility & Excellence
  • Served clients and more

I believe this list will help you out in choosing the best NodeJS service provider company. So, now let’s explore the top NodeJS developer companies to choose from in 2021.

#1. JSGuru

JSGuru is a top-rated NodeJS app development company with an innovative team of dedicated NodeJS developers engaged in catering best-class UI/UX design, software products, and AWS professional services.

It is a team of one of the most talented developers to hire for all types of innovative solution development, including social media, dating, enterprise, and business-oriented solutions. The company has worked for years with a number of startups and launched a variety of products by collaborating with big-name corporations like T-systems.

If you want to hire NodeJS developers to secure an outstanding application, I would definitely suggest them. They serve in the area of eLearning, FinTech, eCommerce, Telecommunications, Mobile Device Management, and more.

  • Ratings: 4.9/5.0

  • Founded: 2006

  • Headquarters: Banja Luka, Bosnia, and Herzegovina

  • Price: Starting from $50/hour

Visit Website - https://www.valuecoders.com/blog/technology-and-apps/top-node-js-app-development-companies

#node js developer #hire node js developer #hiring node js developers #node js development company #node.js development company #node js development services