Michio JP

Michio JP

1558672290

How to build blazing fast REST APIs with Node.js, MongoDB, Fastify and Swagger

Presumably no web developer is a stranger to REST APIs and the challenges that architecting an effective and efficient API solution brings…

These challenges include:

  • Speed (API Response Times)
  • Documentation (Clear concise documents, describing the API)
  • Architecture and Sustainability (Maintainable and expandable codebase)

In this tutorial we are going to address all of the above using a combination of Node.jsMongoDBFastify and Swagger.

The source code for the project is available on GitHub.

Before we begin…

You should have some beginner/intermediate JavaScript knowledge, have heard of Node.js and MongoDB, and know what REST APIs are.

Below are some links to get you updated:

  • Speed (API Response Times)
  • Documentation (Clear concise documents, describing the API)
  • Architecture and Sustainability (Maintainable and expandable codebase)

The Technology we will be using:

  • Speed (API Response Times)
  • Documentation (Clear concise documents, describing the API)
  • Architecture and Sustainability (Maintainable and expandable codebase)

It is a good idea to open the above pages in new tabs, for easy reference.

You will need to have the following installed:

  • Speed (API Response Times)
  • Documentation (Clear concise documents, describing the API)
  • Architecture and Sustainability (Maintainable and expandable codebase)

You will also need an IDE and a terminal, I use iTerm2 for Mac and Hyper for Windows.

Let’s get started!

Initialise a new project by opening your terminal, executing each of the following lines of code:

mkdir fastify-api
cd fastify-api
mkdir src
cd src
touch index.js
npm init

In the above code, we created two new directories, navigated into them, created an index.js file and initialed our project via npm.

You will be prompted to enter several values when initialising a new project, these you can leave blank and update at a later stage.

Once completed, a package.json file is generated in the src directory. In this file you can change the values entered when the project was initialised.

Next we install all the dependancies that we will need:

npm i nodemon mongoose fastify fastify-swagger boom

Below is a brief description of what each package does, quoted from their respective websites:

nodemon

nodemon is a tool that helps develop node.js based applications by automatically restarting the node application when file changes in the directory are detected.> nodemon is a tool that helps develop node.js based applications by automatically restarting the node application when file changes in the directory are detected.
To set up nodemon, we need to add the following line of code to our package.json file, in the scripts object:

“start”: “./node_modules/nodemon/bin/nodemon.js ./src/index.js”,

Our package.json file should now look as follows:

{
  "name": "fastify-api",
  "version": "1.0.0",
  "description": "A blazing fast REST APIs with Node.js, MongoDB, Fastify and Swagger.",
  "main": "index.js",
  "scripts": {
  "start": "./node_modules/nodemon/bin/nodemon.js ./src/index.js",
  "test": "echo \"Error: no test specified\" && exit 1"
},
  "author": "Siegfried Grimbeek <siegfried.grimbeek@gmail.com> (www.siegfriedgrimbeek.co.za)",
  "license": "ISC",
  "dependencies": {
  "boom": "^7.2.2",
  "fastify": "^1.13.0",
  "fastify-swagger": "^0.15.3",
  "mongoose": "^5.3.14",
  "nodemon": "^1.18.7"
  }
}

mongoose

nodemon is a tool that helps develop node.js based applications by automatically restarting the node application when file changes in the directory are detected.
fastify
nodemon is a tool that helps develop node.js based applications by automatically restarting the node application when file changes in the directory are detected.
fastify-swagger
nodemon is a tool that helps develop node.js based applications by automatically restarting the node application when file changes in the directory are detected.
boom
nodemon is a tool that helps develop node.js based applications by automatically restarting the node application when file changes in the directory are detected.### Setup up the server and create the first route!

