Janak  Sapkota

Janak Sapkota

1622533596

TensorFlow Text Processing

In this video, you will learn about text processing in TensorFlow

Subscribe: https://www.youtube.com/c/StatsWire/featured

#tensorflow

What is GEEK

Buddha Community

TensorFlow Text Processing

Navigating Between DOM Nodes in JavaScript

In the previous chapters you've learnt how to select individual elements on a web page. But there are many occasions where you need to access a child, parent or ancestor element. See the JavaScript DOM nodes chapter to understand the logical relationships between the nodes in a DOM tree.

DOM node provides several properties and methods that allow you to navigate or traverse through the tree structure of the DOM and make changes very easily. In the following section we will learn how to navigate up, down, and sideways in the DOM tree using JavaScript.

Accessing the Child Nodes

You can use the firstChild and lastChild properties of the DOM node to access the first and last direct child node of a node, respectively. If the node doesn't have any child element, it returns null.

Example

<div id="main">
    <h1 id="title">My Heading</h1>
    <p id="hint"><span>This is some text.</span></p>
</div>

<script>
var main = document.getElementById("main");
console.log(main.firstChild.nodeName); // Prints: #text

var hint = document.getElementById("hint");
console.log(hint.firstChild.nodeName); // Prints: SPAN
</script>

Note: The nodeName is a read-only property that returns the name of the current node as a string. For example, it returns the tag name for element node, #text for text node, #comment for comment node, #document for document node, and so on.

If you notice the above example, the nodeName of the first-child node of the main DIV element returns #text instead of H1. Because, whitespace such as spaces, tabs, newlines, etc. are valid characters and they form #text nodes and become a part of the DOM tree. Therefore, since the <div> tag contains a newline before the <h1> tag, so it will create a #text node.

To avoid the issue with firstChild and lastChild returning #text or #comment nodes, you could alternatively use the firstElementChild and lastElementChild properties to return only the first and last element node, respectively. But, it will not work in IE 9 and earlier.

Example

<div id="main">
    <h1 id="title">My Heading</h1>
    <p id="hint"><span>This is some text.</span></p>
</div>

<script>
var main = document.getElementById("main");
alert(main.firstElementChild.nodeName); // Outputs: H1
main.firstElementChild.style.color = "red";

var hint = document.getElementById("hint");
alert(hint.firstElementChild.nodeName); // Outputs: SPAN
hint.firstElementChild.style.color = "blue";
</script>

Similarly, you can use the childNodes property to access all child nodes of a given element, where the first child node is assigned index 0. Here's an example:

Example

<div id="main">
    <h1 id="title">My Heading</h1>
    <p id="hint"><span>This is some text.</span></p>
</div>

<script>
var main = document.getElementById("main");

// First check that the element has child nodes 
if(main.hasChildNodes()) {
    var nodes = main.childNodes;
    
    // Loop through node list and display node name
    for(var i = 0; i < nodes.length; i++) {
        alert(nodes[i].nodeName);
    }
}
</script>

The childNodes returns all child nodes, including non-element nodes like text and comment nodes. To get a collection of only elements, use children property instead.

Example

<div id="main">
    <h1 id="title">My Heading</h1>
    <p id="hint"><span>This is some text.</span></p>
</div>

<script>
var main = document.getElementById("main");

// First check that the element has child nodes 
if(main.hasChildNodes()) {
    var nodes = main.children;
    
    // Loop through node list and display node name
    for(var i = 0; i < nodes.length; i++) {
        alert(nodes[i].nodeName);
    }
}
</script>

#javascript 

Daron  Moore

Daron Moore

1598404620

Hands-on Guide to Pattern - A Python Tool for Effective Text Processing and Data Mining

Text Processing mainly requires Natural Language Processing( NLP), which is processing the data in a useful way so that the machine can understand the Human Language with the help of an application or product. Using NLP we can derive some information from the textual data such as sentiment, polarity, etc. which are useful in creating text processing based applications.

Python provides different open-source libraries or modules which are built on top of NLTK and helps in text processing using NLP functions. Different libraries have different functionalities that are used on data to gain meaningful results. One such Library is Pattern.

Pattern is an open-source python library and performs different NLP tasks. It is mostly used for text processing due to various functionalities it provides. Other than text processing Pattern is used for Data Mining i.e we can extract data from various sources such as Twitter, Google, etc. using the data mining functions provided by Pattern.

In this article, we will try and cover the following points:

  • NLP Functionalities of Pattern
  • Data Mining Using Pattern

#developers corner #data mining #text analysis #text analytics #text classification #text dataset #text-based algorithm

Kasey  Turcotte

Kasey Turcotte

1623947400

One Line of Code for a Common Text Pre-Processing Step in Pandas

A quick look at splitting text columns for use in machine learning and data analysis

ometimes you’ll want to do some processing to create new variables out of your existing data. This can be as simple as splitting up a “name” column into “first name” and “last name”.

Whatever the case may be, Pandas will allow you to effortlessly work with text data through a variety of in-built methods. In this piece, we’ll go specifically into parsing text columns for the exact information you need either for further data analysis or for use in a machine learning model.

If you’d like to follow along, go ahead and download the ‘train’ dataset here. Once you’ve done that, make sure it’s saved to the same directory as your notebook and then run the code below to read it in:

import pandas as pd
df = pd.read_csv('train.csv')

Let’s get to it!

#programming #python #one line of code for a common text pre-processing step in pandas #pandas #one line of code for a common text pre-processing #text pre-processing

Comment créer un détecteur de fausses nouvelles en Python

Détection de fausses nouvelles en Python

Explorer l'ensemble de données de fausses nouvelles, effectuer une analyse de données telles que des nuages ​​​​de mots et des ngrams, et affiner le transformateur BERT pour créer un détecteur de fausses nouvelles en Python à l'aide de la bibliothèque de transformateurs.

Les fausses nouvelles sont la diffusion intentionnelle d'allégations fausses ou trompeuses en tant que nouvelles, où les déclarations sont délibérément mensongères.

Les journaux, les tabloïds et les magazines ont été supplantés par les plateformes d'actualités numériques, les blogs, les flux de médias sociaux et une pléthore d'applications d'actualités mobiles. Les organes de presse ont profité de l'utilisation accrue des médias sociaux et des plates-formes mobiles en fournissant aux abonnés des informations de dernière minute.

Les consommateurs ont désormais un accès instantané aux dernières nouvelles. Ces plateformes de médias numériques ont gagné en importance en raison de leur connectivité facile au reste du monde et permettent aux utilisateurs de discuter et de partager des idées et de débattre de sujets tels que la démocratie, l'éducation, la santé, la recherche et l'histoire. Les fausses informations sur les plateformes numériques deviennent de plus en plus populaires et sont utilisées à des fins lucratives, telles que des gains politiques et financiers.

Quelle est la taille de ce problème ?

Parce qu'Internet, les médias sociaux et les plateformes numériques sont largement utilisés, n'importe qui peut propager des informations inexactes et biaisées. Il est presque impossible d'empêcher la diffusion de fausses nouvelles. Il y a une énorme augmentation de la diffusion de fausses nouvelles, qui ne se limite pas à un secteur comme la politique, mais comprend le sport, la santé, l'histoire, le divertissement, la science et la recherche.

La solution

Il est essentiel de reconnaître et de différencier les informations fausses des informations exactes. Une méthode consiste à demander à un expert de décider et de vérifier chaque élément d'information, mais cela prend du temps et nécessite une expertise qui ne peut être partagée. Deuxièmement, nous pouvons utiliser des outils d'apprentissage automatique et d'intelligence artificielle pour automatiser l'identification des fausses nouvelles.

Les informations d'actualité en ligne incluent diverses données de format non structuré (telles que des documents, des vidéos et de l'audio), mais nous nous concentrerons ici sur les informations au format texte. Avec les progrès de l'apprentissage automatique et du traitement automatique du langage naturel , nous pouvons désormais reconnaître le caractère trompeur et faux d'un article ou d'une déclaration.

Plusieurs études et expérimentations sont menées pour détecter les fake news sur tous les supports.

Notre objectif principal de ce tutoriel est :

  • Explorez et analysez l'ensemble de données Fake News.
  • Construisez un classificateur capable de distinguer les fausses nouvelles avec autant de précision que possible.

