3 Most Important Steps to Running Supervisord on Docker Ubuntu 18.04

Have you ever wanted to keep a docker container running in the background of your host machine, without the need for a bash entry-point?

Let’s get started installing ubuntu and configuring our instance.

Your Ubuntu 18.04 docker image will require a one-time configuration of Supervisord to get started with process monitoring.

Supervisord — A Process Control System, which will run and manage your command-based programs from a simple configuration file setup.

Install Ubuntu

Let’s first create a docker file to help install ubuntu from DockerHub.

FROM ubuntu:18.04
	RUN apt-get update && \
	    apt-get install -y supervisor && \
	    apt-get clean

	RUN mkdir -p /var/log/supervisor
	COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf

	EXPOSE 8089

	CMD ["/usr/bin/supervisord"]

Supervisord

To create a long-running process ID on start-up, Supervisord needs to be installed on Ubuntu. The docker file will include a configuration file for Supervisord to read from the directory /etc/supervisor/conf.d/supervisord.conf

[supervisord]
	logfile=/var/log/supervisor/supervisord.log
	pidfile=/var/run/supervisord.pid
	nodaemon=true

You will be able to access a running docker container without the need for a _bash file _script running on start-up.

An example of a_ bash file_ script in docker would utilize an entry point of ENTRYPOINT ["/bin/bash", "/bootstrap.sh"]

This long-running process started in the background is created with the help of the command line tool “Supervisorctl”. This tool connects to a UNIX or TCP socket and initializes a “program” or “service” on the host machine.

Let’s look at the output log for clarity.

#docker-container #docker-run #supervisord #ubuntu

What is GEEK

Buddha Community

3 Most Important Steps to Running Supervisord on Docker Ubuntu 18.04
Veronica  Roob

Veronica Roob

1653475560

A Pure PHP Implementation Of The MessagePack Serialization Format

msgpack.php

A pure PHP implementation of the MessagePack serialization format.

Features

Installation

The recommended way to install the library is through Composer:

composer require rybakit/msgpack

Usage

Packing

To pack values you can either use an instance of a Packer:

$packer = new Packer();
$packed = $packer->pack($value);

or call a static method on the MessagePack class:

$packed = MessagePack::pack($value);

In the examples above, the method pack automatically packs a value depending on its type. However, not all PHP types can be uniquely translated to MessagePack types. For example, the MessagePack format defines map and array types, which are represented by a single array type in PHP. By default, the packer will pack a PHP array as a MessagePack array if it has sequential numeric keys, starting from 0 and as a MessagePack map otherwise:

$mpArr1 = $packer->pack([1, 2]);               // MP array [1, 2]
$mpArr2 = $packer->pack([0 => 1, 1 => 2]);     // MP array [1, 2]
$mpMap1 = $packer->pack([0 => 1, 2 => 3]);     // MP map {0: 1, 2: 3}
$mpMap2 = $packer->pack([1 => 2, 2 => 3]);     // MP map {1: 2, 2: 3}
$mpMap3 = $packer->pack(['a' => 1, 'b' => 2]); // MP map {a: 1, b: 2}

However, sometimes you need to pack a sequential array as a MessagePack map. To do this, use the packMap method:

$mpMap = $packer->packMap([1, 2]); // {0: 1, 1: 2}

Here is a list of type-specific packing methods:

$packer->packNil();           // MP nil
$packer->packBool(true);      // MP bool
$packer->packInt(42);         // MP int
$packer->packFloat(M_PI);     // MP float (32 or 64)
$packer->packFloat32(M_PI);   // MP float 32
$packer->packFloat64(M_PI);   // MP float 64
$packer->packStr('foo');      // MP str
$packer->packBin("\x80");     // MP bin
$packer->packArray([1, 2]);   // MP array
$packer->packMap(['a' => 1]); // MP map
$packer->packExt(1, "\xaa");  // MP ext

Check the "Custom types" section below on how to pack custom types.

Packing options

The Packer object supports a number of bitmask-based options for fine-tuning the packing process (defaults are in bold):

NameDescription
FORCE_STRForces PHP strings to be packed as MessagePack UTF-8 strings
FORCE_BINForces PHP strings to be packed as MessagePack binary data
DETECT_STR_BINDetects MessagePack str/bin type automatically
  
FORCE_ARRForces PHP arrays to be packed as MessagePack arrays
FORCE_MAPForces PHP arrays to be packed as MessagePack maps
DETECT_ARR_MAPDetects MessagePack array/map type automatically
  
FORCE_FLOAT32Forces PHP floats to be packed as 32-bits MessagePack floats
FORCE_FLOAT64Forces PHP floats to be packed as 64-bits MessagePack floats

The type detection mode (DETECT_STR_BIN/DETECT_ARR_MAP) adds some overhead which can be noticed when you pack large (16- and 32-bit) arrays or strings. However, if you know the value type in advance (for example, you only work with UTF-8 strings or/and associative arrays), you can eliminate this overhead by forcing the packer to use the appropriate type, which will save it from running the auto-detection routine. Another option is to explicitly specify the value type. The library provides 2 auxiliary classes for this, Map and Bin. Check the "Custom types" section below for details.

Examples:

// detect str/bin type and pack PHP 64-bit floats (doubles) to MP 32-bit floats
$packer = new Packer(PackOptions::DETECT_STR_BIN | PackOptions::FORCE_FLOAT32);

// these will throw MessagePack\Exception\InvalidOptionException
$packer = new Packer(PackOptions::FORCE_STR | PackOptions::FORCE_BIN);
$packer = new Packer(PackOptions::FORCE_FLOAT32 | PackOptions::FORCE_FLOAT64);

Unpacking

To unpack data you can either use an instance of a BufferUnpacker:

$unpacker = new BufferUnpacker();

$unpacker->reset($packed);
$value = $unpacker->unpack();

or call a static method on the MessagePack class:

$value = MessagePack::unpack($packed);

If the packed data is received in chunks (e.g. when reading from a stream), use the tryUnpack method, which attempts to unpack data and returns an array of unpacked messages (if any) instead of throwing an InsufficientDataException:

while ($chunk = ...) {
    $unpacker->append($chunk);
    if ($messages = $unpacker->tryUnpack()) {
        return $messages;
    }
}

If you want to unpack from a specific position in a buffer, use seek:

$unpacker->seek(42); // set position equal to 42 bytes
$unpacker->seek(-8); // set position to 8 bytes before the end of the buffer

To skip bytes from the current position, use skip:

$unpacker->skip(10); // set position to 10 bytes ahead of the current position

To get the number of remaining (unread) bytes in the buffer:

$unreadBytesCount = $unpacker->getRemainingCount();

To check whether the buffer has unread data:

$hasUnreadBytes = $unpacker->hasRemaining();

If needed, you can remove already read data from the buffer by calling:

$releasedBytesCount = $unpacker->release();

With the read method you can read raw (packed) data:

$packedData = $unpacker->read(2); // read 2 bytes

Besides the above methods BufferUnpacker provides type-specific unpacking methods, namely:

$unpacker->unpackNil();   // PHP null
$unpacker->unpackBool();  // PHP bool
$unpacker->unpackInt();   // PHP int
$unpacker->unpackFloat(); // PHP float
$unpacker->unpackStr();   // PHP UTF-8 string
$unpacker->unpackBin();   // PHP binary string
$unpacker->unpackArray(); // PHP sequential array
$unpacker->unpackMap();   // PHP associative array
$unpacker->unpackExt();   // PHP MessagePack\Type\Ext object

Unpacking options

The BufferUnpacker object supports a number of bitmask-based options for fine-tuning the unpacking process (defaults are in bold):

NameDescription
BIGINT_AS_STRConverts overflowed integers to strings [1]
BIGINT_AS_GMPConverts overflowed integers to GMP objects [2]
BIGINT_AS_DECConverts overflowed integers to Decimal\Decimal objects [3]

1. The binary MessagePack format has unsigned 64-bit as its largest integer data type, but PHP does not support such integers, which means that an overflow can occur during unpacking.

