1679997240
Trong hướng dẫn pythonn - Numpy này, chúng ta sẽ tìm hiểu về Numpy linalg.svd: Phân tách giá trị số ít trong Python. Trong toán học, phân tích giá trị đơn lẻ (SVD) của ma trận đề cập đến việc phân tích ma trận thành ba ma trận riêng biệt. Nó là một phiên bản tổng quát hơn của phép phân tách giá trị riêng của ma trận. Nó liên quan nhiều hơn đến sự phân hủy cực.
Trong Python, thật dễ dàng để tính toán phép phân tách số ít của một ma trận thực hoặc phức bằng cách sử dụng python số hoặc thư viện numpy. Thư viện numpy bao gồm các hàm đại số tuyến tính khác nhau, bao gồm một hàm để tính toán phân tích giá trị đơn lẻ của ma trận.
Trong các mô hình học máy , phân tách giá trị đơn lẻ được sử dụng rộng rãi để huấn luyện các mô hình và trong các mạng thần kinh. Nó giúp cải thiện độ chính xác và giảm nhiễu trong dữ liệu. Phép phân tích giá trị đơn biến đổi một vectơ thành một vectơ khác mà không nhất thiết chúng phải có cùng chiều. Do đó, nó làm cho thao tác ma trận trong không gian vectơ dễ dàng và hiệu quả hơn. Nó cũng được sử dụng trong phân tích hồi quy .
Hàm tính toán phân tách giá trị số ít của ma trận trong python thuộc về mô-đun numpy, có tên là linalg.svd() .
Cú pháp của numpy linalg.svd() như sau:
numpy.linalg.svd(A, full_matrices=True, compute_uv=True, hermitian=False)
Bạn có thể tùy chỉnh các giá trị boolean đúng và sai dựa trên yêu cầu của mình.
Các tham số của chức năng được đưa ra dưới đây:
Hàm trả về ba loại ma trận dựa trên các tham số được đề cập ở trên:
Nó làm tăng LinALgError khi các giá trị đơn lẻ đa dạng.
Trước khi chúng tôi đi sâu vào các ví dụ, hãy đảm bảo rằng bạn đã cài đặt mô-đun numpy trong hệ thống cục bộ của mình. Điều này là cần thiết để sử dụng các hàm đại số tuyến tính giống như hàm được thảo luận trong bài viết này. Chạy lệnh sau trong thiết bị đầu cuối của bạn.
pip install numpy
Đó là tất cả những gì bạn cần ngay bây giờ, hãy xem cách chúng tôi sẽ triển khai mã trong phần tiếp theo.
Để tính toán Phân tách giá trị số ít (SVD) trong Python, hãy sử dụng hàm linalg.svd() của thư viện NumPy. Cú pháp của nó là numpy.linalg.svd(A, full_matrices=True, compute_uv=True, hermitian=False), trong đó A là ma trận mà SVD đang được tính toán. Nó trả về ba ma trận: S, U và V.
Trong ví dụ đầu tiên này, chúng ta sẽ lấy một ma trận 3X3 và tính toán phân tích giá trị đơn lẻ của nó theo cách sau:
#importing the numpy module
import numpy as np
#using the numpy.array() function to create an array
A=np.array([[2,4,6],
[8,10,12],
[14,16,18]])
#calculatin all three matrices for the output
#using the numpy linalg.svd function
u,s,v=np.linalg.svd(A, compute_uv=True)
#displaying the result
print("the output is=")
print('s(the singular value) = ',s)
print('u = ',u)
print('v = ',v)
Đầu ra sẽ là:
the output is=
s(the singular value) = [3.36962067e+01 2.13673903e+00 8.83684950e-16]
u = [[-0.21483724 0.88723069 0.40824829]
[-0.52058739 0.24964395 -0.81649658]
[-0.82633754 -0.38794278 0.40824829]]
v = [[-0.47967118 -0.57236779 -0.66506441]
[-0.77669099 -0.07568647 0.62531805]
[-0.40824829 0.81649658 -0.40824829]]
ví dụ 1
Trong ví dụ này, chúng ta sẽ sử dụng hàm numpy.random.randint() để tạo một ma trận ngẫu nhiên. Hãy đi vào nó!