Voici la table des matières :

  • introduction
  • Quelle est la taille de ce problème ?
  • La solution
  • Exploration des données
    • Répartition des cours
  • Nettoyage des données pour l'analyse
  • Analyse exploratoire des données
    • Nuage à un seul mot
    • Bigramme le plus fréquent (combinaison de deux mots)
    • Trigramme le plus fréquent (combinaison de trois mots)
  • Construire un classificateur en affinant le BERT
    • Préparation des données
    • Tokénisation de l'ensemble de données
    • Chargement et réglage fin du modèle
    • Évaluation du modèle
  • Annexe : Création d'un fichier de soumission pour Kaggle
  • Conclusion

Exploration des données

Dans ce travail, nous avons utilisé l'ensemble de données sur les fausses nouvelles de Kaggle pour classer les articles d'actualité non fiables comme fausses nouvelles. Nous disposons d'un jeu de données d'entraînement complet contenant les caractéristiques suivantes :

  • id: identifiant unique pour un article de presse
  • title: titre d'un article de presse
  • author: auteur de l'article de presse
  • text: texte de l'article ; pourrait être incomplet
  • label: une étiquette qui marque l'article comme potentiellement non fiable, notée 1 (non fiable ou faux) ou 0 (fiable).

Il s'agit d'un problème de classification binaire dans lequel nous devons prédire si une nouvelle particulière est fiable ou non.

Si vous avez un compte Kaggle, vous pouvez simplement télécharger l'ensemble de données à partir du site Web et extraire le fichier ZIP.

J'ai également téléchargé l'ensemble de données dans Google Drive, et vous pouvez l'obtenir ici , ou utiliser la gdownbibliothèque pour le télécharger automatiquement dans les blocs-notes Google Colab ou Jupyter :

$ pip install gdown
# download from Google Drive
$ gdown "https://drive.google.com/uc?id=178f_VkNxccNidap-5-uffXUW475pAuPy&confirm=t"
Downloading...
From: https://drive.google.com/uc?id=178f_VkNxccNidap-5-uffXUW475pAuPy&confirm=t
To: /content/fake-news.zip
100% 48.7M/48.7M [00:00<00:00, 74.6MB/s]

Décompressez les fichiers :

$ unzip fake-news.zip

Trois fichiers apparaîtront dans le répertoire de travail actuel : train.csv, test.csv, et submit.csv, que nous utiliserons train.csvdans la majeure partie du didacticiel.

Installation des dépendances requises :

$ pip install transformers nltk pandas numpy matplotlib seaborn wordcloud

Remarque : Si vous êtes dans un environnement local, assurez-vous d'installer PyTorch pour GPU, rendez-vous sur cette page pour une installation correcte.

Importons les bibliothèques essentielles pour l'analyse :

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Les corpus et modules NLTK doivent être installés à l'aide du téléchargeur NLTK standard :

import nltk
nltk.download('stopwords')
nltk.download('wordnet')

L'ensemble de données sur les fausses nouvelles comprend les titres et le texte d'articles originaux et fictifs de divers auteurs. Importons notre jeu de données :

# load the dataset
news_d = pd.read_csv("train.csv")
print("Shape of News data:", news_d.shape)
print("News data columns", news_d.columns)

Sortir:

 Shape of News data: (20800, 5)
 News data columns Index(['id', 'title', 'author', 'text', 'label'], dtype='object')

Voici à quoi ressemble l'ensemble de données :

# by using df.head(), we can immediately familiarize ourselves with the dataset. 
news_d.head()

Sortir:

id	title	author	text	label
0	0	House Dem Aide: We Didn’t Even See Comey’s Let...	Darrell Lucus	House Dem Aide: We Didn’t Even See Comey’s Let...	1
1	1	FLYNN: Hillary Clinton, Big Woman on Campus - ...	Daniel J. Flynn	Ever get the feeling your life circles the rou...	0
2	2	Why the Truth Might Get You Fired	Consortiumnews.com	Why the Truth Might Get You Fired October 29, ...	1
3	3	15 Civilians Killed In Single US Airstrike Hav...	Jessica Purkiss	Videos 15 Civilians Killed In Single US Airstr...	1
4	4	Iranian woman jailed for fictional unpublished...	Howard Portnoy	Print \nAn Iranian woman has been sentenced to...	1

Nous avons 20 800 lignes, qui ont cinq colonnes. Voyons quelques statistiques de la textcolonne :

#Text Word startistics: min.mean, max and interquartile range

txt_length = news_d.text.str.split().str.len()
txt_length.describe()

Sortir:

count    20761.000000
mean       760.308126
std        869.525988
min          0.000000
25%        269.000000
50%        556.000000
75%       1052.000000
max      24234.000000
Name: text, dtype: float64

Statistiques pour la titlecolonne :

#Title statistics 

title_length = news_d.title.str.split().str.len()
title_length.describe()

Sortir:

count    20242.000000
mean        12.420709
std          4.098735
min          1.000000
25%         10.000000
50%         13.000000
75%         15.000000
max         72.000000
Name: title, dtype: float64

Les statistiques pour les ensembles d'entraînement et de test sont les suivantes :

  • L' textattribut a un nombre de mots plus élevé avec une moyenne de 760 mots et 75% ayant plus de 1000 mots.
  • L' titleattribut est une courte déclaration avec une moyenne de 12 mots, et 75% d'entre eux sont d'environ 15 mots.

Notre expérience porterait à la fois sur le texte et le titre.

Répartition des cours

Compter les parcelles pour les deux étiquettes :

sns.countplot(x="label", data=news_d);
print("1: Unreliable")
print("0: Reliable")
print("Distribution of labels:")
print(news_d.label.value_counts());

Sortir:

1: Unreliable
0: Reliable
Distribution of labels:
1    10413
0    10387
Name: label, dtype: int64

Distribution d'étiquettes

print(round(news_d.label.value_counts(normalize=True),2)*100);

Sortir:

1    50.0
0    50.0
Name: label, dtype: float64

Le nombre d'articles non fiables (faux ou 1) est de 10413, tandis que le nombre d'articles dignes de confiance (fiables ou 0) est de 10387. Près de 50% des articles sont faux. Par conséquent, la métrique de précision mesurera la performance de notre modèle lors de la construction d'un classificateur.

Nettoyage des données pour l'analyse

Dans cette section, nous allons nettoyer notre ensemble de données pour effectuer une analyse :

  • Supprimez les lignes et les colonnes inutilisées.
  • Effectuez une imputation de valeur nulle.
  • Supprimer les caractères spéciaux.
  • Supprimez les mots vides.
# Constants that are used to sanitize the datasets 

column_n = ['id', 'title', 'author', 'text', 'label']
remove_c = ['id','author']
categorical_features = []
target_col = ['label']
text_f = ['title', 'text']
# Clean Datasets
import nltk
from nltk.corpus import stopwords
import re
from nltk.stem.porter import PorterStemmer
from collections import Counter

ps = PorterStemmer()
wnl = nltk.stem.WordNetLemmatizer()

stop_words = stopwords.words('english')
stopwords_dict = Counter(stop_words)

# Removed unused clumns
def remove_unused_c(df,column_n=remove_c):
    df = df.drop(column_n,axis=1)
    return df

# Impute null values with None
def null_process(feature_df):
    for col in text_f:
        feature_df.loc[feature_df[col].isnull(), col] = "None"
    return feature_df

def clean_dataset(df):
    # remove unused column
    df = remove_unused_c(df)
    #impute null values
    df = null_process(df)
    return df

# Cleaning text from unused characters
def clean_text(text):
    text = str(text).replace(r'http[\w:/\.]+', ' ')  # removing urls
    text = str(text).replace(r'[^\.\w\s]', ' ')  # remove everything but characters and punctuation
    text = str(text).replace('[^a-zA-Z]', ' ')
    text = str(text).replace(r'\s\s+', ' ')
    text = text.lower().strip()
    #text = ' '.join(text)    
    return text

## Nltk Preprocessing include:
# Stop words, Stemming and Lemmetization
# For our project we use only Stop word removal
def nltk_preprocess(text):
    text = clean_text(text)
    wordlist = re.sub(r'[^\w\s]', '', text).split()
    #text = ' '.join([word for word in wordlist if word not in stopwords_dict])
    #text = [ps.stem(word) for word in wordlist if not word in stopwords_dict]
    text = ' '.join([wnl.lemmatize(word) for word in wordlist if word not in stopwords_dict])
    return  text

Dans le bloc de code ci-dessus :

  • Nous avons importé NLTK, qui est une plate-forme célèbre pour développer des applications Python qui interagissent avec le langage humain. Ensuite, nous importons repour regex.
  • Nous importons des mots vides à partir de nltk.corpus. Lorsque nous travaillons avec des mots, en particulier lorsque nous considérons la sémantique, nous devons parfois éliminer les mots courants qui n'ajoutent aucune signification significative à une déclaration, tels que "but", "can", "we", etc.
  • PorterStemmerest utilisé pour effectuer des mots radicaux avec NLTK. Les radicaux dépouillent les mots de leurs affixes morphologiques, laissant uniquement le radical du mot.
  • Nous importons WordNetLemmatizer()de la bibliothèque NLTK pour la lemmatisation. La lemmatisation est bien plus efficace que la radicalisation . Il va au-delà de la réduction des mots et évalue l'ensemble du lexique d'une langue pour appliquer une analyse morphologique aux mots, dans le but de supprimer simplement les extrémités flexionnelles et de renvoyer la forme de base ou de dictionnaire d'un mot, connue sous le nom de lemme.
  • stopwords.words('english')permettez-nous de regarder la liste de tous les mots vides en anglais pris en charge par NLTK.
  • remove_unused_c()La fonction est utilisée pour supprimer les colonnes inutilisées.
  • Nous imputons des valeurs nulles à Nonel'aide de la null_process()fonction.
  • A l'intérieur de la fonction clean_dataset(), nous appelons remove_unused_c()et null_process()fonctions. Cette fonction est responsable du nettoyage des données.
  • Pour nettoyer le texte des caractères inutilisés, nous avons créé la clean_text()fonction.
  • Pour le prétraitement, nous n'utiliserons que la suppression des mots vides. Nous avons créé la nltk_preprocess()fonction à cet effet.