2. Make sure the GMP extension is enabled.

3. Make sure the Decimal extension is enabled.

Examples:

$packedUint64 = "\xcf"."\xff\xff\xff\xff"."\xff\xff\xff\xff";

$unpacker = new BufferUnpacker($packedUint64);
var_dump($unpacker->unpack()); // string(20) "18446744073709551615"

$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_GMP);
var_dump($unpacker->unpack()); // object(GMP) {...}

$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_DEC);
var_dump($unpacker->unpack()); // object(Decimal\Decimal) {...}

Custom types

In addition to the basic types, the library provides functionality to serialize and deserialize arbitrary types. This can be done in several ways, depending on your use case. Let's take a look at them.

Type objects

If you need to serialize an instance of one of your classes into one of the basic MessagePack types, the best way to do this is to implement the CanBePacked interface in the class. A good example of such a class is the Map type class that comes with the library. This type is useful when you want to explicitly specify that a given PHP array should be packed as a MessagePack map without triggering an automatic type detection routine:

$packer = new Packer();

$packedMap = $packer->pack(new Map([1, 2, 3]));
$packedArray = $packer->pack([1, 2, 3]);

More type examples can be found in the src/Type directory.

Type transformers

As with type objects, type transformers are only responsible for serializing values. They should be used when you need to serialize a value that does not implement the CanBePacked interface. Examples of such values could be instances of built-in or third-party classes that you don't own, or non-objects such as resources.

A transformer class must implement the CanPack interface. To use a transformer, it must first be registered in the packer. Here is an example of how to serialize PHP streams into the MessagePack bin format type using one of the supplied transformers, StreamTransformer:

$packer = new Packer(null, [new StreamTransformer()]);

$packedBin = $packer->pack(fopen('/path/to/file', 'r+'));

More type transformer examples can be found in the src/TypeTransformer directory.

Extensions

In contrast to the cases described above, extensions are intended to handle extension types and are responsible for both serialization and deserialization of values (types).

An extension class must implement the Extension interface. To use an extension, it must first be registered in the packer and the unpacker.

The MessagePack specification divides extension types into two groups: predefined and application-specific. Currently, there is only one predefined type in the specification, Timestamp.

Timestamp

The Timestamp extension type is a predefined type. Support for this type in the library is done through the TimestampExtension class. This class is responsible for handling Timestamp objects, which represent the number of seconds and optional adjustment in nanoseconds:

$timestampExtension = new TimestampExtension();

$packer = new Packer();
$packer = $packer->extendWith($timestampExtension);

$unpacker = new BufferUnpacker();
$unpacker = $unpacker->extendWith($timestampExtension);

$packedTimestamp = $packer->pack(Timestamp::now());
$timestamp = $unpacker->reset($packedTimestamp)->unpack();

$seconds = $timestamp->getSeconds();
$nanoseconds = $timestamp->getNanoseconds();

When using the MessagePack class, the Timestamp extension is already registered:

$packedTimestamp = MessagePack::pack(Timestamp::now());
$timestamp = MessagePack::unpack($packedTimestamp);

Application-specific extensions

In addition, the format can be extended with your own types. For example, to make the built-in PHP DateTime objects first-class citizens in your code, you can create a corresponding extension, as shown in the example. Please note, that custom extensions have to be registered with a unique extension ID (an integer from 0 to 127).

More extension examples can be found in the examples/MessagePack directory.

To learn more about how extension types can be useful, check out this article.

Exceptions

If an error occurs during packing/unpacking, a PackingFailedException or an UnpackingFailedException will be thrown, respectively. In addition, an InsufficientDataException can be thrown during unpacking.

An InvalidOptionException will be thrown in case an invalid option (or a combination of mutually exclusive options) is used.

Tests

Run tests as follows:

vendor/bin/phpunit

Also, if you already have Docker installed, you can run the tests in a docker container. First, create a container:

./dockerfile.sh | docker build -t msgpack -

The command above will create a container named msgpack with PHP 8.1 runtime. You may change the default runtime by defining the PHP_IMAGE environment variable:

PHP_IMAGE='php:8.0-cli' ./dockerfile.sh | docker build -t msgpack -

See a list of various images here.

Then run the unit tests:

docker run --rm -v $PWD:/msgpack -w /msgpack msgpack

Fuzzing

To ensure that the unpacking works correctly with malformed/semi-malformed data, you can use a testing technique called Fuzzing. The library ships with a help file (target) for PHP-Fuzzer and can be used as follows:

php-fuzzer fuzz tests/fuzz_buffer_unpacker.php

Performance

To check performance, run:

php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

=============================================
Test/Target            Packer  BufferUnpacker
---------------------------------------------
nil .................. 0.0030 ........ 0.0139
false ................ 0.0037 ........ 0.0144
true ................. 0.0040 ........ 0.0137
7-bit uint #1 ........ 0.0052 ........ 0.0120
7-bit uint #2 ........ 0.0059 ........ 0.0114
7-bit uint #3 ........ 0.0061 ........ 0.0119
5-bit sint #1 ........ 0.0067 ........ 0.0126
5-bit sint #2 ........ 0.0064 ........ 0.0132
5-bit sint #3 ........ 0.0066 ........ 0.0135
8-bit uint #1 ........ 0.0078 ........ 0.0200
8-bit uint #2 ........ 0.0077 ........ 0.0212
8-bit uint #3 ........ 0.0086 ........ 0.0203
16-bit uint #1 ....... 0.0111 ........ 0.0271
16-bit uint #2 ....... 0.0115 ........ 0.0260
16-bit uint #3 ....... 0.0103 ........ 0.0273
32-bit uint #1 ....... 0.0116 ........ 0.0326
32-bit uint #2 ....... 0.0118 ........ 0.0332
32-bit uint #3 ....... 0.0127 ........ 0.0325
64-bit uint #1 ....... 0.0140 ........ 0.0277
64-bit uint #2 ....... 0.0134 ........ 0.0294
64-bit uint #3 ....... 0.0134 ........ 0.0281
8-bit int #1 ......... 0.0086 ........ 0.0241
8-bit int #2 ......... 0.0089 ........ 0.0225
8-bit int #3 ......... 0.0085 ........ 0.0229
16-bit int #1 ........ 0.0118 ........ 0.0280
16-bit int #2 ........ 0.0121 ........ 0.0270
16-bit int #3 ........ 0.0109 ........ 0.0274
32-bit int #1 ........ 0.0128 ........ 0.0346
32-bit int #2 ........ 0.0118 ........ 0.0339
32-bit int #3 ........ 0.0135 ........ 0.0368
64-bit int #1 ........ 0.0138 ........ 0.0276
64-bit int #2 ........ 0.0132 ........ 0.0286
64-bit int #3 ........ 0.0137 ........ 0.0274
64-bit int #4 ........ 0.0180 ........ 0.0285
64-bit float #1 ...... 0.0134 ........ 0.0284
64-bit float #2 ...... 0.0125 ........ 0.0275
64-bit float #3 ...... 0.0126 ........ 0.0283
fix string #1 ........ 0.0035 ........ 0.0133
fix string #2 ........ 0.0094 ........ 0.0216
fix string #3 ........ 0.0094 ........ 0.0222
fix string #4 ........ 0.0091 ........ 0.0241
8-bit string #1 ...... 0.0122 ........ 0.0301
8-bit string #2 ...... 0.0118 ........ 0.0304
8-bit string #3 ...... 0.0119 ........ 0.0315
16-bit string #1 ..... 0.0150 ........ 0.0388
16-bit string #2 ..... 0.1545 ........ 0.1665
32-bit string ........ 0.1570 ........ 0.1756
wide char string #1 .. 0.0091 ........ 0.0236
wide char string #2 .. 0.0122 ........ 0.0313
8-bit binary #1 ...... 0.0100 ........ 0.0302
8-bit binary #2 ...... 0.0123 ........ 0.0324
8-bit binary #3 ...... 0.0126 ........ 0.0327
16-bit binary ........ 0.0168 ........ 0.0372
32-bit binary ........ 0.1588 ........ 0.1754
fix array #1 ......... 0.0042 ........ 0.0131
fix array #2 ......... 0.0294 ........ 0.0367
fix array #3 ......... 0.0412 ........ 0.0472
16-bit array #1 ...... 0.1378 ........ 0.1596
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.1865 ........ 0.2283
fix map #1 ........... 0.0725 ........ 0.1048
fix map #2 ........... 0.0319 ........ 0.0405
fix map #3 ........... 0.0356 ........ 0.0665
fix map #4 ........... 0.0465 ........ 0.0497
16-bit map #1 ........ 0.2540 ........ 0.3028
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.2372 ........ 0.2710
fixext 1 ............. 0.0283 ........ 0.0358
fixext 2 ............. 0.0291 ........ 0.0371
fixext 4 ............. 0.0302 ........ 0.0355
fixext 8 ............. 0.0288 ........ 0.0384
fixext 16 ............ 0.0293 ........ 0.0359
8-bit ext ............ 0.0302 ........ 0.0439
16-bit ext ........... 0.0334 ........ 0.0499
32-bit ext ........... 0.1845 ........ 0.1888
32-bit timestamp #1 .. 0.0337 ........ 0.0547
32-bit timestamp #2 .. 0.0335 ........ 0.0560
64-bit timestamp #1 .. 0.0371 ........ 0.0575
64-bit timestamp #2 .. 0.0374 ........ 0.0542
64-bit timestamp #3 .. 0.0356 ........ 0.0533
96-bit timestamp #1 .. 0.0362 ........ 0.0699
96-bit timestamp #2 .. 0.0381 ........ 0.0701
96-bit timestamp #3 .. 0.0367 ........ 0.0687
=============================================
Total                  2.7618          4.0820
Skipped                     4               4
Failed                      0               0
Ignored                     0               0

With JIT:

php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

=============================================
Test/Target            Packer  BufferUnpacker
---------------------------------------------
nil .................. 0.0005 ........ 0.0054
false ................ 0.0004 ........ 0.0059
true ................. 0.0004 ........ 0.0059
7-bit uint #1 ........ 0.0010 ........ 0.0047
7-bit uint #2 ........ 0.0010 ........ 0.0046
7-bit uint #3 ........ 0.0010 ........ 0.0046
5-bit sint #1 ........ 0.0025 ........ 0.0046
5-bit sint #2 ........ 0.0023 ........ 0.0046
5-bit sint #3 ........ 0.0024 ........ 0.0045
8-bit uint #1 ........ 0.0043 ........ 0.0081
8-bit uint #2 ........ 0.0043 ........ 0.0079
8-bit uint #3 ........ 0.0041 ........ 0.0080
16-bit uint #1 ....... 0.0064 ........ 0.0095
16-bit uint #2 ....... 0.0064 ........ 0.0091
16-bit uint #3 ....... 0.0064 ........ 0.0094
32-bit uint #1 ....... 0.0085 ........ 0.0114
32-bit uint #2 ....... 0.0077 ........ 0.0122
32-bit uint #3 ....... 0.0077 ........ 0.0120
64-bit uint #1 ....... 0.0085 ........ 0.0159
64-bit uint #2 ....... 0.0086 ........ 0.0157
64-bit uint #3 ....... 0.0086 ........ 0.0158
8-bit int #1 ......... 0.0042 ........ 0.0080
8-bit int #2 ......... 0.0042 ........ 0.0080
8-bit int #3 ......... 0.0042 ........ 0.0081
16-bit int #1 ........ 0.0065 ........ 0.0095
16-bit int #2 ........ 0.0065 ........ 0.0090
16-bit int #3 ........ 0.0056 ........ 0.0085
32-bit int #1 ........ 0.0067 ........ 0.0107
32-bit int #2 ........ 0.0066 ........ 0.0106
32-bit int #3 ........ 0.0063 ........ 0.0104
64-bit int #1 ........ 0.0072 ........ 0.0162
64-bit int #2 ........ 0.0073 ........ 0.0174
64-bit int #3 ........ 0.0072 ........ 0.0164
64-bit int #4 ........ 0.0077 ........ 0.0161
64-bit float #1 ...... 0.0053 ........ 0.0135
64-bit float #2 ...... 0.0053 ........ 0.0135
64-bit float #3 ...... 0.0052 ........ 0.0135
fix string #1 ....... -0.0002 ........ 0.0044
fix string #2 ........ 0.0035 ........ 0.0067
fix string #3 ........ 0.0035 ........ 0.0077
fix string #4 ........ 0.0033 ........ 0.0078
8-bit string #1 ...... 0.0059 ........ 0.0110
8-bit string #2 ...... 0.0063 ........ 0.0121
8-bit string #3 ...... 0.0064 ........ 0.0124
16-bit string #1 ..... 0.0099 ........ 0.0146
16-bit string #2 ..... 0.1522 ........ 0.1474
32-bit string ........ 0.1511 ........ 0.1483
wide char string #1 .. 0.0039 ........ 0.0084
wide char string #2 .. 0.0073 ........ 0.0123
8-bit binary #1 ...... 0.0040 ........ 0.0112
8-bit binary #2 ...... 0.0075 ........ 0.0123
8-bit binary #3 ...... 0.0077 ........ 0.0129
16-bit binary ........ 0.0096 ........ 0.0145
32-bit binary ........ 0.1535 ........ 0.1479
fix array #1 ......... 0.0008 ........ 0.0061
fix array #2 ......... 0.0121 ........ 0.0165
fix array #3 ......... 0.0193 ........ 0.0222
16-bit array #1 ...... 0.0607 ........ 0.0479
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.0749 ........ 0.0824
fix map #1 ........... 0.0329 ........ 0.0431
fix map #2 ........... 0.0161 ........ 0.0189
fix map #3 ........... 0.0205 ........ 0.0262
fix map #4 ........... 0.0252 ........ 0.0205
16-bit map #1 ........ 0.1016 ........ 0.0927
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.1096 ........ 0.1030
fixext 1 ............. 0.0157 ........ 0.0161
fixext 2 ............. 0.0175 ........ 0.0183
fixext 4 ............. 0.0156 ........ 0.0185
fixext 8 ............. 0.0163 ........ 0.0184
fixext 16 ............ 0.0164 ........ 0.0182
8-bit ext ............ 0.0158 ........ 0.0207
16-bit ext ........... 0.0203 ........ 0.0219
32-bit ext ........... 0.1614 ........ 0.1539
32-bit timestamp #1 .. 0.0195 ........ 0.0249
32-bit timestamp #2 .. 0.0188 ........ 0.0260
64-bit timestamp #1 .. 0.0207 ........ 0.0281
64-bit timestamp #2 .. 0.0212 ........ 0.0291
64-bit timestamp #3 .. 0.0207 ........ 0.0295
96-bit timestamp #1 .. 0.0222 ........ 0.0358
96-bit timestamp #2 .. 0.0228 ........ 0.0353
96-bit timestamp #3 .. 0.0210 ........ 0.0319
=============================================
Total                  1.6432          1.9674
Skipped                     4               4
Failed                      0               0
Ignored                     0               0