Add the following code to your index.js file:

// Require the framework and instantiate it
const fastify = require('fastify')({
  logger: true
})

// Declare a route
fastify.get('/', async (request, reply) => {
  return { hello: 'world' }
})

// Run the server!
const start = async () => {
  try {
    await fastify.listen(3000)
    fastify.log.info(`server listening on ${fastify.server.address().port}`)
  } catch (err) {
    fastify.log.error(err)
    process.exit(1)
  }
}
start()

We require the Fastify framework, declare our first route and initialise the server on port 3000, the code is pretty self explanatory but take note of the options object passed when initialising Fastify:

// Require the fastify framework and instantiate it
const fastify = require('fastify')({
  logger: true
})

The above code enables Fastify’s built in logger which is disabled by default.

You can now run the follow code in your src directory in your terminal:

npm start

Now when you navigate to http://localhost:3000/ you should see the {hello:world} object returned.

We will get back to the index.js file but for now let’s move on to setting up our database.

Start MongoDB and create the model!

Once MongoDB has been successfully installed, you can open a new terminal window and start up a MongoDBinstance by running the following:

mongod

With MongoDB, we do not need to create a database. We can just specify a name in the setup and as soon as we store data, MongoDB will create this database for us.

Add the following to your index.js file:

...
// Require external modules
const mongoose = require('mongoose')
// Connect to DB
mongoose.connect(‘mongodb://localhost/mycargarage’)
 .then(() => console.log(‘MongoDB connected…’))
 .catch(err => console.log(err))
...

In the above code we require Mongoose and connect to our MongoDB database. The database is called mycargarage and if all went well, you will now see MongoDB connected... in your terminal.

Notice that you did not have to restart the app, thanks to the _Nodemon_ package that we added earlier.

Now that our database is up and running, we can create our first Model. Create a new folder within the src directory called models, and within it create a new file called Car.js and add the following code:

// External Dependancies
const mongoose = require('mongoose')

const carSchema = new mongoose.Schema({
  title: String,
  brand: String,
  price: String,
  age: Number,
  services: {
    type: Map,
    of: String
  }
})

module.exports = mongoose.model('Car', carSchema)

The above code declares our carSchema that contains all the information related to our cars. Apart from the two obvious data types: String and Number. We also make use of a Map which is relatively new to Mongoose and you can read more about it here. We then export our carSchema to be used within our app.

We could proceed with setting up our routes, controllers and config in the index.js file, but part of this tutorial is demonstrating a sustainable codebase. Therefore each component will have its own folder.

Create the car controller

To get started with creating the controllers, we create a folder in the src directory called controllers, and within the folder, we create a carController.js file:

// External Dependancies
const boom = require('boom')

// Get Data Models
const Car = require('../models/Car')

// Get all cars
exports.getCars = async (req, reply) => {
  try {
    const cars = await Car.find()
    return cars
  } catch (err) {
    throw boom.boomify(err)
  }
}

// Get single car by ID
exports.getSingleCar = async (req, reply) => {
  try {
    const id = req.params.id
    const car = await Car.findById(id)
    return car
  } catch (err) {
    throw boom.boomify(err)
  }
}

// Add a new car
exports.addCar = async (req, reply) => {
  try {
    const car = new Car(req.body)
    return car.save()
  } catch (err) {
    throw boom.boomify(err)
  }
}

// Update an existing car
exports.updateCar = async (req, reply) => {
  try {
    const id = req.params.id
    const car = req.body
    const { ...updateData } = car
    const update = await Car.findByIdAndUpdate(id, updateData, { new: true })
    return update
  } catch (err) {
    throw boom.boomify(err)
  }
}

// Delete a car
exports.deleteCar = async (req, reply) => {
  try {
    const id = req.params.id
    const car = await Car.findByIdAndRemove(id)
    return car
  } catch (err) {
    throw boom.boomify(err)
  }
}

The above may seem like a little much to take in, but it is actually really simple.

  • Speed (API Response Times)
  • Documentation (Clear concise documents, describing the API)
  • Architecture and Sustainability (Maintainable and expandable codebase)

Other than that, we make use of some standard Mongoose features used to manipulate our database.

You are probably burning to fire up your API and do a sanity check, but before we do this, we just need to connect the controller to the routes and then lastly connect the routes to the app.