Prétraitement de textet title:

# Perform data cleaning on train and test dataset by calling clean_dataset function
df = clean_dataset(news_d)
# apply preprocessing on text through apply method by calling the function nltk_preprocess
df["text"] = df.text.apply(nltk_preprocess)
# apply preprocessing on title through apply method by calling the function nltk_preprocess
df["title"] = df.title.apply(nltk_preprocess)
# Dataset after cleaning and preprocessing step
df.head()

Sortir:

title	text	label
0	house dem aide didnt even see comeys letter ja...	house dem aide didnt even see comeys letter ja...	1
1	flynn hillary clinton big woman campus breitbart	ever get feeling life circle roundabout rather...	0
2	truth might get fired	truth might get fired october 29 2016 tension ...	1
3	15 civilian killed single u airstrike identified	video 15 civilian killed single u airstrike id...	1
4	iranian woman jailed fictional unpublished sto...	print iranian woman sentenced six year prison ...	1

Analyse exploratoire des données

Dans cette section, nous effectuerons :

  • Analyse Univariée : C'est une analyse statistique du texte. Nous utiliserons un nuage de mots à cette fin. Un nuage de mots est une approche de visualisation des données textuelles où le terme le plus courant est présenté dans la taille de police la plus importante.
  • Analyse Bivariée : Bigramme et Trigramme seront utilisés ici. Selon Wikipedia : " un n-gramme est une séquence contiguë de n éléments d'un échantillon donné de texte ou de parole. Selon l'application, les éléments peuvent être des phonèmes, des syllabes, des lettres, des mots ou des paires de bases. Les n-grammes sont généralement collectées à partir d'un corpus textuel ou vocal ».

Nuage à un seul mot

Les mots les plus fréquents apparaissent en caractères gras et plus gros dans un nuage de mots. Cette section effectuera un nuage de mots pour tous les mots du jeu de données.

La fonction de la bibliothèque WordCloudwordcloud() sera utilisée, et la generate()est utilisée pour générer l'image du nuage de mots :

from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt

# initialize the word cloud
wordcloud = WordCloud( background_color='black', width=800, height=600)
# generate the word cloud by passing the corpus
text_cloud = wordcloud.generate(' '.join(df['text']))
# plotting the word cloud
plt.figure(figsize=(20,30))
plt.imshow(text_cloud)
plt.axis('off')
plt.show()

Sortir:

WordCloud pour toutes les fausses données de nouvelles

Nuage de mots pour les informations fiables uniquement :

true_n = ' '.join(df[df['label']==0]['text']) 
wc = wordcloud.generate(true_n)
plt.figure(figsize=(20,30))
plt.imshow(wc)
plt.axis('off')
plt.show()

Sortir:

Nuage de mots pour des nouvelles fiables

Nuage de mots pour les fake news uniquement :

fake_n = ' '.join(df[df['label']==1]['text'])
wc= wordcloud.generate(fake_n)
plt.figure(figsize=(20,30))
plt.imshow(wc)
plt.axis('off')
plt.show()

Sortir:

Nuage de mots pour les fausses nouvelles

Bigramme le plus fréquent (combinaison de deux mots)

Un N-gramme est une séquence de lettres ou de mots. Un unigramme de caractère est composé d'un seul caractère, tandis qu'un bigramme est composé d'une série de deux caractères. De même, les N-grammes de mots sont constitués d'une suite de n mots. Le mot "uni" est un 1-gramme (unigramme). La combinaison des mots "États-Unis" est un 2-gramme (bigramme), "new york city" est un 3-gramme.

Traçons le bigramme le plus courant sur les nouvelles fiables :

def plot_top_ngrams(corpus, title, ylabel, xlabel="Number of Occurences", n=2):
  """Utility function to plot top n-grams"""
  true_b = (pd.Series(nltk.ngrams(corpus.split(), n)).value_counts())[:20]
  true_b.sort_values().plot.barh(color='blue', width=.9, figsize=(12, 8))
  plt.title(title)
  plt.ylabel(ylabel)
  plt.xlabel(xlabel)
  plt.show()
plot_top_ngrams(true_n, 'Top 20 Frequently Occuring True news Bigrams', "Bigram", n=2)

Top des bigrammes sur les fake news

Le bigramme le plus courant sur les fake news :

plot_top_ngrams(fake_n, 'Top 20 Frequently Occuring Fake news Bigrams', "Bigram", n=2)

Top des bigrammes sur les fake news

Trigramme le plus fréquent (combinaison de trois mots)

Le trigramme le plus courant sur les informations fiables :

plot_top_ngrams(true_n, 'Top 20 Frequently Occuring True news Trigrams', "Trigrams", n=3)

Le trigramme le plus courant sur les fake news

Pour les fausses nouvelles maintenant :

plot_top_ngrams(fake_n, 'Top 20 Frequently Occuring Fake news Trigrams', "Trigrams", n=3)

Les trigrammes les plus courants sur les fausses nouvelles

Les tracés ci-dessus nous donnent quelques idées sur l'apparence des deux classes. Dans la section suivante, nous utiliserons la bibliothèque de transformateurs pour créer un détecteur de fausses nouvelles.

Construire un classificateur en affinant le BERT

Cette section récupèrera largement le code du tutoriel de réglage fin du BERT pour créer un classificateur de fausses nouvelles à l'aide de la bibliothèque de transformateurs. Ainsi, pour des informations plus détaillées, vous pouvez vous diriger vers le tutoriel d'origine .

Si vous n'avez pas installé de transformateurs, vous devez :

$ pip install transformers

Importons les bibliothèques nécessaires :

import torch
from transformers.file_utils import is_tf_available, is_torch_available, is_torch_tpu_available
from transformers import BertTokenizerFast, BertForSequenceClassification
from transformers import Trainer, TrainingArguments
import numpy as np
from sklearn.model_selection import train_test_split

import random

Nous voulons rendre nos résultats reproductibles même si nous redémarrons notre environnement :

def set_seed(seed: int):
    """
    Helper function for reproducible behavior to set the seed in ``random``, ``numpy``, ``torch`` and/or ``tf`` (if
    installed).

    Args:
        seed (:obj:`int`): The seed to set.
    """
    random.seed(seed)
    np.random.seed(seed)
    if is_torch_available():
        torch.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
        # ^^ safe to call this function even if cuda is not available
    if is_tf_available():
        import tensorflow as tf

        tf.random.set_seed(seed)

set_seed(1)

Le modèle que nous allons utiliser est le bert-base-uncased:

# the model we gonna train, base uncased BERT
# check text classification models here: https://huggingface.co/models?filter=text-classification
model_name = "bert-base-uncased"
# max sequence length for each document/sentence sample
max_length = 512

Chargement du tokenizer :

# load the tokenizer
tokenizer = BertTokenizerFast.from_pretrained(model_name, do_lower_case=True)

Préparation des données

Nettoyons maintenant les NaNvaleurs des colonnes text, authoret :title

news_df = news_d[news_d['text'].notna()]
news_df = news_df[news_df["author"].notna()]
news_df = news_df[news_df["title"].notna()]

Ensuite, créez une fonction qui prend l'ensemble de données en tant que dataframe Pandas et renvoie les fractionnements de train/validation des textes et des étiquettes sous forme de listes :

def prepare_data(df, test_size=0.2, include_title=True, include_author=True):
  texts = []
  labels = []
  for i in range(len(df)):
    text = df["text"].iloc[i]
    label = df["label"].iloc[i]
    if include_title:
      text = df["title"].iloc[i] + " - " + text
    if include_author:
      text = df["author"].iloc[i] + " : " + text
    if text and label in [0, 1]:
      texts.append(text)
      labels.append(label)
  return train_test_split(texts, labels, test_size=test_size)

train_texts, valid_texts, train_labels, valid_labels = prepare_data(news_df)

La fonction ci-dessus prend l'ensemble de données dans un type de trame de données et les renvoie sous forme de listes divisées en ensembles d'apprentissage et de validation. Définir include_titlesur Truesignifie que nous ajoutons la titlecolonne à celle textque nous allons utiliser pour la formation, définir include_authorsur Truesignifie que nous ajoutons authorégalement la au texte.