#importing the numpy module
import numpy as np
#using the numpy.array() function to craete an array
A=np.random.randint(5, 200, size=(3,3))
#display the created matrix
print("The input matrix is=",A)
#calculatin all three matrices for the output
#using the numpy linalg.svd function
u,s,v=np.linalg.svd(A, compute_uv=True)
#displaying the result
print("the output is=")
print('s(the singular value) = ',s)
print('u = ',u)
print('v = ',v)
Đầu ra sẽ như sau:
The input matrix is= [[ 36 74 101]
[104 129 185]
[139 121 112]]
the output is=
s(the singular value) = [348.32979681 61.03199722 10.12165841]
u = [[-0.3635535 -0.48363012 -0.79619769]
[-0.70916514 -0.41054007 0.57318554]
[-0.60408084 0.77301925 -0.19372034]]
v = [[-0.49036384 -0.54970618 -0.67628871]
[ 0.77570499 0.0784348 -0.62620264]
[ 0.39727203 -0.83166766 0.38794824]]
ví dụ 2
Đề xuất: Numpy linalg.eigvalsh: Hướng dẫn tính toán giá trị riêng .
Trong bài viết này, chúng ta đã khám phá khái niệm phân tách giá trị số ít trong toán học và cách tính toán nó bằng cách sử dụng mô-đun numpy của Python. Chúng tôi đã sử dụng hàm linalg.svd() để tính toán phân tách giá trị số ít của cả ma trận đã cho và ma trận ngẫu nhiên. Numpy cung cấp một phương pháp hiệu quả và dễ sử dụng để thực hiện các phép toán đại số tuyến tính, làm cho nó có giá trị cao trong học máy, mạng thần kinh và phân tích hồi quy. Tiếp tục khám phá các hàm đại số tuyến tính khác trong numpy để nâng cao bộ công cụ toán học của bạn trong Python.
Nguồn bài viết tại: https://www.askpython.com
1679997240
Trong hướng dẫn pythonn - Numpy này, chúng ta sẽ tìm hiểu về Numpy linalg.svd: Phân tách giá trị số ít trong Python. Trong toán học, phân tích giá trị đơn lẻ (SVD) của ma trận đề cập đến việc phân tích ma trận thành ba ma trận riêng biệt. Nó là một phiên bản tổng quát hơn của phép phân tách giá trị riêng của ma trận. Nó liên quan nhiều hơn đến sự phân hủy cực.
Trong Python, thật dễ dàng để tính toán phép phân tách số ít của một ma trận thực hoặc phức bằng cách sử dụng python số hoặc thư viện numpy. Thư viện numpy bao gồm các hàm đại số tuyến tính khác nhau, bao gồm một hàm để tính toán phân tích giá trị đơn lẻ của ma trận.
Trong các mô hình học máy , phân tách giá trị đơn lẻ được sử dụng rộng rãi để huấn luyện các mô hình và trong các mạng thần kinh. Nó giúp cải thiện độ chính xác và giảm nhiễu trong dữ liệu. Phép phân tích giá trị đơn biến đổi một vectơ thành một vectơ khác mà không nhất thiết chúng phải có cùng chiều. Do đó, nó làm cho thao tác ma trận trong không gian vectơ dễ dàng và hiệu quả hơn. Nó cũng được sử dụng trong phân tích hồi quy .
Hàm tính toán phân tách giá trị số ít của ma trận trong python thuộc về mô-đun numpy, có tên là linalg.svd() .
Cú pháp của numpy linalg.svd() như sau:
numpy.linalg.svd(A, full_matrices=True, compute_uv=True, hermitian=False)
Bạn có thể tùy chỉnh các giá trị boolean đúng và sai dựa trên yêu cầu của mình.
Các tham số của chức năng được đưa ra dưới đây:
Hàm trả về ba loại ma trận dựa trên các tham số được đề cập ở trên:
Nó làm tăng LinALgError khi các giá trị đơn lẻ đa dạng.
Trước khi chúng tôi đi sâu vào các ví dụ, hãy đảm bảo rằng bạn đã cài đặt mô-đun numpy trong hệ thống cục bộ của mình. Điều này là cần thiết để sử dụng các hàm đại số tuyến tính giống như hàm được thảo luận trong bài viết này. Chạy lệnh sau trong thiết bị đầu cuối của bạn.
pip install numpy
Đó là tất cả những gì bạn cần ngay bây giờ, hãy xem cách chúng tôi sẽ triển khai mã trong phần tiếp theo.
