1653910080
Command line utility to profile compilation time of Swift project.
This tool is developed in working time for Cookpad.
gem install xcprofiler
xcprofiler is tested on latest Ruby 2.3/2.4.
Add -Xfrontend -debug-time-function-bodies
build flags in Build Settings
-> Other Swift Flags
section of your Xcode project.
Build your project
Execute xcprofiler
$ xcprofiler [PRODUCT_NAME or ACTIVITY_LOG_PATH] [options]
xcprofiler
searches the latest build log on your DerivedData directory.
You can also specify the .xcactivitylog
.
$ xcprofiler MyApp
$ xcprofiler ~/Library/Developer/Xcode/DerivedData/MyApp-xxxxxxxxxxx/Logs/Build/0761C73D-3B6C-449A-BE89-6D11DAB748FE.xcactivitylog
Sample output is here
+----------------------+------+---------------------------------------------------------------------------------------------------------------------------------------------------------------+----------+
| File | Line | Method name | Time(ms) |
+----------------------+------+---------------------------------------------------------------------------------------------------------------------------------------------------------------+----------+
| ResultProtocol.swift | 132 | public func ==<T : ResultProtocol where T.Value : Equatable, T.Error : Equatable>(left: T, right: T) -> Bool | 14.2 |
| Result.swift | 66 | get {} | 13.1 |
| Result.swift | 78 | public static func error(_ message: String? = default, function: String = #function, file: String = #file, line: Int = #line) -> NSError | 6.3 |
| Result.swift | 69 | get {} | 2.2 |
| Result.swift | 132 | public func `try`<T>(_ function: String = #function, file: String = #file, line: Int = #line, try: (NSErrorPointer) -> T?) -> Result<T, NSError> | 1.7 |
| Result.swift | 95 | get {} | 1.4 |
| Result.swift | 21 | public init(_ value: T?, failWith: @autoclosure () -> Error) | 0.9 |
| Result.swift | 142 | public func `try`(_ function: String = #function, file: String = #file, line: Int = #line, try: (NSErrorPointer) -> Bool) -> Result<(), NSError> | 0.9 |
| ResultProtocol.swift | 172 | @available(*, unavailable, renamed: "recover(with:)") public func recoverWith(_ result: @autoclosure () -> Self) -> Self | 0.7 |
| Result.swift | 72 | get {} | 0.6 |
| Result.swift | 75 | get {} | 0.6 |
| ResultProtocol.swift | 72 | public func recover(_ value: @autoclosure () -> Value) -> Value | 0.5 |
| ResultProtocol.swift | 111 | public func &&&<L : ResultProtocol, R : ResultProtocol where L.Error == R.Error>(left: L, right: @autoclosure () -> R) -> Result<(L.Value, R.Value), L.Error> | 0.5 |
| ResultProtocol.swift | 144 | public func !=<T : ResultProtocol where T.Value : Equatable, T.Error : Equatable>(left: T, right: T) -> Bool | 0.5 |
| ResultProtocol.swift | 92 | public func tryMap<U>(_ transform: (Value) throws -> U) -> Result<U, Error> | 0.4 |
| Result.swift | 175 | @available(*, unavailable, renamed: "success") public static func Success(_: T) -> Result<T, Error> | 0.3 |
| ResultProtocol.swift | 55 | public func mapError<Error2>(_ transform: (Error) -> Error2) -> Result<Value, Error2> | 0.3 |
| ResultProtocol.swift | 77 | public func recover(with result: @autoclosure () -> Self) -> Self | 0.3 |
| ResultProtocol.swift | 93 | (closure) | 0.3 |
| Result.swift | 31 | public init(attempt f: () throws -> T) | 0.2 |
+----------------------+------+---------------------------------------------------------------------------------------------------------------------------------------------------------------+----------+
option | shorthand | description |
---|---|---|
--limit | -l | Limit for display |
--threshold | Threshold of time to display (ms) | |
--show-invalids | Show invalid location results | |
--order | -o | Sort order (default,time,file) |
--derived-data-path | Root path of DerivedData directory | |
--truncate-at | -t | Truncate the method name with specified length |
--no-unique | Show the duplicated results |
You can use reporters to output tracking logs.
require 'xcprofiler'
profiler = Xcprofiler::Profiler.by_product_name('MyApp')
profiler.reporters = [
Xcprofiler::StandardOutputReporter.new(limit: 20, order: :time),
Xcprofiler::JSONReporter.new(output_path: 'result.json'),
Xcprofiler::BlockReporter.new do |executions|
do_something(executions)
end,
]
profiler.report!