Assurons-nous que les étiquettes et les textes ont la même longueur :

print(len(train_texts), len(train_labels))
print(len(valid_texts), len(valid_labels))

Sortir:

14628 14628
3657 3657

Tokénisation de l'ensemble de données

Utilisons le tokenizer BERT pour tokeniser notre jeu de données :

# tokenize the dataset, truncate when passed `max_length`, 
# and pad with 0's when less than `max_length`
train_encodings = tokenizer(train_texts, truncation=True, padding=True, max_length=max_length)
valid_encodings = tokenizer(valid_texts, truncation=True, padding=True, max_length=max_length)

Conversion des encodages en un jeu de données PyTorch :

class NewsGroupsDataset(torch.utils.data.Dataset):
    def __init__(self, encodings, labels):
        self.encodings = encodings
        self.labels = labels

    def __getitem__(self, idx):
        item = {k: torch.tensor(v[idx]) for k, v in self.encodings.items()}
        item["labels"] = torch.tensor([self.labels[idx]])
        return item

    def __len__(self):
        return len(self.labels)

# convert our tokenized data into a torch Dataset
train_dataset = NewsGroupsDataset(train_encodings, train_labels)
valid_dataset = NewsGroupsDataset(valid_encodings, valid_labels)

Chargement et réglage fin du modèle

Nous utiliserons BertForSequenceClassificationpour charger notre modèle de transformateur BERT :

# load the model
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2)

Nous avons mis num_labelsà 2 puisqu'il s'agit d'une classification binaire. La fonction ci-dessous est un rappel pour calculer la précision à chaque étape de validation :

from sklearn.metrics import accuracy_score

def compute_metrics(pred):
  labels = pred.label_ids
  preds = pred.predictions.argmax(-1)
  # calculate accuracy using sklearn's function
  acc = accuracy_score(labels, preds)
  return {
      'accuracy': acc,
  }

Initialisons les paramètres d'entraînement :

training_args = TrainingArguments(
    output_dir='./results',          # output directory
    num_train_epochs=1,              # total number of training epochs
    per_device_train_batch_size=10,  # batch size per device during training
    per_device_eval_batch_size=20,   # batch size for evaluation
    warmup_steps=100,                # number of warmup steps for learning rate scheduler
    logging_dir='./logs',            # directory for storing logs
    load_best_model_at_end=True,     # load the best model when finished training (default metric is loss)
    # but you can specify `metric_for_best_model` argument to change to accuracy or other metric
    logging_steps=200,               # log & save weights each logging_steps
    save_steps=200,
    evaluation_strategy="steps",     # evaluate each `logging_steps`
)

J'ai réglé le per_device_train_batch_sizeà 10, mais vous devriez le régler aussi haut que votre GPU pourrait éventuellement s'adapter. En réglant le logging_stepset save_stepssur 200, cela signifie que nous allons effectuer une évaluation et enregistrer les poids du modèle à chaque étape de formation de 200.

Vous pouvez consulter  cette page  pour des informations plus détaillées sur les paramètres d'entraînement disponibles.

Instancions le formateur :

trainer = Trainer(
    model=model,                         # the instantiated Transformers model to be trained
    args=training_args,                  # training arguments, defined above
    train_dataset=train_dataset,         # training dataset
    eval_dataset=valid_dataset,          # evaluation dataset
    compute_metrics=compute_metrics,     # the callback that computes metrics of interest
)

Entraînement du modèle :

# train the model
trainer.train()

La formation prend quelques heures pour se terminer, en fonction de votre GPU. Si vous êtes sur la version gratuite de Colab, cela devrait prendre une heure avec NVIDIA Tesla K80. Voici la sortie :

***** Running training *****
  Num examples = 14628
  Num Epochs = 1
  Instantaneous batch size per device = 10
  Total train batch size (w. parallel, distributed & accumulation) = 10
  Gradient Accumulation steps = 1
  Total optimization steps = 1463
 [1463/1463 41:07, Epoch 1/1]
Step	Training Loss	Validation Loss	Accuracy
200		0.250800		0.100533		0.983867
400		0.027600		0.043009		0.993437
600		0.023400		0.017812		0.997539
800		0.014900		0.030269		0.994258
1000	0.022400		0.012961		0.998086
1200	0.009800		0.010561		0.998633
1400	0.007700		0.010300		0.998633
***** Running Evaluation *****
  Num examples = 3657
  Batch size = 20
Saving model checkpoint to ./results/checkpoint-200
Configuration saved in ./results/checkpoint-200/config.json
Model weights saved in ./results/checkpoint-200/pytorch_model.bin
<SNIPPED>
***** Running Evaluation *****
  Num examples = 3657
  Batch size = 20
Saving model checkpoint to ./results/checkpoint-1400
Configuration saved in ./results/checkpoint-1400/config.json
Model weights saved in ./results/checkpoint-1400/pytorch_model.bin

Training completed. Do not forget to share your model on huggingface.co/models =)

Loading best model from ./results/checkpoint-1400 (score: 0.010299865156412125).
TrainOutput(global_step=1463, training_loss=0.04888018785440506, metrics={'train_runtime': 2469.1722, 'train_samples_per_second': 5.924, 'train_steps_per_second': 0.593, 'total_flos': 3848788517806080.0, 'train_loss': 0.04888018785440506, 'epoch': 1.0})

Évaluation du modèle

Étant donné que load_best_model_at_endest réglé sur True, les meilleurs poids seront chargés une fois l'entraînement terminé. Évaluons-le avec notre ensemble de validation :

# evaluate the current model after training
trainer.evaluate()

Sortir:

***** Running Evaluation *****
  Num examples = 3657
  Batch size = 20
 [183/183 02:11]
{'epoch': 1.0,
 'eval_accuracy': 0.998632759092152,
 'eval_loss': 0.010299865156412125,
 'eval_runtime': 132.0374,
 'eval_samples_per_second': 27.697,
 'eval_steps_per_second': 1.386}

Enregistrement du modèle et du tokenizer :

# saving the fine tuned model & tokenizer
model_path = "fake-news-bert-base-uncased"
model.save_pretrained(model_path)
tokenizer.save_pretrained(model_path)

Un nouveau dossier contenant la configuration du modèle et les poids apparaîtra après l'exécution de la cellule ci-dessus. Si vous souhaitez effectuer une prédiction, vous utilisez simplement la from_pretrained()méthode que nous avons utilisée lorsque nous avons chargé le modèle, et vous êtes prêt à partir.

Ensuite, créons une fonction qui accepte le texte de l'article comme argument et retourne s'il est faux ou non :

def get_prediction(text, convert_to_label=False):
    # prepare our text into tokenized sequence
    inputs = tokenizer(text, padding=True, truncation=True, max_length=max_length, return_tensors="pt").to("cuda")
    # perform inference to our model
    outputs = model(**inputs)
    # get output probabilities by doing softmax
    probs = outputs[0].softmax(1)
    # executing argmax function to get the candidate label
    d = {
        0: "reliable",
        1: "fake"
    }
    if convert_to_label:
      return d[int(probs.argmax())]
    else:
      return int(probs.argmax())

J'ai pris un exemple à partir test.csvduquel le modèle n'a jamais vu effectuer d'inférence, je l'ai vérifié, et c'est un article réel du New York Times :

real_news = """
Tim Tebow Will Attempt Another Comeback, This Time in Baseball - The New York Times",Daniel Victor,"If at first you don’t succeed, try a different sport. Tim Tebow, who was a Heisman   quarterback at the University of Florida but was unable to hold an N. F. L. job, is pursuing a career in Major League Baseball. <SNIPPED>
"""

Le texte original se trouve dans l'environnement Colab si vous souhaitez le copier, car il s'agit d'un article complet. Passons-le au modèle et voyons les résultats :

get_prediction(real_news, convert_to_label=True)

Sortir:

reliable

Annexe : Création d'un fichier de soumission pour Kaggle

Dans cette section, nous allons prédire tous les articles dans le test.csvpour créer un dossier de soumission pour voir notre justesse dans le jeu de test sur le concours Kaggle :

# read the test set
test_df = pd.read_csv("test.csv")
# make a copy of the testing set
new_df = test_df.copy()
# add a new column that contains the author, title and article content
new_df["new_text"] = new_df["author"].astype(str) + " : " + new_df["title"].astype(str) + " - " + new_df["text"].astype(str)
# get the prediction of all the test set
new_df["label"] = new_df["new_text"].apply(get_prediction)
# make the submission file
final_df = new_df[["id", "label"]]
final_df.to_csv("submit_final.csv", index=False)

Après avoir concaténé l'auteur, le titre et le texte de l'article, nous passons la get_prediction()fonction à la nouvelle colonne pour remplir la labelcolonne, nous utilisons ensuite la to_csv()méthode pour créer le fichier de soumission pour Kaggle. Voici mon score de soumission :

Note de soumission

Nous avons obtenu une précision de 99,78 % et 100 % sur les classements privés et publics. C'est génial!