Create and import the routes

Once again, we can start by creating a folder in the root directory of our project, but this time, it is called routes. Within the folder, we create an index.js file with the following code:

// Import our Controllers
const carController = require('../controllers/carController')

const routes = [
  {
    method: 'GET',
    url: '/api/cars',
    handler: carController.getCars
  },
  {
    method: 'GET',
    url: '/api/cars/:id',
    handler: carController.getSingleCar
  },
  {
    method: 'POST',
    url: '/api/cars',
    handler: carController.addCar,
    schema: documentation.addCarSchema
  },
  {
    method: 'PUT',
    url: '/api/cars/:id',
    handler: carController.updateCar
  },
  {
    method: 'DELETE',
    url: '/api/cars/:id',
    handler: carController.deleteCar
  }
]

module.exports = routes

Here we are requiring our controller and assigning each of the functions that we created in our controller to our routes.

As you can see, each route consists out of a method, a url and a handler, instructing the app on which function to use when one of the routes is accessed.

The :id following some of the routes is a common way to pass parameters to the routes, and this will allow us to access the id as follows:

[[http://127.0.0.1:3000/api/cars/5bfe30b46fe410e1cfff2323](http://127.0.0.1:3000/api/cars/5bfe30b46fe410e1cfff2323)](http://127.0.0.1:3000/api/cars/5bfe30b46fe410e1cfff2323](http://127.0.0.1:3000/api/cars/5bfe30b46fe410e1cfff2323) "http://127.0.0.1:3000/api/cars/5bfe30b46fe410e1cfff2323](http://127.0.0.1:3000/api/cars/5bfe30b46fe410e1cfff2323)")

Putting it all together and testing our API

Now that we have most of our parts constructed, we just need to connect them all together to start serving data via our API. Firstly we need to import our routes that we created by adding the following line of code to our main index.js file:

const routes = require(‘./routes’)

We then need to loop over our routes array to initialise them with Fastify. We can do this with the following code, which also needs to be added to the main index.js file:

routes.forEach((route, index) => {
 fastify.route(route)
})

Now we are ready to start testing!

The best tool for the job is Postman, which we will use to test all of our routes. We will be sending our data as raw objects in the body of the request and as parameters.

Finding all cars:

Finding a single car:

Adding a new car**:

** The services appear to be empty, but the information does in fact persist to the database.

Updating a car:

Deleting a car:

We now have a fully functional API — but what about the documentation? This is where Swagger is really handy.

Adding Swagger and wrapping up.

Now we will create our final folder called config. Inside we will create a file called swagger.js with the following code:

exports.options = {
  routePrefix: '/documentation',
  exposeRoute: true,
  swagger: {
    info: {
      title: 'Fastify API',
      description: 'Building a blazing fast REST API with Node.js, MongoDB, Fastify and Swagger',
      version: '1.0.0'
    },
    externalDocs: {
      url: 'https://swagger.io',
      description: 'Find more info here'
    },
    host: 'localhost',
    schemes: ['http'],
    consumes: ['application/json'],
    produces: ['application/json']
  }
}

The above code is an object with the options which we will pass into our fastify-swagger plugin. To do this, we need to add the following to our index.js file:

// Import Swagger Options
const swagger = require(‘./config/swagger’)
// Register Swagger
fastify.register(require(‘fastify-swagger’), swagger.options)

And then we need to add the following line after we have initialised our Fastify server:

...
await fastify.listen(3000)
fastify.swagger()
fastify.log.info(`listening on ${fastify.server.address().port}`)
...

And that is it! If you now navigate to http://localhost:3000/documentation, you should see the following:

As simple as that! You now have self updating API documentation that will evolve with your API. You can easily add additional information to your routes, see more here.

Whats Next?

Now that we have a basic API in place, the possibilities are limitless. It can be used as the base for any app imaginable.

In the next tutorial, we will integrate GraphQL and eventually integrate the frontend with Vue.js too!