You can also implement your own reporters.
See implementation of built-in reporters for detail.
You can integrate xcprofiler to danger.
https://github.com/giginet/danger-xcprofiler
Download Details:
Author: giginet
Source Code: https://github.com/giginet/xcprofiler
License: MIT license
1593867420
Android Projects with Source Code – Your entry pass into the world of Android
Hello Everyone, welcome to this article, which is going to be really important to all those who’re in dilemma for their projects and the project submissions. This article is also going to help you if you’re an enthusiast looking forward to explore and enhance your Android skills. The reason is that we’re here to provide you the best ideas of Android Project with source code that you can choose as per your choice.
These project ideas are simple suggestions to help you deal with the difficulty of choosing the correct projects. In this article, we’ll see the project ideas from beginners level and later we’ll move on to intermediate to advance.
Before working on real-time projects, it is recommended to create a sample hello world project in android studio and get a flavor of project creation as well as execution: Create your first android project
Android Project: A calculator will be an easy application if you have just learned Android and coding for Java. This Application will simply take the input values and the operation to be performed from the users. After taking the input it’ll return the results to them on the screen. This is a really easy application and doesn’t need use of any particular package.
To make a calculator you’d need Android IDE, Kotlin/Java for coding, and for layout of your application, you’d need XML or JSON. For this, coding would be the same as that in any language, but in the form of an application. Not to forget creating a calculator initially will increase your logical thinking.
Once the user installs the calculator, they’re ready to use it even without the internet. They’ll enter the values, and the application will show them the value after performing the given operations on the entered operands.
Source Code: Simple Calculator Project
Android Project: This is a good project for beginners. A Reminder App can help you set reminders for different events that you have throughout the day. It’ll help you stay updated with all your tasks for the day. It can be useful for all those who are not so good at organizing their plans and forget easily. This would be a simple application just whose task would be just to remind you of something at a particular time.
To make a Reminder App you need to code in Kotlin/Java and design the layout using XML or JSON. For the functionality of the app, you’d need to make use of AlarmManager Class and Notifications in Android.
In this, the user would be able to set reminders and time in the application. Users can schedule reminders that would remind them to drink water again and again throughout the day. Or to remind them of their medications.
Android Project: Another beginner’s level project Idea can be a Quiz Application in android. Here you can provide the users with Quiz on various general knowledge topics. These practices will ensure that you’re able to set the layouts properly and slowly increase your pace of learning the Android application development. In this you’ll learn to use various Layout components at the same time understanding them better.
To make a quiz application you’ll need to code in Java and set layouts using xml or java whichever you prefer. You can also use JSON for the layouts whichever preferable.
In the app, questions would be asked and answers would be shown as multiple choices. The user selects the answer and gets shown on the screen if the answers are correct. In the end the final marks would be shown to the users.
Android Project: Tic-Tac-Toe is a nice game, I guess most of you all are well aware of it. This will be a game for two players. In this android game, users would be putting X and O in the given 9 parts of a box one by one. The first player to arrange X or O in an adjacent line of three wins.
To build this game, you’d need Java and XML for Android Studio. And simply apply the logic on that. This game will have a set of three matches. So, it’ll also have a scoreboard. This scoreboard will show the final result at the end of one complete set.
Upon entering the game they’ll enter their names. And that’s when the game begins. They’ll touch one of the empty boxes present there and get their turn one by one. At the end of the game, there would be a winner declared.
Source Code: Tic Tac Toe Game Project
Android Project: A stopwatch is another simple android project idea that will work the same as a normal handheld timepiece that measures the time elapsed between its activation and deactivation. This application will have three buttons that are: start, stop, and hold.