You may change default benchmark settings by defining the following environment variables:

NameDefault
MP_BENCH_TARGETSpure_p,pure_u, see a list of available targets
MP_BENCH_ITERATIONS100_000
MP_BENCH_DURATIONnot set
MP_BENCH_ROUNDS3
MP_BENCH_TESTS-@slow, see a list of available tests

For example:

export MP_BENCH_TARGETS=pure_p
export MP_BENCH_ITERATIONS=1000000
export MP_BENCH_ROUNDS=5
# a comma separated list of test names
export MP_BENCH_TESTS='complex array, complex map'
# or a group name
# export MP_BENCH_TESTS='-@slow' // @pecl_comp
# or a regexp
# export MP_BENCH_TESTS='/complex (array|map)/'

Another example, benchmarking both the library and the PECL extension:

MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

===========================================================================
Test/Target            Packer  BufferUnpacker  msgpack_pack  msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0031 ........ 0.0141 ...... 0.0055 ........ 0.0064
false ................ 0.0039 ........ 0.0154 ...... 0.0056 ........ 0.0053
true ................. 0.0038 ........ 0.0139 ...... 0.0056 ........ 0.0044
7-bit uint #1 ........ 0.0061 ........ 0.0110 ...... 0.0059 ........ 0.0046
7-bit uint #2 ........ 0.0065 ........ 0.0119 ...... 0.0042 ........ 0.0029
7-bit uint #3 ........ 0.0054 ........ 0.0117 ...... 0.0045 ........ 0.0025
5-bit sint #1 ........ 0.0047 ........ 0.0103 ...... 0.0038 ........ 0.0022
5-bit sint #2 ........ 0.0048 ........ 0.0117 ...... 0.0038 ........ 0.0022
5-bit sint #3 ........ 0.0046 ........ 0.0102 ...... 0.0038 ........ 0.0023
8-bit uint #1 ........ 0.0063 ........ 0.0174 ...... 0.0039 ........ 0.0031
8-bit uint #2 ........ 0.0063 ........ 0.0167 ...... 0.0040 ........ 0.0029
8-bit uint #3 ........ 0.0063 ........ 0.0168 ...... 0.0039 ........ 0.0030
16-bit uint #1 ....... 0.0092 ........ 0.0222 ...... 0.0049 ........ 0.0030
16-bit uint #2 ....... 0.0096 ........ 0.0227 ...... 0.0042 ........ 0.0046
16-bit uint #3 ....... 0.0123 ........ 0.0274 ...... 0.0059 ........ 0.0051
32-bit uint #1 ....... 0.0136 ........ 0.0331 ...... 0.0060 ........ 0.0048
32-bit uint #2 ....... 0.0130 ........ 0.0336 ...... 0.0070 ........ 0.0048
32-bit uint #3 ....... 0.0127 ........ 0.0329 ...... 0.0051 ........ 0.0048
64-bit uint #1 ....... 0.0126 ........ 0.0268 ...... 0.0055 ........ 0.0049
64-bit uint #2 ....... 0.0135 ........ 0.0281 ...... 0.0052 ........ 0.0046
64-bit uint #3 ....... 0.0131 ........ 0.0274 ...... 0.0069 ........ 0.0044
8-bit int #1 ......... 0.0077 ........ 0.0236 ...... 0.0058 ........ 0.0044
8-bit int #2 ......... 0.0087 ........ 0.0244 ...... 0.0058 ........ 0.0048
8-bit int #3 ......... 0.0084 ........ 0.0241 ...... 0.0055 ........ 0.0049
16-bit int #1 ........ 0.0112 ........ 0.0271 ...... 0.0048 ........ 0.0045
16-bit int #2 ........ 0.0124 ........ 0.0292 ...... 0.0057 ........ 0.0049
16-bit int #3 ........ 0.0118 ........ 0.0270 ...... 0.0058 ........ 0.0050
32-bit int #1 ........ 0.0137 ........ 0.0366 ...... 0.0058 ........ 0.0051
32-bit int #2 ........ 0.0133 ........ 0.0366 ...... 0.0056 ........ 0.0049
32-bit int #3 ........ 0.0129 ........ 0.0350 ...... 0.0052 ........ 0.0048
64-bit int #1 ........ 0.0145 ........ 0.0254 ...... 0.0034 ........ 0.0025
64-bit int #2 ........ 0.0097 ........ 0.0214 ...... 0.0034 ........ 0.0025
64-bit int #3 ........ 0.0096 ........ 0.0287 ...... 0.0059 ........ 0.0050
64-bit int #4 ........ 0.0143 ........ 0.0277 ...... 0.0059 ........ 0.0046
64-bit float #1 ...... 0.0134 ........ 0.0281 ...... 0.0057 ........ 0.0052
64-bit float #2 ...... 0.0141 ........ 0.0281 ...... 0.0057 ........ 0.0050
64-bit float #3 ...... 0.0144 ........ 0.0282 ...... 0.0057 ........ 0.0050
fix string #1 ........ 0.0036 ........ 0.0143 ...... 0.0066 ........ 0.0053
fix string #2 ........ 0.0107 ........ 0.0222 ...... 0.0065 ........ 0.0068
fix string #3 ........ 0.0116 ........ 0.0245 ...... 0.0063 ........ 0.0069
fix string #4 ........ 0.0105 ........ 0.0253 ...... 0.0083 ........ 0.0077
8-bit string #1 ...... 0.0126 ........ 0.0318 ...... 0.0075 ........ 0.0088
8-bit string #2 ...... 0.0121 ........ 0.0295 ...... 0.0076 ........ 0.0086
8-bit string #3 ...... 0.0125 ........ 0.0293 ...... 0.0130 ........ 0.0093
16-bit string #1 ..... 0.0159 ........ 0.0368 ...... 0.0117 ........ 0.0086
16-bit string #2 ..... 0.1547 ........ 0.1686 ...... 0.1516 ........ 0.1373
32-bit string ........ 0.1558 ........ 0.1729 ...... 0.1511 ........ 0.1396
wide char string #1 .. 0.0098 ........ 0.0237 ...... 0.0066 ........ 0.0065
wide char string #2 .. 0.0128 ........ 0.0291 ...... 0.0061 ........ 0.0082
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0040 ........ 0.0129 ...... 0.0120 ........ 0.0058
fix array #2 ......... 0.0279 ........ 0.0390 ...... 0.0143 ........ 0.0165
fix array #3 ......... 0.0415 ........ 0.0463 ...... 0.0162 ........ 0.0187
16-bit array #1 ...... 0.1349 ........ 0.1628 ...... 0.0334 ........ 0.0341
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0345 ........ 0.0391 ...... 0.0143 ........ 0.0168
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0459 ........ 0.0473 ...... 0.0151 ........ 0.0163
16-bit map #1 ........ 0.2518 ........ 0.2962 ...... 0.0400 ........ 0.0490
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.2380 ........ 0.2682 ...... 0.0545 ........ 0.0579
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total                  1.5625          2.3866        0.7735          0.7243
Skipped                     4               4             4               4
Failed                      0               0            24              17
Ignored                    24              24             0               7