Learn More

☞ The Complete Node.js Developer Course (2nd Edition)

☞ Learn and Understand NodeJS

☞ Node JS: Advanced Concepts

☞ GraphQL: Learning GraphQL with Node.Js

☞ Angular (Angular 2+) & NodeJS - The MEAN Stack Guide

#node-js #api #mongodb

What is GEEK

Buddha Community

How to build blazing fast REST APIs with Node.js, MongoDB, Fastify and Swagger

NBB: Ad-hoc CLJS Scripting on Node.js

Nbb

Not babashka. Node.js babashka!?

Ad-hoc CLJS scripting on Node.js.

Status

Experimental. Please report issues here.

Goals and features

Nbb's main goal is to make it easy to get started with ad hoc CLJS scripting on Node.js.

Additional goals and features are:

  • Fast startup without relying on a custom version of Node.js.
  • Small artifact (current size is around 1.2MB).
  • First class macros.
  • Support building small TUI apps using Reagent.
  • Complement babashka with libraries from the Node.js ecosystem.

Requirements

Nbb requires Node.js v12 or newer.

How does this tool work?

CLJS code is evaluated through SCI, the same interpreter that powers babashka. Because SCI works with advanced compilation, the bundle size, especially when combined with other dependencies, is smaller than what you get with self-hosted CLJS. That makes startup faster. The trade-off is that execution is less performant and that only a subset of CLJS is available (e.g. no deftype, yet).

Usage

Install nbb from NPM:

$ npm install nbb -g

Omit -g for a local install.

Try out an expression:

$ nbb -e '(+ 1 2 3)'
6

And then install some other NPM libraries to use in the script. E.g.:

$ npm install csv-parse shelljs zx

Create a script which uses the NPM libraries:

(ns script
  (:require ["csv-parse/lib/sync$default" :as csv-parse]
            ["fs" :as fs]
            ["path" :as path]
            ["shelljs$default" :as sh]
            ["term-size$default" :as term-size]
            ["zx$default" :as zx]
            ["zx$fs" :as zxfs]
            [nbb.core :refer [*file*]]))

(prn (path/resolve "."))

(prn (term-size))

(println (count (str (fs/readFileSync *file*))))

(prn (sh/ls "."))

(prn (csv-parse "foo,bar"))

(prn (zxfs/existsSync *file*))

(zx/$ #js ["ls"])

Call the script:

$ nbb script.cljs
"/private/tmp/test-script"
#js {:columns 216, :rows 47}
510
#js ["node_modules" "package-lock.json" "package.json" "script.cljs"]
#js [#js ["foo" "bar"]]
true
$ ls
node_modules
package-lock.json
package.json
script.cljs

Macros

Nbb has first class support for macros: you can define them right inside your .cljs file, like you are used to from JVM Clojure. Consider the plet macro to make working with promises more palatable:

(defmacro plet
  [bindings & body]
  (let [binding-pairs (reverse (partition 2 bindings))
        body (cons 'do body)]
    (reduce (fn [body [sym expr]]
              (let [expr (list '.resolve 'js/Promise expr)]
                (list '.then expr (list 'clojure.core/fn (vector sym)
                                        body))))
            body
            binding-pairs)))

Using this macro we can look async code more like sync code. Consider this puppeteer example:

(-> (.launch puppeteer)
      (.then (fn [browser]
               (-> (.newPage browser)
                   (.then (fn [page]
                            (-> (.goto page "https://clojure.org")
                                (.then #(.screenshot page #js{:path "screenshot.png"}))
                                (.catch #(js/console.log %))
                                (.then #(.close browser)))))))))

Using plet this becomes:

(plet [browser (.launch puppeteer)
       page (.newPage browser)
       _ (.goto page "https://clojure.org")
       _ (-> (.screenshot page #js{:path "screenshot.png"})
             (.catch #(js/console.log %)))]
      (.close browser))

See the puppeteer example for the full code.

Since v0.0.36, nbb includes promesa which is a library to deal with promises. The above plet macro is similar to promesa.core/let.