This application would need to use Java and XML. For this application, we need to set the timer properly as it is initially set to milliseconds, and that should be converted to minutes and then hours properly. The users can use this application and all they’d need to do is, start the stopwatch and then stop it when they are done. They can also pause the timer and continue it again when they like.
Android Project: This is another very simple project idea for you as a beginner. This application as the name suggests will be a To-Do list holding app. It’ll store the users schedules and their upcoming meetings or events. In this application, users will be enabled to write their important notes as well. To make it safe, provide a login page before the user can access it.
So, this app will have a login page, sign-up page, logout system, and the area to write their tasks, events, or important notes. You can build it in android studio using Java and XML at ease. Using XML you can build the user interface as user-friendly as you can. And to store the users’ data, you can use SQLite enabling the users to even delete the data permanently.
Now for users, they will sign up and get access to the write section. Here the users can note down the things and store them permanently. Users can also alter the data or delete them. Finally, they can logout and also, login again and again whenever they like.
Android Project: This app is aimed at the conversion of Roman numbers to their significant decimal number. It’ll help to check the meaning of the roman numbers. Moreover, it will be easy to develop and will help you get your hands on coding and Android.
You need to use Android Studio, Java for coding and XML for interface. The application will take input from the users and convert them to decimal. Once it converts the Roman no. into decimal, it will show the results on the screen.
The users are supposed to just enter the Roman Number and they’ll get the decimal values on the screen. This can be a good android project for final year students.
Android Project: Well, coming to this part that is Virtual Dice or a random no. generator. It is another simple but interesting app for computer science students. The only task that it would need to do would be to generate a number randomly. This can help people who’re often confused between two or more things.
Using a simple random number generator you can actually create something as good as this. All you’d need to do is get you hands-on OnClick listeners. And a good layout would be cherry on the cake.
The user’s task would be to set the range of the numbers and then click on the roll button. And the app will show them a randomly generated number. Isn’t it interesting ? Try soon!
Android Project: This application is very important for you as a beginner as it will let you use your logical thinking and improve your programming skills. This is a scientific calculator that will help the users to do various calculations at ease.
To make this application you’d need to use Android Studio. Here you’d need to use arithmetic logics for the calculations. The user would need to give input to the application that will be in terms of numbers. After that, the user will give the operator as an input. Then the Application will calculate and generate the result on the user screen.
Android Project: An SMS app is another easy but effective idea. It will let you send the SMS to various no. just in the same way as you use the default messaging application in your phone. This project will help you with better understanding of SMSManager in Android.
For this application, you would need to implement Java class SMSManager in Android. For the Layout you can use XML or JSON. Implementing SMSManager into the app is an easy task, so you would love this.
The user would be provided with the facility to text to whichever number they wish also, they’d be able to choose the numbers from the contact list. Another thing would be the Textbox, where they’ll enter their message. Once the message is entered they can happily click on the send button.
#android tutorials #android application final year project #android mini projects #android project for beginners #android project ideas #android project ideas for beginners #android projects #android projects for students #android projects with source code #android topics list #intermediate android projects #real-time android projects
1595547778
Developing a mobile application can often be more challenging than it seems at first glance. Whether you’re a developer, UI designer, project lead or CEO of a mobile-based startup, writing good project briefs prior to development is pivotal. According to Tech Jury, 87% of smartphone users spend time exclusively on mobile apps, with 18-24-year-olds spending 66% of total digital time on mobile apps. Of that, 89% of the time is spent on just 18 apps depending on individual users’ preferences, making proper app planning crucial for success.
Today’s audiences know what they want and don’t want in their mobile apps, encouraging teams to carefully write their project plans before they approach development. But how do you properly write a mobile app development brief without sacrificing your vision and staying within the initial budget? Why should you do so in the first place? Let’s discuss that and more in greater detail.
It’s worth discussing the significance of mobile app project briefs before we tackle the writing process itself. In practice, a project brief is used as a reference tool for developers to remain focused on the client’s deliverables. Approaching the development process without written and approved documentation can lead to drastic, last-minute changes, misunderstanding, as well as a loss of resources and brand reputation.