With JIT:

MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

===========================================================================
Test/Target            Packer  BufferUnpacker  msgpack_pack  msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0001 ........ 0.0052 ...... 0.0053 ........ 0.0042
false ................ 0.0007 ........ 0.0060 ...... 0.0057 ........ 0.0043
true ................. 0.0008 ........ 0.0060 ...... 0.0056 ........ 0.0041
7-bit uint #1 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0041
7-bit uint #2 ........ 0.0021 ........ 0.0043 ...... 0.0062 ........ 0.0041
7-bit uint #3 ........ 0.0022 ........ 0.0044 ...... 0.0061 ........ 0.0040
5-bit sint #1 ........ 0.0030 ........ 0.0048 ...... 0.0062 ........ 0.0040
5-bit sint #2 ........ 0.0032 ........ 0.0046 ...... 0.0062 ........ 0.0040
5-bit sint #3 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0040
8-bit uint #1 ........ 0.0054 ........ 0.0079 ...... 0.0062 ........ 0.0050
8-bit uint #2 ........ 0.0051 ........ 0.0079 ...... 0.0064 ........ 0.0044
8-bit uint #3 ........ 0.0051 ........ 0.0082 ...... 0.0062 ........ 0.0044
16-bit uint #1 ....... 0.0077 ........ 0.0094 ...... 0.0065 ........ 0.0045
16-bit uint #2 ....... 0.0077 ........ 0.0094 ...... 0.0063 ........ 0.0045
16-bit uint #3 ....... 0.0077 ........ 0.0095 ...... 0.0064 ........ 0.0047
32-bit uint #1 ....... 0.0088 ........ 0.0119 ...... 0.0063 ........ 0.0043
32-bit uint #2 ....... 0.0089 ........ 0.0117 ...... 0.0062 ........ 0.0039
32-bit uint #3 ....... 0.0089 ........ 0.0118 ...... 0.0063 ........ 0.0044
64-bit uint #1 ....... 0.0097 ........ 0.0155 ...... 0.0063 ........ 0.0045
64-bit uint #2 ....... 0.0095 ........ 0.0153 ...... 0.0061 ........ 0.0045
64-bit uint #3 ....... 0.0096 ........ 0.0156 ...... 0.0063 ........ 0.0047
8-bit int #1 ......... 0.0053 ........ 0.0083 ...... 0.0062 ........ 0.0044
8-bit int #2 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0044
8-bit int #3 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0043
16-bit int #1 ........ 0.0089 ........ 0.0097 ...... 0.0069 ........ 0.0046
16-bit int #2 ........ 0.0075 ........ 0.0093 ...... 0.0063 ........ 0.0043
16-bit int #3 ........ 0.0075 ........ 0.0094 ...... 0.0062 ........ 0.0046
32-bit int #1 ........ 0.0086 ........ 0.0122 ...... 0.0063 ........ 0.0044
32-bit int #2 ........ 0.0087 ........ 0.0120 ...... 0.0066 ........ 0.0046
32-bit int #3 ........ 0.0086 ........ 0.0121 ...... 0.0060 ........ 0.0044
64-bit int #1 ........ 0.0096 ........ 0.0149 ...... 0.0060 ........ 0.0045
64-bit int #2 ........ 0.0096 ........ 0.0157 ...... 0.0062 ........ 0.0044
64-bit int #3 ........ 0.0096 ........ 0.0160 ...... 0.0063 ........ 0.0046
64-bit int #4 ........ 0.0097 ........ 0.0157 ...... 0.0061 ........ 0.0044
64-bit float #1 ...... 0.0079 ........ 0.0153 ...... 0.0056 ........ 0.0044
64-bit float #2 ...... 0.0079 ........ 0.0152 ...... 0.0057 ........ 0.0045
64-bit float #3 ...... 0.0079 ........ 0.0155 ...... 0.0057 ........ 0.0044
fix string #1 ........ 0.0010 ........ 0.0045 ...... 0.0071 ........ 0.0044
fix string #2 ........ 0.0048 ........ 0.0075 ...... 0.0070 ........ 0.0060
fix string #3 ........ 0.0048 ........ 0.0086 ...... 0.0068 ........ 0.0060
fix string #4 ........ 0.0050 ........ 0.0088 ...... 0.0070 ........ 0.0059
8-bit string #1 ...... 0.0081 ........ 0.0129 ...... 0.0069 ........ 0.0062
8-bit string #2 ...... 0.0086 ........ 0.0128 ...... 0.0069 ........ 0.0065
8-bit string #3 ...... 0.0086 ........ 0.0126 ...... 0.0115 ........ 0.0065
16-bit string #1 ..... 0.0105 ........ 0.0137 ...... 0.0128 ........ 0.0068
16-bit string #2 ..... 0.1510 ........ 0.1486 ...... 0.1526 ........ 0.1391
32-bit string ........ 0.1517 ........ 0.1475 ...... 0.1504 ........ 0.1370
wide char string #1 .. 0.0044 ........ 0.0085 ...... 0.0067 ........ 0.0057
wide char string #2 .. 0.0081 ........ 0.0125 ...... 0.0069 ........ 0.0063
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0014 ........ 0.0059 ...... 0.0132 ........ 0.0055
fix array #2 ......... 0.0146 ........ 0.0156 ...... 0.0155 ........ 0.0148
fix array #3 ......... 0.0211 ........ 0.0229 ...... 0.0179 ........ 0.0180
16-bit array #1 ...... 0.0673 ........ 0.0498 ...... 0.0343 ........ 0.0388
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0148 ........ 0.0180 ...... 0.0156 ........ 0.0179
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0252 ........ 0.0201 ...... 0.0214 ........ 0.0167
16-bit map #1 ........ 0.1027 ........ 0.0836 ...... 0.0388 ........ 0.0510
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.1104 ........ 0.1010 ...... 0.0556 ........ 0.0602
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total                  0.9642          1.0909        0.8224          0.7213
Skipped                     4               4             4               4
Failed                      0               0            24              17
Ignored                    24              24             0               7

Note that the msgpack extension (v2.1.2) doesn't support ext, bin and UTF-8 str types.

License

The library is released under the MIT License. See the bundled LICENSE file for details.