Conclusion

Très bien, nous avons terminé avec le tutoriel. Vous pouvez consulter cette page pour voir divers paramètres d'entraînement que vous pouvez modifier.

Si vous avez un ensemble de données de fausses nouvelles personnalisé pour un réglage fin, il vous suffit de transmettre une liste d'échantillons au tokenizer comme nous l'avons fait, vous ne modifierez plus aucun autre code par la suite.

Vérifiez le code complet ici , ou l'environnement Colab ici .

CODE VN

CODE VN

1646025910

Xây Dựng Một Máy Phát Hiện Tin Tức Giả Mạo Bằng Python

Khám phá tập dữ liệu tin tức giả, thực hiện phân tích dữ liệu chẳng hạn như đám mây từ và ngram, đồng thời tinh chỉnh máy biến áp BERT để xây dựng bộ phát hiện tin tức giả bằng Python bằng cách sử dụng thư viện máy biến áp.

Tin tức giả là việc cố ý phát đi các tuyên bố sai sự thật hoặc gây hiểu lầm như một tin tức, trong đó các tuyên bố là cố ý lừa dối.

Báo chí, báo lá cải và tạp chí đã được thay thế bởi các nền tảng tin tức kỹ thuật số, blog, nguồn cấp dữ liệu truyền thông xã hội và rất nhiều ứng dụng tin tức di động. Các tổ chức tin tức được hưởng lợi từ việc tăng cường sử dụng mạng xã hội và các nền tảng di động bằng cách cung cấp cho người đăng ký thông tin cập nhật từng phút.

Người tiêu dùng hiện có thể truy cập ngay vào những tin tức mới nhất. Các nền tảng truyền thông kỹ thuật số này ngày càng nổi tiếng do khả năng kết nối dễ dàng với phần còn lại của thế giới và cho phép người dùng thảo luận, chia sẻ ý tưởng và tranh luận về các chủ đề như dân chủ, giáo dục, y tế, nghiên cứu và lịch sử. Các mục tin tức giả mạo trên các nền tảng kỹ thuật số ngày càng phổ biến và được sử dụng để thu lợi nhuận, chẳng hạn như lợi ích chính trị và tài chính.

Vấn đề này lớn đến mức nào?

Bởi vì Internet, phương tiện truyền thông xã hội và các nền tảng kỹ thuật số được sử dụng rộng rãi, bất kỳ ai cũng có thể tuyên truyền thông tin không chính xác và thiên vị. Gần như không thể ngăn chặn sự lan truyền của tin tức giả mạo. Có một sự gia tăng đáng kể trong việc phát tán tin tức sai lệch, không chỉ giới hạn trong một lĩnh vực như chính trị mà bao gồm thể thao, sức khỏe, lịch sử, giải trí, khoa học và nghiên cứu.

Giải pháp

Điều quan trọng là phải nhận biết và phân biệt giữa tin tức sai và tin tức chính xác. Một phương pháp là nhờ một chuyên gia quyết định và kiểm tra thực tế mọi thông tin, nhưng điều này cần thời gian và cần chuyên môn không thể chia sẻ được. Thứ hai, chúng ta có thể sử dụng các công cụ học máy và trí tuệ nhân tạo để tự động hóa việc xác định tin tức giả mạo.

Thông tin tin tức trực tuyến bao gồm nhiều dữ liệu định dạng phi cấu trúc khác nhau (chẳng hạn như tài liệu, video và âm thanh), nhưng chúng tôi sẽ tập trung vào tin tức định dạng văn bản ở đây. Với tiến bộ của học máyxử lý ngôn ngữ tự nhiên , giờ đây chúng ta có thể nhận ra đặc điểm gây hiểu lầm và sai của một bài báo hoặc câu lệnh.

Một số nghiên cứu và thử nghiệm đang được tiến hành để phát hiện tin tức giả trên tất cả các phương tiện.

Mục tiêu chính của chúng tôi trong hướng dẫn này là:

  • Khám phá và phân tích tập dữ liệu Tin tức giả mạo.
  • Xây dựng một công cụ phân loại có thể phân biệt tin tức Giả với độ chính xác cao nhất có thể.

Đây là bảng nội dung:

  • Giới thiệu
  • Vấn đề này lớn đến mức nào?
  • Giải pháp
  • Khám phá dữ liệu
    • Phân phối các lớp học
  • Làm sạch dữ liệu để phân tích
  • Phân tích dữ liệu khám phá
    • Đám mây một từ
    • Bigram thường xuyên nhất (Kết hợp hai từ)
    • Hình bát quái thường gặp nhất (Kết hợp ba từ)
  • Xây dựng Bộ phân loại bằng cách tinh chỉnh BERT
    • Chuẩn bị dữ liệu
    • Mã hóa tập dữ liệu
    • Tải và tinh chỉnh mô hình
    • Đánh giá mô hình
  • Phụ lục: Tạo tệp đệ trình cho Kaggle
  • Phần kết luận

Khám phá dữ liệu

Trong công việc này, chúng tôi đã sử dụng tập dữ liệu tin tức giả từ Kaggle để phân loại các bài báo không đáng tin cậy là tin giả. Chúng tôi có một tập dữ liệu đào tạo hoàn chỉnh chứa các đặc điểm sau:

  • id: id duy nhất cho một bài báo
  • title: tiêu đề của một bài báo
  • author: tác giả của bài báo
  • text: văn bản của bài báo; có thể không đầy đủ
  • label: nhãn đánh dấu bài viết có khả năng không đáng tin cậy được ký hiệu bằng 1 (không đáng tin cậy hoặc giả mạo) hoặc 0 (đáng tin cậy).

Đó là một bài toán phân loại nhị phân, trong đó chúng ta phải dự đoán xem một câu chuyện tin tức cụ thể có đáng tin cậy hay không.

Nếu bạn có tài khoản Kaggle, bạn có thể chỉ cần tải xuống bộ dữ liệu từ trang web ở đó và giải nén tệp ZIP.

Tôi cũng đã tải tập dữ liệu lên Google Drive và bạn có thể tải tập dữ liệu đó tại đây hoặc sử dụng gdownthư viện để tự động tải xuống tập dữ liệu trong sổ ghi chép Google Colab hoặc Jupyter:

$ pip install gdown
# download from Google Drive
$ gdown "https://drive.google.com/uc?id=178f_VkNxccNidap-5-uffXUW475pAuPy&confirm=t"
Downloading...
From: https://drive.google.com/uc?id=178f_VkNxccNidap-5-uffXUW475pAuPy&confirm=t
To: /content/fake-news.zip
100% 48.7M/48.7M [00:00<00:00, 74.6MB/s]

Giải nén các tệp:

$ unzip fake-news.zip

Ba tệp sẽ xuất hiện trong thư mục làm việc hiện tại:, và train.csv, chúng tôi sẽ sử dụng trong hầu hết các hướng dẫn.test.csvsubmit.csvtrain.csv

Cài đặt các phụ thuộc bắt buộc:

$ pip install transformers nltk pandas numpy matplotlib seaborn wordcloud

Lưu ý: Nếu bạn đang ở trong môi trường cục bộ, hãy đảm bảo rằng bạn cài đặt PyTorch cho GPU, hãy truy cập trang này để cài đặt đúng cách.

