Sadie  Cassin

Sadie Cassin

1618893084

The Kubernetes Network Security Effect

Kubernetes has a built-in object for managing network security: NetworkPolicy. While it allows the user to define the relationship between pods with ingress and egress policies, it is basic and requires very precise IP mapping of a solution — which changes constantly, so most users I’ve talked to are not using it.

Still Stuck with Firewall?

Back in the day, a network security policy was defined with IP addresses and subnets. You would define the source and destination, then the destination port, then action and track options. Over the years, the firewall evolved and became application-aware, with added capabilities for advanced malware prevention and more. It is no longer a firewall, but a full network security solution.

However, most network security solutions — even today — use IP addresses and ranges as the source and destination. This was the first challenge when these devices moved to the cloud. How can you define source/destination IP in such a rapidly changing environment, where IP addresses change all the time; an IP is assigned to a database workload and the next minute it is assigned to the web workload. In addition, if you want to understand the cloud and see the connections prior to network address translation, you must be inside the application. In Kubernetes in most cases, when a pod connects to an external resource, it will go through Network Address Translation — meaning the destination will see the source IP as the worker node address and not the pod.

For Infrastructure as a Service (IaaS) cloud deployments, most companies can solve this challenge by installing their network security solution with a proxy on a virtual machine (VM).

But when it comes to Kubernetes, it is just not working. Why?

  • A normal pod in Kubernetes is just a few MBs, so you cannot deploy a full flagged network security solution in a pod. Placing it outside of Kubernetes solves the North-South hygiene to some extent (traffic in and out of the network), but not the East-West (traffic within the network and in-cluster connectivity).
  • Kubernetes is the cloud on steroids — pods scale up and down rapidly. IP assignment changes and the rules cannot be bound to IP addresses and subnets.
  • A fully flagged network security is not required. For example, there is no requirement to do deep packet inspection inside Kubernetes. Most companies are looking for East-West micro-segmentation — basically firewalling.

Lucky for us, Kubernetes was created with the NetworkPolicy object. This object treats each pod as a permitter on its own, and you can define Ingress policy and Egress policy. Both policies can leverage IP addresses, subnets (CIDR) and labels. Unfortunately, Kubernetes does not support FQDN (Fully qualified domain name) in the native security policy. This means that it’s impossible to create a policy that limits the access to S3 or Twitter (for example).

Network security is enforced by the network layer and the most common layers are Calico, Flannel and Cilium. By design, the Kubernetes network is flat. One microservice from one namespace can connect to another microservice, even if it is in another namespace.

#kubernetes #security

What is GEEK

Buddha Community

The Kubernetes Network Security Effect
Christa  Stehr

Christa Stehr

1602964260

50+ Useful Kubernetes Tools for 2020 - Part 2

Introduction

Last year, we provided a list of Kubernetes tools that proved so popular we have decided to curate another list of some useful additions for working with the platform—among which are many tools that we personally use here at Caylent. Check out the original tools list here in case you missed it.

According to a recent survey done by Stackrox, the dominance Kubernetes enjoys in the market continues to be reinforced, with 86% of respondents using it for container orchestration.

(State of Kubernetes and Container Security, 2020)

And as you can see below, more and more companies are jumping into containerization for their apps. If you’re among them, here are some tools to aid you going forward as Kubernetes continues its rapid growth.

(State of Kubernetes and Container Security, 2020)

#blog #tools #amazon elastic kubernetes service #application security #aws kms #botkube #caylent #cli #container monitoring #container orchestration tools #container security #containers #continuous delivery #continuous deployment #continuous integration #contour #developers #development #developments #draft #eksctl #firewall #gcp #github #harbor #helm #helm charts #helm-2to3 #helm-aws-secret-plugin #helm-docs #helm-operator-get-started #helm-secrets #iam #json #k-rail #k3s #k3sup #k8s #keel.sh #keycloak #kiali #kiam #klum #knative #krew #ksniff #kube #kube-prod-runtime #kube-ps1 #kube-scan #kube-state-metrics #kube2iam #kubeapps #kubebuilder #kubeconfig #kubectl #kubectl-aws-secrets #kubefwd #kubernetes #kubernetes command line tool #kubernetes configuration #kubernetes deployment #kubernetes in development #kubernetes in production #kubernetes ingress #kubernetes interfaces #kubernetes monitoring #kubernetes networking #kubernetes observability #kubernetes plugins #kubernetes secrets #kubernetes security #kubernetes security best practices #kubernetes security vendors #kubernetes service discovery #kubernetic #kubesec #kubeterminal #kubeval #kudo #kuma #microsoft azure key vault #mozilla sops #octant #octarine #open source #palo alto kubernetes security #permission-manager #pgp #rafay #rakess #rancher #rook #secrets operations #serverless function #service mesh #shell-operator #snyk #snyk container #sonobuoy #strongdm #tcpdump #tenkai #testing #tigera #tilt #vert.x #wireshark #yaml

Wilford  Pagac

Wilford Pagac

1596789120

Best Custom Web & Mobile App Development Company

Everything around us has become smart, like smart infrastructures, smart cities, autonomous vehicles, to name a few. The innovation of smart devices makes it possible to achieve these heights in science and technology. But, data is vulnerable, there is a risk of attack by cybercriminals. To get started, let’s know about IoT devices.