Author: rybakit
Source Code: https://github.com/rybakit/msgpack.php
License: MIT License

#php 

黎 飞

黎 飞

1656984600

如何将函数从 C++ 导出到 React Native

今天,我继续分享我在 Native Module 和 C++ 方面的经验。

由于我们将看到很多为移动平台编写的 C/C++ 库,因此我们需要将它们实现到我们的 iOS 或 React Native 应用程序中。这就是为什么我想写一篇关于如何将一个函数从 C++ 导出到 React Native 的文章,它易于理解并且为初学者节省了时间。我将从一个新的 react native 应用程序开始

1.新建一个react native app,打开你的终端运行

npx react-native init NativeModules

2. 打开 Xcode 并导航到 NativeModules/ios/NativeModule.xcworkspace

3. 在 C++ 端工作

创建一个新的 C++ 文件并命名Cpp_to_RN.cpp

当我们创建一个新的 C++ 文件时,Xcode 会Cpp_to_RN.hpp 为我们创建一个头文件

首先,打开“ Cpp_to_RN.hpp文件,并创建一个包含没有主体的函数的类。

#ifndef Cpp_to_RN_hpp
#define Cpp_to_RN_hpp#include <stdio.h>
#include <string>class Cpp_to_RN {
public:
    std::string sayHello();
};#endif /* Cpp_to_RN_hpp */

然后打开Cpp_to_RN.cpp文件,写一个简单的函数“ sayHello()

#include "Cpp_to_RN.hpp"
std::string Cpp_to_RN::sayHello(){
    return "Hello from CPP";
}

4. 处理包装 C++ 文件。

包装 C++ 文件并将它们导出到 IOS (swift) 端

一个。创建一个Objective C文件并命名Cpp_to_RN.m

重命名Cpp_to_RN.m Cpp_to_RN.mm

湾。打开WrapCpp_to_RN.mm 文件并编写将包装sayHelloC++ 文件中的函数的正文内容。

#import <Foundation/Foundation.h>
#import "WrapCpp_to_RN.h"
#import "Cpp_to_RN.hpp"@implementation WrapCpp_to_RN- (NSString *) sayHello {
  Cpp_to_RN fromCPP;
    std::string helloWorldMessage = fromCPP.sayHello();
    return [NSString
            stringWithCString:helloWorldMessage.c_str()
            encoding:NSUTF8StringEncoding];
}
@end

C。创建头文件并命名WrapCpp_to_RN.h

将函数导出wrapSayHello到 Swift 文件

#import <Foundation/Foundation.h>
@interface WrapCpp_to_RN : NSObject
- (NSString *) wrapSayHello;
@end

5. 在 iOS (Swift) 端工作

将 C++ 函数导出到 React Native

一个。创建一个 Swift 文件并命名SendCpp_to_RN.swift

注意:Xcode 会要求我们为我们创建一个NativeModules-Bridging-Header.h文件。

创建一个类SendCpp_to_RN并将其声明为NSObject

#import <Foundation/Foundation.h>
@interface WrapCpp_to_RN : NSObject
- (NSString *) wrapSayHello;
@end

编写一个函数requiresMainQueueSetup()来防止我们运行应用程序时出现警告

#import <Foundation/Foundation.h>
@interface WrapCpp_to_RN : NSObject
- (NSString *) wrapSayHello;
@end

编写一个函数来包装WrapCpp_to_RN()fromWrapCpp_to_RN.mm

import Foundation@objc(SendCpp_to_RN)
class SendCpp_to_RN : NSObject {
    
  @objc static func requiresMainQueueSetup() -> Bool {
        return false
    }
  
  @objc func fromCpp(_ successCallback: RCTResponseSenderBlock) -> Void {
    successCallback([NSNull(), WrapCpp_to_RN().wrapSayHello() as Any])
    }}

湾。将 Swift 文件中的包装函数导出到 React Native

创建一个 Objective C 文件以导出 Swift 类及其函数,使用Callback

#import <React/RCTBridgeModule.h>
#import <Foundation/Foundation.h>
#import "UIKit/UIKit.h"
@interface RCT_EXTERN_MODULE(SendCpp_to_RN, NSObject)RCT_EXTERN_METHOD(fromCpp:(RCTResponseSenderBlock)successCallback)@end

C。将 Swift 连接到 React Native,打开NativeModules-Bridging-Header.h 文件

#import <React/RCTBridgeModule.h>#import <React/RCTViewManager.h>#import "WrapCpp_to_RN.h"

6. 在 React Native 方面工作

调用 Swift 类及其函数

import React from 'react';
import {StyleSheet, Text, View, NativeModules, Button} from 'react-native';const App = () => {
  const onPress = () => {
    const {SendCpp_to_RN} = NativeModules;
    SendCpp_to_RN.fromCpp((_err, res) => console.log(res));
  };
  return (
    <View style={styles.container}>
      <Text> Practice !</Text>
      <Button title="C++ to React Native" color="#841584" onPress={onPress} />
    </View>
  );
};
const styles = StyleSheet.create({
  container: {
    flex: 1,
    justifyContent: 'center',
    alignItems: 'center',
  },
});
export default App;

我们完成了,只需运行应用程序

react-native run-ios

或者只需单击 Xcode 上的“运行”按钮,看看我们做了什么。

希望我的文章对您有所帮助,感谢您的阅读时间。

 来源:https ://betterprogramming.pub/native-modules-export-c-function-to-react-native-for-beginners-77e89934b210

#cpp #cplusplus #react 

坂本  篤司

坂本 篤司

1656981060

関数をC++からReactNativeにエクスポートする方法

今日も、ネイティブモジュールとC++での経験を共有し続けています。

多くのC/C ++ライブラリがモバイルプラットフォーム用に作成されているので、それらをiOSまたはReactNativeアプリケーションに実装する必要があります。そのため、関数をC++からReactNativeにエクスポートする方法についての記事を書きたいと思います。これは、理解しやすく、初心者の時間を節約できます。新しいreactネイティブアプリケーションから始めます

1.新しいreactネイティブアプリを作成し、ターミナルを開いて実行します

npx react-native init NativeModules

2. Xcodeを開き、NativeModules / ios/NativeModule.xcworkspaceに移動します

3.C++側での作業

新しいC++ファイルを作成し、名前を付けますCpp_to_RN.cpp

新しいC++ファイルを作成すると、XcodeはヘッダーファイルCpp_to_RN.hpp を作成します

まず、「Cpp_to_RN.hppファイルを開き、本体のない関数を含むクラスを作成します。

#ifndef Cpp_to_RN_hpp
#define Cpp_to_RN_hpp#include <stdio.h>
#include <string>class Cpp_to_RN {
public:
    std::string sayHello();
};#endif /* Cpp_to_RN_hpp */

次に、ファイルを開いてCpp_to_RN.cpp、単純な関数「sayHello()」を記述します。

#include "Cpp_to_RN.hpp"
std::string Cpp_to_RN::sayHello(){
    return "Hello from CPP";
}

4.C++ファイルのラッピングに取り組んでいます。

C ++ファイルをラップしてIOS(swift)側にエクスポートするには

a。ObjectiveCファイルを作成して名前を付けますCpp_to_RN.m

名前をに変更Cpp_to_RN.m します Cpp_to_RN.mm

b。ファイルを開き、C++ファイルからWrapCpp_to_RN.mm 関数をラップする本文のコンテンツを記述します。sayHello

#import <Foundation/Foundation.h>
#import "WrapCpp_to_RN.h"
#import "Cpp_to_RN.hpp"@implementation WrapCpp_to_RN- (NSString *) sayHello {
  Cpp_to_RN fromCPP;
    std::string helloWorldMessage = fromCPP.sayHello();
    return [NSString
            stringWithCString:helloWorldMessage.c_str()
            encoding:NSUTF8StringEncoding];
}
@end

c。ヘッダーファイルを作成し、名前を付けますWrapCpp_to_RN.h

wrapSayHello関数をSwiftファイルにエクスポートします

#import <Foundation/Foundation.h>
@interface WrapCpp_to_RN : NSObject
- (NSString *) wrapSayHello;
@end