Startup time

$ time nbb -e '(+ 1 2 3)'
6
nbb -e '(+ 1 2 3)'   0.17s  user 0.02s system 109% cpu 0.168 total

The baseline startup time for a script is about 170ms seconds on my laptop. When invoked via npx this adds another 300ms or so, so for faster startup, either use a globally installed nbb or use $(npm bin)/nbb script.cljs to bypass npx.

Dependencies

NPM dependencies

Nbb does not depend on any NPM dependencies. All NPM libraries loaded by a script are resolved relative to that script. When using the Reagent module, React is resolved in the same way as any other NPM library.

Classpath

To load .cljs files from local paths or dependencies, you can use the --classpath argument. The current dir is added to the classpath automatically. So if there is a file foo/bar.cljs relative to your current dir, then you can load it via (:require [foo.bar :as fb]). Note that nbb uses the same naming conventions for namespaces and directories as other Clojure tools: foo-bar in the namespace name becomes foo_bar in the directory name.

To load dependencies from the Clojure ecosystem, you can use the Clojure CLI or babashka to download them and produce a classpath:

$ classpath="$(clojure -A:nbb -Spath -Sdeps '{:aliases {:nbb {:replace-deps {com.github.seancorfield/honeysql {:git/tag "v2.0.0-rc5" :git/sha "01c3a55"}}}}}')"

and then feed it to the --classpath argument:

$ nbb --classpath "$classpath" -e "(require '[honey.sql :as sql]) (sql/format {:select :foo :from :bar :where [:= :baz 2]})"
["SELECT foo FROM bar WHERE baz = ?" 2]

Currently nbb only reads from directories, not jar files, so you are encouraged to use git libs. Support for .jar files will be added later.

Current file

The name of the file that is currently being executed is available via nbb.core/*file* or on the metadata of vars:

(ns foo
  (:require [nbb.core :refer [*file*]]))

(prn *file*) ;; "/private/tmp/foo.cljs"

(defn f [])
(prn (:file (meta #'f))) ;; "/private/tmp/foo.cljs"

Reagent

Nbb includes reagent.core which will be lazily loaded when required. You can use this together with ink to create a TUI application:

$ npm install ink

ink-demo.cljs:

(ns ink-demo
  (:require ["ink" :refer [render Text]]
            [reagent.core :as r]))

(defonce state (r/atom 0))

(doseq [n (range 1 11)]
  (js/setTimeout #(swap! state inc) (* n 500)))

(defn hello []
  [:> Text {:color "green"} "Hello, world! " @state])

(render (r/as-element [hello]))

Promesa

Working with callbacks and promises can become tedious. Since nbb v0.0.36 the promesa.core namespace is included with the let and do! macros. An example:

(ns prom
  (:require [promesa.core :as p]))

(defn sleep [ms]
  (js/Promise.
   (fn [resolve _]
     (js/setTimeout resolve ms))))

(defn do-stuff
  []
  (p/do!
   (println "Doing stuff which takes a while")
   (sleep 1000)
   1))

(p/let [a (do-stuff)
        b (inc a)
        c (do-stuff)
        d (+ b c)]
  (prn d))
$ nbb prom.cljs
Doing stuff which takes a while
Doing stuff which takes a while
3

Also see API docs.

Js-interop

Since nbb v0.0.75 applied-science/js-interop is available:

(ns example
  (:require [applied-science.js-interop :as j]))

(def o (j/lit {:a 1 :b 2 :c {:d 1}}))

(prn (j/select-keys o [:a :b])) ;; #js {:a 1, :b 2}
(prn (j/get-in o [:c :d])) ;; 1

Most of this library is supported in nbb, except the following:

  • destructuring using :syms
  • property access using .-x notation. In nbb, you must use keywords.

See the example of what is currently supported.

Examples

See the examples directory for small examples.

Also check out these projects built with nbb:

API

See API documentation.

Migrating to shadow-cljs

See this gist on how to convert an nbb script or project to shadow-cljs.

Build

Prequisites:

  • babashka >= 0.4.0
  • Clojure CLI >= 1.10.3.933
  • Node.js 16.5.0 (lower version may work, but this is the one I used to build)

To build:

  • Clone and cd into this repo
  • bb release

Run bb tasks for more project-related tasks.