Hãy nhập các thư viện cần thiết để phân tích:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Kho tập tin NLTK và mô-đun phải được cài đặt bằng trình tải xuống NLTK tiêu chuẩn:

import nltk
nltk.download('stopwords')
nltk.download('wordnet')

Tập dữ liệu tin tức giả bao gồm các tiêu đề và văn bản bài báo gốc và hư cấu của nhiều tác giả khác nhau. Hãy nhập tập dữ liệu của chúng tôi:

# load the dataset
news_d = pd.read_csv("train.csv")
print("Shape of News data:", news_d.shape)
print("News data columns", news_d.columns)

Đầu ra:

 Shape of News data: (20800, 5)
 News data columns Index(['id', 'title', 'author', 'text', 'label'], dtype='object')

Đây là giao diện của tập dữ liệu:

# by using df.head(), we can immediately familiarize ourselves with the dataset. 
news_d.head()

Đầu ra:

id	title	author	text	label
0	0	House Dem Aide: We Didn’t Even See Comey’s Let...	Darrell Lucus	House Dem Aide: We Didn’t Even See Comey’s Let...	1
1	1	FLYNN: Hillary Clinton, Big Woman on Campus - ...	Daniel J. Flynn	Ever get the feeling your life circles the rou...	0
2	2	Why the Truth Might Get You Fired	Consortiumnews.com	Why the Truth Might Get You Fired October 29, ...	1
3	3	15 Civilians Killed In Single US Airstrike Hav...	Jessica Purkiss	Videos 15 Civilians Killed In Single US Airstr...	1
4	4	Iranian woman jailed for fictional unpublished...	Howard Portnoy	Print \nAn Iranian woman has been sentenced to...	1

Chúng tôi có 20.800 hàng, có năm cột. Hãy cùng xem một số thống kê của chuyên textmục:

#Text Word startistics: min.mean, max and interquartile range

txt_length = news_d.text.str.split().str.len()
txt_length.describe()

Đầu ra:

count    20761.000000
mean       760.308126
std        869.525988
min          0.000000
25%        269.000000
50%        556.000000
75%       1052.000000
max      24234.000000
Name: text, dtype: float64

Số liệu thống kê cho titlecột:

#Title statistics 

title_length = news_d.title.str.split().str.len()
title_length.describe()

Đầu ra:

count    20242.000000
mean        12.420709
std          4.098735
min          1.000000
25%         10.000000
50%         13.000000
75%         15.000000
max         72.000000
Name: title, dtype: float64

Số liệu thống kê cho các tập huấn luyện và kiểm tra như sau:

  • Thuộc texttính có số từ cao hơn với trung bình 760 từ và 75% có hơn 1000 từ.
  • Thuộc titletính là một câu lệnh ngắn với trung bình 12 từ và 75% trong số đó là khoảng 15 từ.

Thử nghiệm của chúng tôi sẽ kết hợp cả văn bản và tiêu đề.

Phân phối các lớp học

Đếm các ô cho cả hai nhãn:

sns.countplot(x="label", data=news_d);
print("1: Unreliable")
print("0: Reliable")
print("Distribution of labels:")
print(news_d.label.value_counts());

Đầu ra:

1: Unreliable
0: Reliable
Distribution of labels:
1    10413
0    10387
Name: label, dtype: int64

Phân phối nhãn

print(round(news_d.label.value_counts(normalize=True),2)*100);

Đầu ra:

1    50.0
0    50.0
Name: label, dtype: float64

Số lượng bài báo không đáng tin cậy (giả mạo hoặc 1) là 10413, trong khi số bài báo đáng tin cậy (đáng tin cậy hoặc 0) là 10387. Gần 50% số bài báo là giả mạo. Do đó, chỉ số độ chính xác sẽ đo lường mức độ hoạt động của mô hình của chúng tôi khi xây dựng bộ phân loại.

Làm sạch dữ liệu để phân tích

Trong phần này, chúng tôi sẽ làm sạch tập dữ liệu của mình để thực hiện một số phân tích:

  • Bỏ các hàng và cột không sử dụng.
  • Thực hiện gán giá trị null.
  • Loại bỏ các ký tự đặc biệt.
  • Loại bỏ các từ dừng.
# Constants that are used to sanitize the datasets 

column_n = ['id', 'title', 'author', 'text', 'label']
remove_c = ['id','author']
categorical_features = []
target_col = ['label']
text_f = ['title', 'text']
# Clean Datasets
import nltk
from nltk.corpus import stopwords
import re
from nltk.stem.porter import PorterStemmer
from collections import Counter

ps = PorterStemmer()
wnl = nltk.stem.WordNetLemmatizer()

stop_words = stopwords.words('english')
stopwords_dict = Counter(stop_words)

# Removed unused clumns
def remove_unused_c(df,column_n=remove_c):
    df = df.drop(column_n,axis=1)
    return df

# Impute null values with None
def null_process(feature_df):
    for col in text_f:
        feature_df.loc[feature_df[col].isnull(), col] = "None"
    return feature_df

def clean_dataset(df):
    # remove unused column
    df = remove_unused_c(df)
    #impute null values
    df = null_process(df)
    return df

# Cleaning text from unused characters
def clean_text(text):
    text = str(text).replace(r'http[\w:/\.]+', ' ')  # removing urls
    text = str(text).replace(r'[^\.\w\s]', ' ')  # remove everything but characters and punctuation
    text = str(text).replace('[^a-zA-Z]', ' ')
    text = str(text).replace(r'\s\s+', ' ')
    text = text.lower().strip()
    #text = ' '.join(text)    
    return text

## Nltk Preprocessing include:
# Stop words, Stemming and Lemmetization
# For our project we use only Stop word removal
def nltk_preprocess(text):
    text = clean_text(text)
    wordlist = re.sub(r'[^\w\s]', '', text).split()
    #text = ' '.join([word for word in wordlist if word not in stopwords_dict])
    #text = [ps.stem(word) for word in wordlist if not word in stopwords_dict]
    text = ' '.join([wnl.lemmatize(word) for word in wordlist if word not in stopwords_dict])
    return  text

Trong khối mã trên:

  • Chúng tôi đã nhập NLTK, đây là một nền tảng nổi tiếng để phát triển các ứng dụng Python tương tác với ngôn ngữ của con người. Tiếp theo, chúng tôi nhập recho regex.
  • Chúng tôi nhập các từ dừng từ nltk.corpus. Khi làm việc với các từ, đặc biệt là khi xem xét ngữ nghĩa, đôi khi chúng ta cần loại bỏ các từ phổ biến không bổ sung bất kỳ ý nghĩa quan trọng nào cho một câu lệnh, chẳng hạn như "but",, v.v."can""we"
  • PorterStemmerđược sử dụng để thực hiện các từ gốc với NLTK. Các gốc từ loại bỏ các phụ tố hình thái của các từ, chỉ để lại phần gốc của từ.
  • Chúng tôi nhập WordNetLemmatizer()từ thư viện NLTK để lemmatization. Lemmatization hiệu quả hơn nhiều so với việc chiết cành . Nó vượt ra ngoài việc rút gọn từ và đánh giá toàn bộ từ vựng của một ngôn ngữ để áp dụng phân tích hình thái học cho các từ, với mục tiêu chỉ loại bỏ các kết thúc không theo chiều hướng và trả lại dạng cơ sở hoặc dạng từ điển của một từ, được gọi là bổ đề.
  • stopwords.words('english')cho phép chúng tôi xem danh sách tất cả các từ dừng tiếng Anh được NLTK hỗ trợ.
  • remove_unused_c()được sử dụng để loại bỏ các cột không sử dụng.
  • Chúng tôi áp đặt giá trị null bằng Nonecách sử dụng null_process()hàm.
  • Bên trong hàm clean_dataset(), chúng ta gọi remove_unused_c()null_process()hàm. Chức năng này có nhiệm vụ làm sạch dữ liệu.
  • Để làm sạch văn bản khỏi các ký tự không sử dụng, chúng tôi đã tạo clean_text()hàm.
  • Đối với xử lý trước, chúng tôi sẽ chỉ sử dụng loại bỏ từ dừng. Chúng tôi đã tạo ra nltk_preprocess()chức năng cho mục đích đó.

Tiền xử lý texttitle:

# Perform data cleaning on train and test dataset by calling clean_dataset function
df = clean_dataset(news_d)
# apply preprocessing on text through apply method by calling the function nltk_preprocess
df["text"] = df.text.apply(nltk_preprocess)
# apply preprocessing on title through apply method by calling the function nltk_preprocess
df["title"] = df.title.apply(nltk_preprocess)
# Dataset after cleaning and preprocessing step
df.head()

Đầu ra:

title	text	label
0	house dem aide didnt even see comeys letter ja...	house dem aide didnt even see comeys letter ja...	1
1	flynn hillary clinton big woman campus breitbart	ever get feeling life circle roundabout rather...	0
2	truth might get fired	truth might get fired october 29 2016 tension ...	1
3	15 civilian killed single u airstrike identified	video 15 civilian killed single u airstrike id...	1
4	iranian woman jailed fictional unpublished sto...	print iranian woman sentenced six year prison ...	1

Phân tích dữ liệu khám phá

Trong phần này, chúng tôi sẽ thực hiện:

  • Phân tích đơn biến : Nó là một phân tích thống kê của văn bản. Chúng tôi sẽ sử dụng đám mây từ cho mục đích đó. Đám mây từ là một cách tiếp cận trực quan hóa cho dữ liệu văn bản trong đó thuật ngữ phổ biến nhất được trình bày ở kích thước phông chữ đáng kể nhất.
  • Phân tích Bivariate: Bigram và Trigram sẽ được sử dụng ở đây. Theo Wikipedia: " n-gram là một chuỗi n mục liền nhau từ một mẫu văn bản hoặc lời nói nhất định. Theo ứng dụng, các mục có thể là âm vị, âm tiết, chữ cái, từ hoặc các cặp cơ sở. N-gram thường được thu thập từ một văn bản hoặc ngữ liệu lời nói ".