5. iOS(Swift)側での作業

C++関数をReactNativeにエクスポートするには

a。Swiftファイルを作成し、名前を付けますSendCpp_to_RN.swift

注:Xcodeは、NativeModules-Bridging-Header.hファイルを作成するように要求します。

クラスSendCpp_to_RNを作成し、次のように宣言しますNSObject

#import <Foundation/Foundation.h>
@interface WrapCpp_to_RN : NSObject
- (NSString *) wrapSayHello;
@end

requiresMainQueueSetup()アプリケーション実行時の警告を防ぐ関数を作成する

#import <Foundation/Foundation.h>
@interface WrapCpp_to_RN : NSObject
- (NSString *) wrapSayHello;
@end

WrapCpp_to_RN()fromをラップする関数を記述しますWrapCpp_to_RN.mm

import Foundation@objc(SendCpp_to_RN)
class SendCpp_to_RN : NSObject {
    
  @objc static func requiresMainQueueSetup() -> Bool {
        return false
    }
  
  @objc func fromCpp(_ successCallback: RCTResponseSenderBlock) -> Void {
    successCallback([NSNull(), WrapCpp_to_RN().wrapSayHello() as Any])
    }}

b。Swiftファイルのラップ関数をReactNativeにエクスポートします

を使用してSwiftクラスとその関数をエクスポートするObjectiveCファイルを作成しますCallback

#import <React/RCTBridgeModule.h>
#import <Foundation/Foundation.h>
#import "UIKit/UIKit.h"
@interface RCT_EXTERN_MODULE(SendCpp_to_RN, NSObject)RCT_EXTERN_METHOD(fromCpp:(RCTResponseSenderBlock)successCallback)@end

c。SwiftをReactNativeに接続し、NativeModules-Bridging-Header.h ファイルを開きます

#import <React/RCTBridgeModule.h>#import <React/RCTViewManager.h>#import "WrapCpp_to_RN.h"

6.ReactNative側での作業

Swiftクラスとその関数を呼び出す

import React from 'react';
import {StyleSheet, Text, View, NativeModules, Button} from 'react-native';const App = () => {
  const onPress = () => {
    const {SendCpp_to_RN} = NativeModules;
    SendCpp_to_RN.fromCpp((_err, res) => console.log(res));
  };
  return (
    <View style={styles.container}>
      <Text> Practice !</Text>
      <Button title="C++ to React Native" color="#841584" onPress={onPress} />
    </View>
  );
};
const styles = StyleSheet.create({
  container: {
    flex: 1,
    justifyContent: 'center',
    alignItems: 'center',
  },
});
export default App;

これで完了です。アプリケーションを実行するだけです。

react-native run-ios

または、Xcodeの「実行」ボタンをクリックして、実行内容を確認してください。

私の記事がお役に立てば幸いです。お読みいただきありがとうございます。

 ソース:https ://betterprogramming.pub/native-modules-export-c-function-to-react-native-for-beginners-77e89934b210

#cpp #cplusplus #react 

Hoang  Ha

Hoang Ha

1656981000

Cách Xuất Một Hàm Từ C ++ Sang React Native

Hôm nay, tôi tiếp tục chia sẻ kinh nghiệm của mình với Native Module và C ++.

Vì chúng ta sẽ thấy rất nhiều thư viện C / C ++ viết cho nền tảng di động, chúng ta cần triển khai chúng cho ứng dụng iOS hoặc React Native của mình. Đó là lý do mình muốn viết một bài hướng dẫn cách export một hàm từ C ++ sang React Native dễ hiểu và tiết kiệm thời gian cho người mới bắt đầu. Tôi sẽ bắt đầu với một ứng dụng gốc phản ứng mới

1. Tạo một ứng dụng gốc phản ứng mới, mở thiết bị đầu cuối của bạn và chạy

npx react-native init NativeModules

2. Mở Xcode và điều hướng đến NativeModules / ios / NativeModule.xcworkspace

3. Làm việc trên C ++

Tạo một tệp C ++ mới và đặt tên cho nóCpp_to_RN.cpp

Khi chúng tôi tạo tệp C ++ mới, Xcode sẽ tạo tệp tiêu đề Cpp_to_RN.hpp cho chúng tôi

Đầu tiên, mở tệp Cpp_to_RN.hpp“” và tạo một lớp bao gồm một hàm không có phần thân.

#ifndef Cpp_to_RN_hpp
#define Cpp_to_RN_hpp#include <stdio.h>
#include <string>class Cpp_to_RN {
public:
    std::string sayHello();
};#endif /* Cpp_to_RN_hpp */

Sau đó, mở Cpp_to_RN.cpptệp và viết một hàm đơn giản “ sayHello()

#include "Cpp_to_RN.hpp"
std::string Cpp_to_RN::sayHello(){
    return "Hello from CPP";
}

4. Thao tác trên Wrapping C ++ file.

Để bọc các tệp C ++ và xuất chúng sang phía IOS (nhanh chóng)

một. Tạo một tệp Objective C và đặt tên cho nóCpp_to_RN.m

Đổi tên Cpp_to_RN.m thành Cpp_to_RN.mm

b. Mở WrapCpp_to_RN.mm tệp và viết nội dung phần nội dung sẽ bọc hàm sayHellotừ tệp C ++.

#import <Foundation/Foundation.h>
#import "WrapCpp_to_RN.h"
#import "Cpp_to_RN.hpp"@implementation WrapCpp_to_RN- (NSString *) sayHello {
  Cpp_to_RN fromCPP;
    std::string helloWorldMessage = fromCPP.sayHello();
    return [NSString
            stringWithCString:helloWorldMessage.c_str()
            encoding:NSUTF8StringEncoding];
}
@end

c. Tạo một tệp tiêu đề và đặt tên cho nóWrapCpp_to_RN.h

Xuất wrapSayHellohàm sang tệp Swift

#import <Foundation/Foundation.h>
@interface WrapCpp_to_RN : NSObject
- (NSString *) wrapSayHello;
@end

5. Làm việc trên iOS (Swift)

Để xuất hàm C ++ sang React Native

một. Tạo một tệp Swift và đặt tên cho nóSendCpp_to_RN.swift

Lưu ý: Xcode sẽ yêu cầu chúng tôi tạo một NativeModules-Bridging-Header.htệp cho chúng tôi.

Tạo một lớp SendCpp_to_RNvà khai báo nó làNSObject

#import <Foundation/Foundation.h>
@interface WrapCpp_to_RN : NSObject
- (NSString *) wrapSayHello;
@end

Viết một hàm requiresMainQueueSetup()để ngăn cảnh báo khi chúng tôi chạy ứng dụng

#import <Foundation/Foundation.h>
@interface WrapCpp_to_RN : NSObject
- (NSString *) wrapSayHello;
@end

Viết một hàm để bọc WrapCpp_to_RN()từWrapCpp_to_RN.mm

import Foundation@objc(SendCpp_to_RN)
class SendCpp_to_RN : NSObject {
    
  @objc static func requiresMainQueueSetup() -> Bool {
        return false
    }
  
  @objc func fromCpp(_ successCallback: RCTResponseSenderBlock) -> Void {
    successCallback([NSNull(), WrapCpp_to_RN().wrapSayHello() as Any])
    }}

b. Xuất một hàm bọc trong tệp Swift sang React Native

Tạo một tệp Objective C để xuất lớp Swift và chức năng của nó bằng cách sử dụngCallback