Để tính toán Phân tách giá trị số ít (SVD) trong Python, hãy sử dụng hàm linalg.svd() của thư viện NumPy. Cú pháp của nó là numpy.linalg.svd(A, full_matrices=True, compute_uv=True, hermitian=False), trong đó A là ma trận mà SVD đang được tính toán. Nó trả về ba ma trận: S, U và V.
Trong ví dụ đầu tiên này, chúng ta sẽ lấy một ma trận 3X3 và tính toán phân tích giá trị đơn lẻ của nó theo cách sau:
#importing the numpy module
import numpy as np
#using the numpy.array() function to create an array
A=np.array([[2,4,6],
[8,10,12],
[14,16,18]])
#calculatin all three matrices for the output
#using the numpy linalg.svd function
u,s,v=np.linalg.svd(A, compute_uv=True)
#displaying the result
print("the output is=")
print('s(the singular value) = ',s)
print('u = ',u)
print('v = ',v)
Đầu ra sẽ là:
the output is=
s(the singular value) = [3.36962067e+01 2.13673903e+00 8.83684950e-16]
u = [[-0.21483724 0.88723069 0.40824829]
[-0.52058739 0.24964395 -0.81649658]
[-0.82633754 -0.38794278 0.40824829]]
v = [[-0.47967118 -0.57236779 -0.66506441]
[-0.77669099 -0.07568647 0.62531805]
[-0.40824829 0.81649658 -0.40824829]]
ví dụ 1
Trong ví dụ này, chúng ta sẽ sử dụng hàm numpy.random.randint() để tạo một ma trận ngẫu nhiên. Hãy đi vào nó!
#importing the numpy module
import numpy as np
#using the numpy.array() function to craete an array
A=np.random.randint(5, 200, size=(3,3))
#display the created matrix
print("The input matrix is=",A)
#calculatin all three matrices for the output
#using the numpy linalg.svd function
u,s,v=np.linalg.svd(A, compute_uv=True)
#displaying the result
print("the output is=")
print('s(the singular value) = ',s)
print('u = ',u)
print('v = ',v)
Đầu ra sẽ như sau:
The input matrix is= [[ 36 74 101]
[104 129 185]
[139 121 112]]
the output is=
s(the singular value) = [348.32979681 61.03199722 10.12165841]
u = [[-0.3635535 -0.48363012 -0.79619769]
[-0.70916514 -0.41054007 0.57318554]
[-0.60408084 0.77301925 -0.19372034]]
v = [[-0.49036384 -0.54970618 -0.67628871]
[ 0.77570499 0.0784348 -0.62620264]
[ 0.39727203 -0.83166766 0.38794824]]
ví dụ 2
Đề xuất: Numpy linalg.eigvalsh: Hướng dẫn tính toán giá trị riêng .
Trong bài viết này, chúng ta đã khám phá khái niệm phân tách giá trị số ít trong toán học và cách tính toán nó bằng cách sử dụng mô-đun numpy của Python. Chúng tôi đã sử dụng hàm linalg.svd() để tính toán phân tách giá trị số ít của cả ma trận đã cho và ma trận ngẫu nhiên. Numpy cung cấp một phương pháp hiệu quả và dễ sử dụng để thực hiện các phép toán đại số tuyến tính, làm cho nó có giá trị cao trong học máy, mạng thần kinh và phân tích hồi quy. Tiếp tục khám phá các hàm đại số tuyến tính khác trong numpy để nâng cao bộ công cụ toán học của bạn trong Python.
Nguồn bài viết tại: https://www.askpython.com
1626775355
No programming language is pretty much as diverse as Python. It enables building cutting edge applications effortlessly. Developers are as yet investigating the full capability of end-to-end Python development services in various areas.
By areas, we mean FinTech, HealthTech, InsureTech, Cybersecurity, and that's just the beginning. These are New Economy areas, and Python has the ability to serve every one of them. The vast majority of them require massive computational abilities. Python's code is dynamic and powerful - equipped for taking care of the heavy traffic and substantial algorithmic capacities.
Programming advancement is multidimensional today. Endeavor programming requires an intelligent application with AI and ML capacities. Shopper based applications require information examination to convey a superior client experience. Netflix, Trello, and Amazon are genuine instances of such applications. Python assists with building them effortlessly.
Python can do such numerous things that developers can't discover enough reasons to admire it. Python application development isn't restricted to web and enterprise applications. It is exceptionally adaptable and superb for a wide range of uses.