What are IoT devices?

The Internet Of Things(IoT) is a system that interrelates computer devices like sensors, software, and actuators, digital machines, etc. They are linked together with particular objects that work through the internet and transfer data over devices without humans interference.

Famous examples are Amazon Alexa, Apple SIRI, Interconnected baby monitors, video doorbells, and smart thermostats.

How could your IoT devices be vulnerable?

When technologies grow and evolve, risks are also on the high stakes. Ransomware attacks are on the continuous increase; securing data has become the top priority.

When you think your smart home won’t fudge a thing against cybercriminals, you should also know that they are vulnerable. When cybercriminals access our smart voice speakers like Amazon Alexa or Apple Siri, it becomes easy for them to steal your data.

Cybersecurity report 2020 says popular hacking forums expose 770 million email addresses and 21 million unique passwords, 620 million accounts have been compromised from 16 hacked websites.

The attacks are likely to increase every year. To help you secure your data of IoT devices, here are some best tips you can implement.

Tips to secure your IoT devices

1. Change Default Router Name

Your router has the default name of make and model. When we stick with the manufacturer name, attackers can quickly identify our make and model. So give the router name different from your addresses, without giving away personal information.

2. Know your connected network and connected devices

If your devices are connected to the internet, these connections are vulnerable to cyber attacks when your devices don’t have the proper security. Almost every web interface is equipped with multiple devices, so it’s hard to track the device. But, it’s crucial to stay aware of them.

3. Change default usernames and passwords

When we use the default usernames and passwords, it is attackable. Because the cybercriminals possibly know the default passwords come with IoT devices. So use strong passwords to access our IoT devices.

4. Manage strong, Unique passwords for your IoT devices and accounts

Use strong or unique passwords that are easily assumed, such as ‘123456’ or ‘password1234’ to protect your accounts. Give strong and complex passwords formed by combinations of alphabets, numeric, and not easily bypassed symbols.

Also, change passwords for multiple accounts and change them regularly to avoid attacks. We can also set several attempts to wrong passwords to set locking the account to safeguard from the hackers.

5. Do not use Public WI-FI Networks

Are you try to keep an eye on your IoT devices through your mobile devices in different locations. I recommend you not to use the public WI-FI network to access them. Because they are easily accessible through for everyone, you are still in a hurry to access, use VPN that gives them protection against cyber-attacks, giving them privacy and security features, for example, using Express VPN.

6. Establish firewalls to discover the vulnerabilities

There are software and firewalls like intrusion detection system/intrusion prevention system in the market. This will be useful to screen and analyze the wire traffic of a network. You can identify the security weakness by the firewall scanners within the network structure. Use these firewalls to get rid of unwanted security issues and vulnerabilities.

7. Reconfigure your device settings

Every smart device comes with the insecure default settings, and sometimes we are not able to change these default settings configurations. These conditions need to be assessed and need to reconfigure the default settings.

8. Authenticate the IoT applications

Nowadays, every smart app offers authentication to secure the accounts. There are many types of authentication methods like single-factor authentication, two-step authentication, and multi-factor authentication. Use any one of these to send a one time password (OTP) to verify the user who logs in the smart device to keep our accounts from falling into the wrong hands.

9. Update the device software up to date

Every smart device manufacturer releases updates to fix bugs in their software. These security patches help us to improve our protection of the device. Also, update the software on the smartphone, which we are used to monitoring the IoT devices to avoid vulnerabilities.

10. Track the smartphones and keep them safe

When we connect the smart home to the smartphone and control them via smartphone, you need to keep them safe. If you miss the phone almost, every personal information is at risk to the cybercriminals. But sometimes it happens by accident, makes sure that you can clear all the data remotely.

However, securing smart devices is essential in the world of data. There are still cybercriminals bypassing the securities. So make sure to do the safety measures to avoid our accounts falling out into the wrong hands. I hope these steps will help you all to secure your IoT devices.

If you have any, feel free to share them in the comments! I’d love to know them.

Are you looking for more? Subscribe to weekly newsletters that can help your stay updated IoT application developments.

#iot #enterprise iot security #how iot can be used to enhance security #how to improve iot security #how to protect iot devices from hackers #how to secure iot devices #iot security #iot security devices #iot security offerings #iot security technologies iot security plus #iot vulnerable devices #risk based iot security program

Maud  Rosenbaum

Maud Rosenbaum

1601051854

Kubernetes in the Cloud: Strategies for Effective Multi Cloud Implementations

Kubernetes is a highly popular container orchestration platform. Multi cloud is a strategy that leverages cloud resources from multiple vendors. Multi cloud strategies have become popular because they help prevent vendor lock-in and enable you to leverage a wide variety of cloud resources. However, multi cloud ecosystems are notoriously difficult to configure and maintain.