#import <React/RCTBridgeModule.h>
#import <Foundation/Foundation.h>
#import "UIKit/UIKit.h"
@interface RCT_EXTERN_MODULE(SendCpp_to_RN, NSObject)RCT_EXTERN_METHOD(fromCpp:(RCTResponseSenderBlock)successCallback)@end

c. Kết nối Swift với React Native, mở NativeModules-Bridging-Header.h tệp

#import <React/RCTBridgeModule.h>#import <React/RCTViewManager.h>#import "WrapCpp_to_RN.h"

6. Làm việc ở phía React Native

Gọi lớp Swift và các chức năng của nó

import React from 'react';
import {StyleSheet, Text, View, NativeModules, Button} from 'react-native';const App = () => {
  const onPress = () => {
    const {SendCpp_to_RN} = NativeModules;
    SendCpp_to_RN.fromCpp((_err, res) => console.log(res));
  };
  return (
    <View style={styles.container}>
      <Text> Practice !</Text>
      <Button title="C++ to React Native" color="#841584" onPress={onPress} />
    </View>
  );
};
const styles = StyleSheet.create({
  container: {
    flex: 1,
    justifyContent: 'center',
    alignItems: 'center',
  },
});
export default App;

Và chúng tôi đã hoàn tất, chỉ cần chạy ứng dụng

react-native run-ios

Hoặc chỉ cần nhấp vào nút “chạy” trên Xcode và xem những gì chúng tôi đã làm.

Tôi hy vọng bài viết của tôi hữu ích cho bạn, cảm ơn bạn đã dành thời gian đọc.

 Nguồn: https://betterprogramming.pub/native-modules-export-c- Chức năng-to-react-native-for-beginners-77e89934b210

#cpp #cplusplus #react 

Léon  Peltier

Léon Peltier

1656979200

Comment Exporter Une Fonction De C++ Vers React Native

Aujourd'hui, je continue à partager mon expérience avec le module natif et C++.

Comme nous verrons beaucoup de bibliothèques C/C++ écrire pour les plates-formes mobiles, nous devons les implémenter dans notre application iOS ou React Native. C'est pourquoi je souhaite écrire un article sur la façon d'exporter une fonction de C++ vers React Native, ce qui est facile à comprendre et fait gagner du temps aux débutants. Je vais commencer avec une nouvelle application native réactive

1. Créez une nouvelle application native React, ouvrez votre terminal et exécutez

npx react-native init NativeModules

2. Ouvrez Xcode et accédez à NativeModules/ios/NativeModule.xcworkspace

3. Travailler du côté C++

Créez un nouveau fichier C++ et nommez-leCpp_to_RN.cpp

Lorsque nous créons un nouveau fichier C++, Xcode créera un fichier d'en-tête Cpp_to_RN.hpp pour nous

Tout d'abord, ouvrez le fichier " Cpp_to_RN.hpp" et créez une classe qui inclut une fonction sans le corps.

#ifndef Cpp_to_RN_hpp
#define Cpp_to_RN_hpp#include <stdio.h>
#include <string>class Cpp_to_RN {
public:
    std::string sayHello();
};#endif /* Cpp_to_RN_hpp */

Ouvrez ensuite le Cpp_to_RN.cppfichier et écrivez une fonction simple " sayHello()"

#include "Cpp_to_RN.hpp"
std::string Cpp_to_RN::sayHello(){
    return "Hello from CPP";
}

4. Travail sur l'encapsulation du fichier C++.

Pour envelopper les fichiers C++ et les exporter vers le côté IOS (swift)

un. Créez un fichier Objective C et nommez-leCpp_to_RN.m

Renommez le Cpp_to_RN.m en Cpp_to_RN.mm

b. Ouvrez le WrapCpp_to_RN.mm fichier et écrivez le contenu du corps qui encapsulera la fonction sayHelloà partir du fichier C++.

#import <Foundation/Foundation.h>
#import "WrapCpp_to_RN.h"
#import "Cpp_to_RN.hpp"@implementation WrapCpp_to_RN- (NSString *) sayHello {
  Cpp_to_RN fromCPP;
    std::string helloWorldMessage = fromCPP.sayHello();
    return [NSString
            stringWithCString:helloWorldMessage.c_str()
            encoding:NSUTF8StringEncoding];
}
@end

c. Créez un fichier d'en-tête et nommez-leWrapCpp_to_RN.h

Exporter la wrapSayHellofonction vers le fichier Swift

#import <Foundation/Foundation.h>
@interface WrapCpp_to_RN : NSObject
- (NSString *) wrapSayHello;
@end

5. Travailler du côté iOS (Swift)

Pour exporter la fonction C++ vers React Native

un. Créez un fichier Swift et nommez-leSendCpp_to_RN.swift

Remarque : Xcode nous demandera de créer un NativeModules-Bridging-Header.hfichier pour nous.

Créez une classe SendCpp_to_RNet déclarez-la commeNSObject

#import <Foundation/Foundation.h>
@interface WrapCpp_to_RN : NSObject
- (NSString *) wrapSayHello;
@end

Écrire une fonction requiresMainQueueSetup()pour empêcher l'avertissement lorsque nous exécutons l'application

#import <Foundation/Foundation.h>
@interface WrapCpp_to_RN : NSObject
- (NSString *) wrapSayHello;
@end

Ecrire une fonction pour envelopper le WrapCpp_to_RN()fromWrapCpp_to_RN.mm

import Foundation@objc(SendCpp_to_RN)
class SendCpp_to_RN : NSObject {
    
  @objc static func requiresMainQueueSetup() -> Bool {
        return false
    }
  
  @objc func fromCpp(_ successCallback: RCTResponseSenderBlock) -> Void {
    successCallback([NSNull(), WrapCpp_to_RN().wrapSayHello() as Any])
    }}

b. Exporter une fonction wrap dans un fichier Swift vers React Native

Créez un fichier Objective C pour exporter la classe Swift et sa fonction à l'aide deCallback

#import <React/RCTBridgeModule.h>
#import <Foundation/Foundation.h>
#import "UIKit/UIKit.h"
@interface RCT_EXTERN_MODULE(SendCpp_to_RN, NSObject)RCT_EXTERN_METHOD(fromCpp:(RCTResponseSenderBlock)successCallback)@end

c. Connectez Swift à React Native, ouvrez le NativeModules-Bridging-Header.h fichier

#import <React/RCTBridgeModule.h>#import <React/RCTViewManager.h>#import "WrapCpp_to_RN.h"

6. Travailler du côté React Native

Appelez la classe Swift et ses fonctions

import React from 'react';
import {StyleSheet, Text, View, NativeModules, Button} from 'react-native';const App = () => {
  const onPress = () => {
    const {SendCpp_to_RN} = NativeModules;
    SendCpp_to_RN.fromCpp((_err, res) => console.log(res));
  };
  return (
    <View style={styles.container}>
      <Text> Practice !</Text>
      <Button title="C++ to React Native" color="#841584" onPress={onPress} />
    </View>
  );
};
const styles = StyleSheet.create({
  container: {
    flex: 1,
    justifyContent: 'center',
    alignItems: 'center',
  },
});
export default App;

Et nous avons terminé, il suffit de lancer l'application

react-native run-ios

Ou cliquez simplement sur le bouton "exécuter" sur Xcode et voyez ce que nous avons fait.

J'espère que mon article vous sera utile, merci pour le temps de lecture.

 Source : https://betterprogramming.pub/native-modules-export-c-function-to-react-native-for-beginners-77e89934b210

#cpp #cplusplus #react