Robust frameworks
Python is known for its tools and frameworks. There's a structure for everything. Django is helpful for building web applications, venture applications, logical applications, and mathematical processing. Flask is another web improvement framework with no conditions.
Web2Py, CherryPy, and Falcon offer incredible capabilities to customize Python development services. A large portion of them are open-source frameworks that allow quick turn of events.
Simple to read and compose
Python has an improved sentence structure - one that is like the English language. New engineers for Python can undoubtedly understand where they stand in the development process. The simplicity of composing allows quick application building.
The motivation behind building Python, as said by its maker Guido Van Rossum, was to empower even beginner engineers to comprehend the programming language. The simple coding likewise permits developers to roll out speedy improvements without getting confused by pointless subtleties.
Utilized by the best
Alright - Python isn't simply one more programming language. It should have something, which is the reason the business giants use it. Furthermore, that too for different purposes. Developers at Google use Python to assemble framework organization systems, parallel information pusher, code audit, testing and QA, and substantially more. Netflix utilizes Python web development services for its recommendation algorithm and media player.
Massive community support
Python has a steadily developing community that offers enormous help. From amateurs to specialists, there's everybody. There are a lot of instructional exercises, documentation, and guides accessible for Python web development solutions.
Today, numerous universities start with Python, adding to the quantity of individuals in the community. Frequently, Python designers team up on various tasks and help each other with algorithmic, utilitarian, and application critical thinking.
Progressive applications
Python is the greatest supporter of data science, Machine Learning, and Artificial Intelligence at any enterprise software development company. Its utilization cases in cutting edge applications are the most compelling motivation for its prosperity. Python is the second most well known tool after R for data analytics.
The simplicity of getting sorted out, overseeing, and visualizing information through unique libraries makes it ideal for data based applications. TensorFlow for neural networks and OpenCV for computer vision are two of Python's most well known use cases for Machine learning applications.
Thinking about the advances in programming and innovation, Python is a YES for an assorted scope of utilizations. Game development, web application development services, GUI advancement, ML and AI improvement, Enterprise and customer applications - every one of them uses Python to its full potential.
The disadvantages of Python web improvement arrangements are regularly disregarded by developers and organizations because of the advantages it gives. They focus on quality over speed and performance over blunders. That is the reason it's a good idea to utilize Python for building the applications of the future.
#python development services #python development company #python app development #python development #python in web development #python software development
1602968400
Python is awesome, it’s one of the easiest languages with simple and intuitive syntax but wait, have you ever thought that there might ways to write your python code simpler?
In this tutorial, you’re going to learn a variety of Python tricks that you can use to write your Python code in a more readable and efficient way like a pro.
Swapping value in Python
Instead of creating a temporary variable to hold the value of the one while swapping, you can do this instead
>>> FirstName = "kalebu"
>>> LastName = "Jordan"
>>> FirstName, LastName = LastName, FirstName
>>> print(FirstName, LastName)
('Jordan', 'kalebu')
#python #python-programming #python3 #python-tutorials #learn-python #python-tips #python-skills #python-development
1602666000
Today you’re going to learn how to use Python programming in a way that can ultimately save a lot of space on your drive by removing all the duplicates.
In many situations you may find yourself having duplicates files on your disk and but when it comes to tracking and checking them manually it can tedious.
Heres a solution
Instead of tracking throughout your disk to see if there is a duplicate, you can automate the process using coding, by writing a program to recursively track through the disk and remove all the found duplicates and that’s what this article is about.
But How do we do it?
If we were to read the whole file and then compare it to the rest of the files recursively through the given directory it will take a very long time, then how do we do it?
The answer is hashing, with hashing can generate a given string of letters and numbers which act as the identity of a given file and if we find any other file with the same identity we gonna delete it.
There’s a variety of hashing algorithms out there such as
#python-programming #python-tutorials #learn-python #python-project #python3 #python #python-skills #python-tips
1625844900
Python throws typeerror: can’t multiply sequence by non-int of type ‘float’ when you try to multiply a string with float value. Although you can multiply a string with int value but except that no other type is supported.
We get this situation when we take input from user and do computation over it. The inputs are always in string type, no matter if a digit is entered, it will be treated as string. It’s your job to typecast it to your required type like in this case, its float.
#python #python error #python list #python numpy #python string #python-short