For example, developing a mobile app that filters restaurants based on food type, such as Happy Cow, means that developers should stay focused on it. Knowing that such and such features, UI elements, and API are necessary will help team members collaborate better in order to meet certain expectations. Whether you develop an app under your brand’s banner or outsource coding and design services to would-be clients, briefs can provide you with several benefits:
Depending on how “open” your project is to the public, you will want to write a detailed section about who the developers are. Elements such as company name, address, project lead, project title, as well as contact information, should be included in this introductory segment. Regardless of whether you build an in-house app or outsource developers to a client, this section is used for easy document storage and access.
#android app #ios app #minimum viable product (mvp) #mobile app development #web development #how do you write a project design #how to write a brief #how to write a project summary #how to write project summary #program brief example #project brief #project brief example #project brief template #project proposal brief #simple project brief template
1666410000
Collection of advice on optimizing compile times of Swift projects.
Swift is constantly improving ❤️. For the time being, though, long compile times persist as a big issue when working on medium-to-large apps. The goal of this project is to gather all there is that can help you shorten your build times.
👷🏻 Maintainer: Arek Holko. Anything missing? Issues and pull requests welcomed!
Incremental Compilation Mode with No Optimization
Until Xcode 10, it was common to enable Whole Module Optimization to speed up Debug builds. It was a workaround that's no longer needed in Xcode 10!
Currently, the recommended setup is to have Incremental
Compilation Mode
set for Debug builds and Whole Module
for Release builds. Also, No Optimization
should be chosen for Optimization Level
setting of Debug builds.
📖 Sources:
Type checking of functions and expressions
Swift build times are slow mostly because of expensive type checking. By default Xcode doesn't show code that's slow to compile. You can instruct it to show slowly compiling functions and expressions, though by adding:
-Xfrontend -warn-long-function-bodies=100
(100
means 100ms here, you should experiment with this value depending on your computer speed and project)-Xfrontend -warn-long-expression-type-checking=100
to Other Swift Flags
in build settings:
Build again and you should now see warnings like these:
Next step is to address code that Swift compiler has problems with. John Sundell and Robert Gummesson are here to help you with that.
📖 Sources:
Slowly compiling files
The previous section described working on an expression- and function-level but it’s often interesting to know compile times of whole files too.
There’s no UI in Xcode for that, though, so you have to build the project from the CLI with correct flags set:
xcodebuild -destination 'platform=iOS Simulator,name=iPhone 8' \
-sdk iphonesimulator -project YourProject.xcodeproj \
-scheme YourScheme -configuration Debug \
clean build \
OTHER_SWIFT_FLAGS="-driver-time-compilation \
-Xfrontend -debug-time-function-bodies \
-Xfrontend -debug-time-compilation" | \
tee profile.log
(Replace -project YourProject.xcodeproj
with -workspace YourProject.xcworkspace
if you use a workspace.)
Then extract the interesting statistics using:
awk '/Driver Compilation Time/,/Total$/ { print }' profile.log | \
grep compile | \
cut -c 55- | \
sed -e 's/^ *//;s/ (.*%) compile / /;s/ [^ ]*Bridging-Header.h$//' | \
sed -e "s|$(pwd)/||" | \
sort -rn | \
tee slowest.log
You’ll end up with slowest.log
file containing list of all files in the project, along with their compile times. Example:
2.7288 ( 0.3%) {compile: Account.o <= Account.swift }
2.7221 ( 0.3%) {compile: MessageTag.o <= MessageTag.swift }
2.7089 ( 0.3%) {compile: EdgeShadowLayer.o <= EdgeShadowLayer.swift }
2.4605 ( 0.3%) {compile: SlideInPresentationAnimator.o <= SlideInPresentationAnimator.swift }
📖 Sources:
Build active architecture only
This setting is a default but you should double check that it’s correct. Your project should build only active architecture in Debug configuration.