Download Details:
Author: borkdude
Download Link: Download The Source Code
Official Website: https://github.com/borkdude/nbb 
License: EPL-1.0

#node #javascript

Wilford  Pagac

Wilford Pagac

1594289280

What is REST API? An Overview | Liquid Web

What is REST?

The REST acronym is defined as a “REpresentational State Transfer” and is designed to take advantage of existing HTTP protocols when used for Web APIs. It is very flexible in that it is not tied to resources or methods and has the ability to handle different calls and data formats. Because REST API is not constrained to an XML format like SOAP, it can return multiple other formats depending on what is needed. If a service adheres to this style, it is considered a “RESTful” application. REST allows components to access and manage functions within another application.

REST was initially defined in a dissertation by Roy Fielding’s twenty years ago. He proposed these standards as an alternative to SOAP (The Simple Object Access Protocol is a simple standard for accessing objects and exchanging structured messages within a distributed computing environment). REST (or RESTful) defines the general rules used to regulate the interactions between web apps utilizing the HTTP protocol for CRUD (create, retrieve, update, delete) operations.

What is an API?

An API (or Application Programming Interface) provides a method of interaction between two systems.

What is a RESTful API?

A RESTful API (or application program interface) uses HTTP requests to GET, PUT, POST, and DELETE data following the REST standards. This allows two pieces of software to communicate with each other. In essence, REST API is a set of remote calls using standard methods to return data in a specific format.

The systems that interact in this manner can be very different. Each app may use a unique programming language, operating system, database, etc. So, how do we create a system that can easily communicate and understand other apps?? This is where the Rest API is used as an interaction system.

When using a RESTful API, we should determine in advance what resources we want to expose to the outside world. Typically, the RESTful API service is implemented, keeping the following ideas in mind:

  • Format: There should be no restrictions on the data exchange format
  • Implementation: REST is based entirely on HTTP
  • Service Definition: Because REST is very flexible, API can be modified to ensure the application understands the request/response format.
  • The RESTful API focuses on resources and how efficiently you perform operations with it using HTTP.

The features of the REST API design style state:

  • Each entity must have a unique identifier.
  • Standard methods should be used to read and modify data.
  • It should provide support for different types of resources.
  • The interactions should be stateless.

For REST to fit this model, we must adhere to the following rules:

  • Client-Server Architecture: The interface is separate from the server-side data repository. This affords flexibility and the development of components independently of each other.
  • Detachment: The client connections are not stored on the server between requests.
  • Cacheability: It must be explicitly stated whether the client can store responses.
  • Multi-level: The API should work whether it interacts directly with a server or through an additional layer, like a load balancer.

#tutorials #api #application #application programming interface #crud #http #json #programming #protocols #representational state transfer #rest #rest api #rest api graphql #rest api json #rest api xml #restful #soap #xml #yaml

An API-First Approach For Designing Restful APIs | Hacker Noon

I’ve been working with Restful APIs for some time now and one thing that I love to do is to talk about APIs.

So, today I will show you how to build an API using the API-First approach and Design First with OpenAPI Specification.

First thing first, if you don’t know what’s an API-First approach means, it would be nice you stop reading this and check the blog post that I wrote to the Farfetchs blog where I explain everything that you need to know to start an API using API-First.

Preparing the ground

Before you get your hands dirty, let’s prepare the ground and understand the use case that will be developed.

Tools

If you desire to reproduce the examples that will be shown here, you will need some of those items below.

  • NodeJS
  • OpenAPI Specification
  • Text Editor (I’ll use VSCode)
  • Command Line

Use Case

To keep easy to understand, let’s use the Todo List App, it is a very common concept beyond the software development community.