Đám mây một từ

Các từ phổ biến nhất xuất hiện ở phông chữ đậm và lớn hơn trong đám mây từ. Phần này sẽ thực hiện một đám mây từ cho tất cả các từ trong tập dữ liệu.

Chức năng của thư viện WordCloudwordcloud() sẽ được sử dụng và generate()được sử dụng để tạo hình ảnh đám mây từ:

from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt

# initialize the word cloud
wordcloud = WordCloud( background_color='black', width=800, height=600)
# generate the word cloud by passing the corpus
text_cloud = wordcloud.generate(' '.join(df['text']))
# plotting the word cloud
plt.figure(figsize=(20,30))
plt.imshow(text_cloud)
plt.axis('off')
plt.show()

Đầu ra:

WordCloud cho toàn bộ dữ liệu tin tức giả mạo

Đám mây từ chỉ dành cho tin tức đáng tin cậy:

true_n = ' '.join(df[df['label']==0]['text']) 
wc = wordcloud.generate(true_n)
plt.figure(figsize=(20,30))
plt.imshow(wc)
plt.axis('off')
plt.show()

Đầu ra:

Word Cloud cho tin tức đáng tin cậy

Word cloud chỉ dành cho tin tức giả mạo:

fake_n = ' '.join(df[df['label']==1]['text'])
wc= wordcloud.generate(fake_n)
plt.figure(figsize=(20,30))
plt.imshow(wc)
plt.axis('off')
plt.show()

Đầu ra:

Word Cloud cho tin tức giả mạo

Bigram thường xuyên nhất (Kết hợp hai từ)

N-gram là một chuỗi các chữ cái hoặc từ. Một ký tự unigram được tạo thành từ một ký tự duy nhất, trong khi một bigram bao gồm một chuỗi hai ký tự. Tương tự, từ N-gram được tạo thành từ một chuỗi n từ. Từ "thống nhất" là 1 gam (unigram). Sự kết hợp của các từ "bang thống nhất" là 2 gam (bigram), "thành phố new york" là 3 gam.

Hãy vẽ biểu đồ phổ biến nhất trên tin tức đáng tin cậy:

def plot_top_ngrams(corpus, title, ylabel, xlabel="Number of Occurences", n=2):
  """Utility function to plot top n-grams"""
  true_b = (pd.Series(nltk.ngrams(corpus.split(), n)).value_counts())[:20]
  true_b.sort_values().plot.barh(color='blue', width=.9, figsize=(12, 8))
  plt.title(title)
  plt.ylabel(ylabel)
  plt.xlabel(xlabel)
  plt.show()
plot_top_ngrams(true_n, 'Top 20 Frequently Occuring True news Bigrams', "Bigram", n=2)

Bigram hàng đầu về tin tức giả mạo

Biểu đồ phổ biến nhất về tin tức giả:

plot_top_ngrams(fake_n, 'Top 20 Frequently Occuring Fake news Bigrams', "Bigram", n=2)

Bigram hàng đầu về tin tức giả mạo

Hình bát quái thường gặp nhất (kết hợp ba từ)

Hình bát quái phổ biến nhất trên các tin tức đáng tin cậy:

plot_top_ngrams(true_n, 'Top 20 Frequently Occuring True news Trigrams', "Trigrams", n=3)

Bát quái phổ biến nhất về tin tức giả mạo

Đối với tin tức giả mạo bây giờ:

plot_top_ngrams(fake_n, 'Top 20 Frequently Occuring Fake news Trigrams', "Trigrams", n=3)

Hình bát quái phổ biến nhất trên tin tức giả mạo

Các biểu đồ trên cho chúng ta một số ý tưởng về giao diện của cả hai lớp. Trong phần tiếp theo, chúng ta sẽ sử dụng thư viện máy biến áp để xây dựng công cụ phát hiện tin tức giả.

Xây dựng Bộ phân loại bằng cách tinh chỉnh BERT

Phần này sẽ lấy mã rộng rãi từ hướng dẫn tinh chỉnh BERT để tạo bộ phân loại tin tức giả bằng cách sử dụng thư viện máy biến áp. Vì vậy, để biết thêm thông tin chi tiết, bạn có thể xem hướng dẫn ban đầu .

Nếu bạn không cài đặt máy biến áp, bạn phải:

$ pip install transformers

Hãy nhập các thư viện cần thiết:

import torch
from transformers.file_utils import is_tf_available, is_torch_available, is_torch_tpu_available
from transformers import BertTokenizerFast, BertForSequenceClassification
from transformers import Trainer, TrainingArguments
import numpy as np
from sklearn.model_selection import train_test_split

import random

Chúng tôi muốn làm cho kết quả của chúng tôi có thể tái tạo ngay cả khi chúng tôi khởi động lại môi trường của mình:

def set_seed(seed: int):
    """
    Helper function for reproducible behavior to set the seed in ``random``, ``numpy``, ``torch`` and/or ``tf`` (if
    installed).

    Args:
        seed (:obj:`int`): The seed to set.
    """
    random.seed(seed)
    np.random.seed(seed)
    if is_torch_available():
        torch.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
        # ^^ safe to call this function even if cuda is not available
    if is_tf_available():
        import tensorflow as tf

        tf.random.set_seed(seed)

set_seed(1)

Mô hình chúng tôi sẽ sử dụng là bert-base-uncased:

# the model we gonna train, base uncased BERT
# check text classification models here: https://huggingface.co/models?filter=text-classification
model_name = "bert-base-uncased"
# max sequence length for each document/sentence sample
max_length = 512

Đang tải tokenizer:

# load the tokenizer
tokenizer = BertTokenizerFast.from_pretrained(model_name, do_lower_case=True)

Chuẩn bị dữ liệu

Bây giờ chúng ta hãy làm sạch NaNcác giá trị khỏi textauthorcác titlecột:

news_df = news_d[news_d['text'].notna()]
news_df = news_df[news_df["author"].notna()]
news_df = news_df[news_df["title"].notna()]

Tiếp theo, tạo một hàm lấy tập dữ liệu làm khung dữ liệu Pandas và trả về phần tách dòng / xác thực của văn bản và nhãn dưới dạng danh sách:

def prepare_data(df, test_size=0.2, include_title=True, include_author=True):
  texts = []
  labels = []
  for i in range(len(df)):
    text = df["text"].iloc[i]
    label = df["label"].iloc[i]
    if include_title:
      text = df["title"].iloc[i] + " - " + text
    if include_author:
      text = df["author"].iloc[i] + " : " + text
    if text and label in [0, 1]:
      texts.append(text)
      labels.append(label)
  return train_test_split(texts, labels, test_size=test_size)

train_texts, valid_texts, train_labels, valid_labels = prepare_data(news_df)

Hàm trên nhận tập dữ liệu trong một kiểu khung dữ liệu và trả về chúng dưới dạng danh sách được chia thành các tập hợp lệ và huấn luyện. Đặt include_titlethành Truecó nghĩa là chúng tôi thêm titlecột vào mục textchúng tôi sẽ sử dụng để đào tạo, đặt include_authorthành Truecó nghĩa là chúng tôi cũng thêm authorvào văn bản.

Hãy đảm bảo rằng các nhãn và văn bản có cùng độ dài:

print(len(train_texts), len(train_labels))
print(len(valid_texts), len(valid_labels))

Đầu ra:

14628 14628
3657 3657

Mã hóa tập dữ liệu

Hãy sử dụng trình mã hóa BERT để mã hóa tập dữ liệu của chúng ta:

# tokenize the dataset, truncate when passed `max_length`, 
# and pad with 0's when less than `max_length`
train_encodings = tokenizer(train_texts, truncation=True, padding=True, max_length=max_length)
valid_encodings = tokenizer(valid_texts, truncation=True, padding=True, max_length=max_length)

Chuyển đổi các mã hóa thành tập dữ liệu PyTorch:

class NewsGroupsDataset(torch.utils.data.Dataset):
    def __init__(self, encodings, labels):
        self.encodings = encodings
        self.labels = labels

    def __getitem__(self, idx):
        item = {k: torch.tensor(v[idx]) for k, v in self.encodings.items()}
        item["labels"] = torch.tensor([self.labels[idx]])
        return item

    def __len__(self):
        return len(self.labels)

# convert our tokenized data into a torch Dataset
train_dataset = NewsGroupsDataset(train_encodings, train_labels)
valid_dataset = NewsGroupsDataset(valid_encodings, valid_labels)