📖 Sources:
dSYM generation
By default in new projects, dSYM files aren’t generated at all for Debug builds. However, it’s sometimes useful to have them available when running on a device – to be able to analyze crashes happening without the debugger attached.
Recommended setup:
📖 Sources:
Third-party dependencies
There are two ways you can embed third-party dependencies in your projects:
CocoaPods being the most popular dependency manager for iOS by design leads to longer compile times, as the source code of 3rd-party libraries in most cases gets compiled each time you perform a clean build. In general you shouldn’t have to do that often but in reality, you do (e.g. because of switching branches, Xcode bugs, etc.).
Carthage, even though it’s harder to use, is a better choice if you care about build times. You build external dependencies only when you change something in the dependency list (add a new framework, update a framework to a newer version, etc.). That may take 5 or 15 minutes to complete but you do it a lot less often than building code embedded with CocoaPods. You can even skip those initial minutes using Rome.
📖 Sources:
Modularization
Incremental compilation in Swift isn’t perfect. There are projects where changing one string somewhere causes almost a whole project to get recompiled during an incremental build. It’s something that can be debugged and improved but a good tooling for that isn’t available yet.
To avoid issues like that, you should consider splitting your app into modules. In iOS, these are either: dynamic frameworks or static libraries (support for Swift was added in Xcode 9).
Let’s say your app target depends on an internal framework called DatabaseKit
. The main guarantee of this approach is that when you change something in your app project, DatabaseKit
won’t get recompiled during an incremental build.
📖 Sources:
XIBs
XIBs/storyboards vs. code. 🔥 It’s as hot a topic as they go but let’s not discuss it fully here. What’s interesting is that when you change the contents of a file in Interface Builder, only that file gets compiled (to NIB format). On the other hand, Swift compiler may decide to recompile a big part of your project when you change e.g. a single line in a public method in a UIView
subclass.
📖 Sources:
Xcode Schemes
Let’s say we have a common project setup with 3 targets:
App
AppTests
AppUITests
Working with only one scheme is fine but we can do better. The setup we’ve been using recently consists of three schemes:
Builds only the app on cmd-B. Runs only unit tests. Useful for short iterations, e.g. on a UI code, as only the needed code gets built.
Builds both the app and unit test target. Runs only unit tests. Useful when working on code related to unit tests, because you find about compile errors in tests immediately after building a project, not even having to run them!
This scheme is useful when your UI tests take too long to run them often.
Builds the app and all test targets. Runs all tests. Useful when working on code close to UI which impacts UI tests.
📖 Sources:
Use the new Xcode build system
In Xcode 9 Apple introduced a new build system. To enable it, go to Workspace or Project Settings from the File menu in Xcode. There you can switch build systems to the new build system.
📖 Sources:
Showing build times in Xcode
Finally, to be able to actually know whether your build times are improving, you should enable showing them in Xcode’s UI. To do that, run this from the command line:
$ defaults write com.apple.dt.Xcode ShowBuildOperationDuration -bool YES
Once done, after building a project (cmd-B) you should see:
I recommend comparing build times under same conditions each time, e.g.
$ rm -rf ~/Library/Developer/Xcode/DerivedData
).Alternatively, you can time builds from the command line:
$ time xcodebuild other params
📖 Sources:
Author: Fastred
Source Code: https://github.com/fastred/Optimizing-Swift-Build-Times
License: MIT license
1600430400
Swift is a fast and efficient general-purpose programming language that provides real-time feedback and can be seamlessly incorporated into existing Objective-C code. This is why developers are able to write safer, more reliable code while saving time. It aims to be the best language that can be used for various purposes ranging from systems programming to mobile as well as desktop apps and scaling up to cloud services.
Below here, we list down the 10 best online resources to learn Swift language.
(The list is in no particular order)
#developers corner #free online resources to learn swift language #learn swift #learn swift free #learn swift online free #resources to learn swift #swift language #swift programming
1609999986
A thoroughly researched list of top Swift developers with ratings & reviews to help find the best Swift development companies around the world.
#swift development service providers #best swift development companies #top swift development companies #swift development solutions #top swift developers #swift