This article explains how you can leverage Kubernetes to reduce multi cloud complexities and improve stability, scalability, and velocity.

Kubernetes: Your Multi Cloud Strategy

Maintaining standardized application deployments becomes more challenging as your number of applications and the technologies they are based on increase. As environments, operating systems, and dependencies differ, management and operations require more effort and extensive documentation.

In the past, teams tried to get around these difficulties by creating isolated projects in the data center. Each project, including its configurations and requirements were managed independently. This required accurately predicting performance and the number of users before deployment and taking down applications to update operating systems or applications. There were many chances for error.

Kubernetes can provide an alternative to the old method, enabling teams to deploy applications independent of the environment in containers. This eliminates the need to create resource partitions and enables teams to operate infrastructure as a unified whole.

In particular, Kubernetes makes it easier to deploy a multi cloud strategy since it enables you to abstract away service differences. With Kubernetes deployments you can work from a consistent platform and optimize services and applications according to your business needs.

The Compelling Attributes of Multi Cloud Kubernetes

Multi cloud Kubernetes can provide multiple benefits beyond a single cloud deployment. Below are some of the most notable advantages.

Stability

In addition to the built-in scalability, fault tolerance, and auto-healing features of Kubernetes, multi cloud deployments can provide service redundancy. For example, you can mirror applications or split microservices across vendors. This reduces the risk of a vendor-related outage and enables you to create failovers.

#kubernetes #multicloud-strategy #kubernetes-cluster #kubernetes-top-story #kubernetes-cluster-install #kubernetes-explained #kubernetes-infrastructure #cloud

Dock  Koelpin

Dock Koelpin

1603435385

Basic network security implementation for Kubernetes Clusters with NetworkPolicy examples

Welcome to my Kubernetes how-to series, where I intend to breakdown and showcase the how-tos and the gotchas of the Kubernetes configuration.

If you’re here, you are aware that the POD-to-POD communication on the [any] Kubernetes Cluster is available to all namespaces and all PODs, — It’s free for all.

Irrespective if you are using VPC native subnet, or your Kubernetes comes with its own internal IP subnet.

The main limiting of such Pod-to-Pod communications being the end-Container port-configuration itself.

Otherwise, as itis lacking any container-specific header whitelisting, you are able to telnet/netcat to other Pod’s ports without any restrictions or limitations.

This may be permitted for the dev cluster, but unacceptable security stance in any respectable Production Kubernetes Cluster environment.

Image for post

It is worth to note that while Kubernetes cluster does come with the cluster-native networking — IP-aliases which persist on the larger Google Cloud Network and ARE subject to The Cloud Platform Firewall rules, there is little granularity offered to manage the nuances of application-to-application communication given the ephemeral nature of the POD(s) IPs.

The Default option offered and should be pursued in the form of Network Policies at the relevant GKE Cluster level.

#network-policies #application-security #kubernetes-security #kubernetes #firewall

Virgil  Hagenes

Virgil Hagenes

1598779080

How Networks Can Support A Zero Trust Architecture

With more people working from home, companies have started to rely on VPNs to grant secure access to users. However, VPNs aren’t the only way for businesses to guarantee a secure connection for workers.

Network World mentions a protocol known as a zero trust architecture, which only grants users the bare minimum of access to a network. Whatever access a user’s job requires is what the **zero-trust architecture **will allow the user to have.

Zero trust works by verifying every single device’s connection to the network. It uses an identity-management system that only allows specific access to certain parts of the network for particular devices. Authorized users no longer have access to any and all parts of the network. They can only get into the specific locations they need to perform their jobs. Zero-trust is an overarching architecture, but certain elements apply to networks, specifically. This article intends to demystify those elements and show how networks can be used to support zero trust.

The Principle of Least Privilege

Beyond Trust tells us that the principle of least privilege states that access rights for every account, user, or device accessing the network has limited access based on what they need to perform their duties. One way that networking professionals can ensure least-privilege access is via network segmentation. When a device or a user logs into a network, he or she is granted access only to the segment of the system where pertinent data is stored.

Networks can quickly implement this using a simple switching technique. By placing different segments in areas that are unreachable from each other, they limit the incidence of a breach. If a user or device is compromised, their limited access reduces the damage to the overall organization. Any applications or data on the compromised machine is limited to where the user or device has access.

Network segmentation can also be performed physically. Different networks can be located in different locations or separate server points, each with their own dedicated server. Suppose the malicious user is trying to hijack a central server. In that case, this setup ensures that only one of the company’s servers becomes compromised, while the rest of the business’s systems intact and safe.

#cyber-security #cybersecurity #security #network #network-security #internet-security