Tải và tinh chỉnh mô hình

Chúng tôi sẽ sử dụng BertForSequenceClassificationđể tải mô hình máy biến áp BERT của chúng tôi:

# load the model
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2)

Chúng tôi đặt num_labelsthành 2 vì đó là phân loại nhị phân. Hàm dưới đây là một lệnh gọi lại để tính độ chính xác trên mỗi bước xác thực:

from sklearn.metrics import accuracy_score

def compute_metrics(pred):
  labels = pred.label_ids
  preds = pred.predictions.argmax(-1)
  # calculate accuracy using sklearn's function
  acc = accuracy_score(labels, preds)
  return {
      'accuracy': acc,
  }

Hãy khởi tạo các tham số huấn luyện:

training_args = TrainingArguments(
    output_dir='./results',          # output directory
    num_train_epochs=1,              # total number of training epochs
    per_device_train_batch_size=10,  # batch size per device during training
    per_device_eval_batch_size=20,   # batch size for evaluation
    warmup_steps=100,                # number of warmup steps for learning rate scheduler
    logging_dir='./logs',            # directory for storing logs
    load_best_model_at_end=True,     # load the best model when finished training (default metric is loss)
    # but you can specify `metric_for_best_model` argument to change to accuracy or other metric
    logging_steps=200,               # log & save weights each logging_steps
    save_steps=200,
    evaluation_strategy="steps",     # evaluate each `logging_steps`
)

Tôi đã đặt thành per_device_train_batch_size10, nhưng bạn nên đặt nó cao nhất có thể phù hợp với GPU của bạn. Đặt logging_stepssave_stepsthành 200, nghĩa là chúng ta sẽ thực hiện đánh giá và lưu trọng số của mô hình trên mỗi 200 bước huấn luyện.

Bạn có thể kiểm tra  trang này  để biết thêm thông tin chi tiết về các thông số đào tạo có sẵn.

Hãy khởi tạo trình huấn luyện:

trainer = Trainer(
    model=model,                         # the instantiated Transformers model to be trained
    args=training_args,                  # training arguments, defined above
    train_dataset=train_dataset,         # training dataset
    eval_dataset=valid_dataset,          # evaluation dataset
    compute_metrics=compute_metrics,     # the callback that computes metrics of interest
)

Đào tạo người mẫu:

# train the model
trainer.train()

Quá trình đào tạo mất vài giờ để kết thúc, tùy thuộc vào GPU của bạn. Nếu bạn đang sử dụng phiên bản Colab miễn phí, sẽ mất một giờ với NVIDIA Tesla K80. Đây là kết quả:

***** Running training *****
  Num examples = 14628
  Num Epochs = 1
  Instantaneous batch size per device = 10
  Total train batch size (w. parallel, distributed & accumulation) = 10
  Gradient Accumulation steps = 1
  Total optimization steps = 1463
 [1463/1463 41:07, Epoch 1/1]
Step	Training Loss	Validation Loss	Accuracy
200		0.250800		0.100533		0.983867
400		0.027600		0.043009		0.993437
600		0.023400		0.017812		0.997539
800		0.014900		0.030269		0.994258
1000	0.022400		0.012961		0.998086
1200	0.009800		0.010561		0.998633
1400	0.007700		0.010300		0.998633
***** Running Evaluation *****
  Num examples = 3657
  Batch size = 20
Saving model checkpoint to ./results/checkpoint-200
Configuration saved in ./results/checkpoint-200/config.json
Model weights saved in ./results/checkpoint-200/pytorch_model.bin
<SNIPPED>
***** Running Evaluation *****
  Num examples = 3657
  Batch size = 20
Saving model checkpoint to ./results/checkpoint-1400
Configuration saved in ./results/checkpoint-1400/config.json
Model weights saved in ./results/checkpoint-1400/pytorch_model.bin

Training completed. Do not forget to share your model on huggingface.co/models =)

Loading best model from ./results/checkpoint-1400 (score: 0.010299865156412125).
TrainOutput(global_step=1463, training_loss=0.04888018785440506, metrics={'train_runtime': 2469.1722, 'train_samples_per_second': 5.924, 'train_steps_per_second': 0.593, 'total_flos': 3848788517806080.0, 'train_loss': 0.04888018785440506, 'epoch': 1.0})

Đánh giá mô hình

load_best_model_at_endđược đặt thành True, mức tạ tốt nhất sẽ được tải khi quá trình tập luyện hoàn thành. Hãy đánh giá nó với bộ xác thực của chúng tôi:

# evaluate the current model after training
trainer.evaluate()

Đầu ra:

***** Running Evaluation *****
  Num examples = 3657
  Batch size = 20
 [183/183 02:11]
{'epoch': 1.0,
 'eval_accuracy': 0.998632759092152,
 'eval_loss': 0.010299865156412125,
 'eval_runtime': 132.0374,
 'eval_samples_per_second': 27.697,
 'eval_steps_per_second': 1.386}

Lưu mô hình và tokenizer:

# saving the fine tuned model & tokenizer
model_path = "fake-news-bert-base-uncased"
model.save_pretrained(model_path)
tokenizer.save_pretrained(model_path)

Một thư mục mới chứa cấu hình mô hình và trọng số sẽ xuất hiện sau khi chạy ô trên. Nếu bạn muốn thực hiện dự đoán, bạn chỉ cần sử dụng from_pretrained()phương pháp chúng tôi đã sử dụng khi tải mô hình và bạn đã sẵn sàng.

Tiếp theo, hãy tạo một hàm chấp nhận văn bản bài viết làm đối số và trả về cho dù nó là giả mạo hay không:

def get_prediction(text, convert_to_label=False):
    # prepare our text into tokenized sequence
    inputs = tokenizer(text, padding=True, truncation=True, max_length=max_length, return_tensors="pt").to("cuda")
    # perform inference to our model
    outputs = model(**inputs)
    # get output probabilities by doing softmax
    probs = outputs[0].softmax(1)
    # executing argmax function to get the candidate label
    d = {
        0: "reliable",
        1: "fake"
    }
    if convert_to_label:
      return d[int(probs.argmax())]
    else:
      return int(probs.argmax())

Tôi đã lấy một ví dụ từ test.csvmô hình chưa từng thấy để thực hiện suy luận, tôi đã kiểm tra nó và đó là một bài báo thực tế từ The New York Times:

real_news = """
Tim Tebow Will Attempt Another Comeback, This Time in Baseball - The New York Times",Daniel Victor,"If at first you don’t succeed, try a different sport. Tim Tebow, who was a Heisman   quarterback at the University of Florida but was unable to hold an N. F. L. job, is pursuing a career in Major League Baseball. <SNIPPED>
"""

Văn bản gốc nằm trong môi trường Colab nếu bạn muốn sao chép nó, vì nó là một bài báo hoàn chỉnh. Hãy chuyển nó cho mô hình và xem kết quả:

get_prediction(real_news, convert_to_label=True)

Đầu ra:

reliable

Phụ lục: Tạo tệp đệ trình cho Kaggle

Trong phần này, chúng tôi sẽ dự đoán tất cả các bài trong phần test.csvđể tạo hồ sơ gửi để xem độ chính xác của chúng tôi trong bộ bài kiểm tra của cuộc thi Kaggle :

# read the test set
test_df = pd.read_csv("test.csv")
# make a copy of the testing set
new_df = test_df.copy()
# add a new column that contains the author, title and article content
new_df["new_text"] = new_df["author"].astype(str) + " : " + new_df["title"].astype(str) + " - " + new_df["text"].astype(str)
# get the prediction of all the test set
new_df["label"] = new_df["new_text"].apply(get_prediction)
# make the submission file
final_df = new_df[["id", "label"]]
final_df.to_csv("submit_final.csv", index=False)

Sau khi chúng tôi nối tác giả, tiêu đề và văn bản bài viết với nhau, chúng tôi truyền get_prediction()hàm vào cột mới để lấp đầy labelcột, sau đó chúng tôi sử dụng to_csv()phương thức để tạo tệp gửi cho Kaggle. Đây là điểm nộp bài của tôi:

Điểm nộp hồ sơ

Chúng tôi nhận được độ chính xác 99,78% và 100% trên bảng xếp hạng riêng tư và công khai. Thật tuyệt vời!

Kết Luận

Được rồi, chúng ta đã hoàn thành phần hướng dẫn. Bạn có thể kiểm tra trang này để xem các thông số đào tạo khác nhau mà bạn có thể điều chỉnh.

Nếu bạn có tập dữ liệu tin tức giả tùy chỉnh để tinh chỉnh, bạn chỉ cần chuyển danh sách các mẫu cho trình mã hóa như chúng tôi đã làm, bạn sẽ không thay đổi bất kỳ mã nào khác sau đó.

Kiểm tra mã hoàn chỉnh tại đây hoặc môi trường Colab tại đây .