#api #rest-api #openai #api-first-development #api-design #apis #restful-apis #restful-api

Lets Cms

Lets Cms

1652251629

Unilevel MLM Wordpress Rest API FrontEnd | UMW Rest API Woocommerce

Unilevel MLM Wordpress Rest API FrontEnd | UMW Rest API Woocommerce Price USA, Philippines : Our API’s handle the Unilevel MLM woo-commerce end user all functionalities like customer login/register. You can request any type of information which is listed below, our API will provide you managed results for your all frontend needs, which will be useful for your applications like Mobile App etc.
Business to Customer REST API for Unilevel MLM Woo-Commerce will empower your Woo-commerce site with the most powerful Unilevel MLM Woo-Commerce REST API, you will be able to get and send data to your marketplace from other mobile apps or websites using HTTP Rest API request.
Our plugin is used JWT authentication for the authorization process.

REST API Unilevel MLM Woo-commerce plugin contains following APIs.
User Login Rest API
User Register Rest API
User Join Rest API
Get User info Rest API
Get Affiliate URL Rest API 
Get Downlines list Rest API
Get Bank Details Rest API
Save Bank Details Rest API
Get Genealogy JSON Rest API
Get Total Earning Rest API
Get Current Balance Rest API
Get Payout Details Rest API
Get Payout List Rest API
Get Commissions List Rest API
Withdrawal Request Rest API
Get Withdrawal List Rest API

If you want to know more information and any queries regarding Unilevel MLM Rest API Woocommerce WordPress Plugin, you can contact our experts through 
Skype: jks0586, 
Mail: letscmsdev@gmail.com,
Website: www.letscms.com, www.mlmtrees.com,
Call/WhatsApp/WeChat: +91-9717478599.  

more information : https://www.mlmtrees.com/product/unilevel-mlm-woocommerce-rest-api-addon

Visit Documentation : https://letscms.com/documents/umw_apis/umw-apis-addon-documentation.html

#Unilevel_MLM_WooCommerce_Rest_API's_Addon #umw_mlm_rest_api #rest_api_woocommerce_unilevel #rest_api_in_woocommerce #rest_api_woocommerce #rest_api_woocommerce_documentation #rest_api_woocommerce_php #api_rest_de_woocommerce #woocommerce_rest_api_in_android #woocommerce_rest_api_in_wordpress #Rest_API_Woocommerce_unilevel_mlm #wp_rest_api_woocommerce

Lets Cms

Lets Cms

1652251528

Opencart REST API extensions - V3.x | Rest API Integration, Affiliate

Opencart REST API extensions - V3.x | Rest API Integration : OpenCart APIs is fully integrated with the OpenCart REST API. This is interact with your OpenCart site by sending and receiving data as JSON (JavaScript Object Notation) objects. Using the OpenCart REST API you can register the customers and purchasing the products and it provides data access to the content of OpenCart users like which is publicly accessible via the REST API. This APIs also provide the E-commerce Mobile Apps.

Opencart REST API 
OCRESTAPI Module allows the customer purchasing product from the website it just like E-commerce APIs its also available mobile version APIs.

Opencart Rest APIs List 
Customer Registration GET APIs.
Customer Registration POST APIs.
Customer Login GET APIs.
Customer Login POST APIs.
Checkout Confirm GET APIs.
Checkout Confirm POST APIs.


If you want to know Opencart REST API Any information, you can contact us at -
Skype: jks0586,
Email: letscmsdev@gmail.com,
Website: www.letscms.com, www.mlmtrees.com
Call/WhatsApp/WeChat: +91–9717478599.

Download : https://www.opencart.com/index.php?route=marketplace/extension/info&extension_id=43174&filter_search=ocrest%20api
View Documentation : https://www.letscms.com/documents/api/opencart-rest-api.html
More Information : https://www.letscms.com/blog/Rest-API-Opencart
VEDIO : https://vimeo.com/682154292  

#opencart_api_for_android #Opencart_rest_admin_api #opencart_rest_api #Rest_API_Integration #oc_rest_api #rest_api_ecommerce #rest_api_mobile #rest_api_opencart #rest_api_github #rest_api_documentation #opencart_rest_admin_api #rest_api_for_opencart_mobile_app #opencart_shopping_cart_rest_api #opencart_json_api