1671338640
In this React article, we will learn about What is React.memo() | How to use it?.There are is a number of built-in tools to improve performance of React applications. One of these tools is high-order component
React.memo()
. This tutorial will help you learn aboutReact.memo()
. You will learn what it is, how it works and how to use it in your React apps.
Let’s start with what React.memo()
is. It is a high-order component (HOC). A higher-order component is a function that takes another component and returns a new component. You can think about HOC as a wrapper that transforms some component you give it into a new component.
React.memo()
helps us increase performance of React apps by avoiding unnecessary renderings of components. Every time React has to decide whether to update the DOM, it compares the previous render with the new render. If these two renders are different, some data are different, React will re-render the DOM to update it.
This is done in order to keep the UI in sync with the data. When this happens, React re-renders components that are currently rendered in the DOM. This can take some time and consume some resources, depending on how many components are rendered. The React.memo()
helps us make this process faster.
When we wrap some component with React.memo()
three things will happen. First, React will render the component on the initial render as usually. After that, however, React will also memoize the component. React will store the result of that render in memory.
Interesting thing happens when something causes React to re-render the DOM. This time, with memo()
, React will not automatically re-render the component. Instead, it will check if the new props of the component are the same as of the memoized component from the previous render.
If React recognizes that props of the component didn’t change, it will reuse the memoized result of the previous render and skip re-rendering the component from scratch. React will basically re-use the “older” version of the component. When React uses the previous version of the component, it also re-uses whole content of that previous component.
This means that if we have some computation in that component this compilation may not repeat itself, unless it is necessary, i.e. some external resource changed. This means that we can avoid not only unnecessary re-renders of component but, more importantly, repeating computations that are not necessary inside those component.
What if the component props changed? React will re-render the component and run any necessary computations inside it. This, memoization with memo()
, works only with functional components. However, we can achieve this with class components if we use PureComponent.
One good thing on React.memo()
is that it is very easy to use. All we have to do is to take some functional component we want to memoize and wrap with memo()
. We can do this with new component we want to create as well as component that already exists.
// Functional component without memo():
export const App = () => {
return (
<div className="App">
<h1>Hello world</h1>
</div>
)
}
// Functional component with memo():
// Import memo from React:
import { memo } from 'react'
// Wrap App component with memo():
export const App = memo(() => {
return (
<div className="App">
<h1>Hello world</h1>
</div>
)
})
// Create component and memoize it later:
// Import memo from React:
import { memo } from 'react'
// Create component:
const App = () => {
return (
<div className="App">
<h1>Hello world</h1>
</div>
)
}
// Memoize and export App component:
export const AppMemoized = memo(App)
By default, React does shallow comparison of props object when it compares props from the previous render and the next. This will be enough in most cases, if the props you are passing are simple, i.e. primitive data types. It may not be enough if you are working with complex props.
For example, if you are passing objects or arrays through props, shallow comparison done by React will not be enough. React will probably fail to recognize that some object passed through props is the same as the previous. This is because when it comes to objects, React will compare references, not objects themselves.
This will cause problems with shallow comparison. Let’s say we create a new object that is the same as some other object. The fact is that these two objects will not be the same. They will have the same shape, contain the same data, but they will have different references.
For React, and JavaScript as well, when it comes to objects, references are more important. When two references are different, shallow comparison will fail.
// Compare "the same" objects:
console.log({ foo: 'foo' } === { foo: 'foo' })
// Output:
// false
// Or:
const obj1 = { foo: 'foo' }
const obj2 = { foo: 'foo' }
console.log(obj1 === obj2)
// Output:
// false
// Compare "the same" arrays:
console.log([1] === [1])
// Output:
// false
// Or:
const arr1 = [1]
const arr2 = [1]
console.log(arr1 === arr2)
// Output:
// false
// Use the same reference:
const obj1 = { foo: 'foo' }
const obj2 = obj1
console.log(obj1 === obj2)
// Output:
// true
const arr1 = [1]
const arr2 = arr1
console.log(arr1 === arr2)
// Output:
// true
Fortunately, React allows us to use custom comparison function to check for props equality. So, if we know that we need more thorough comparison, we can provide React.memo()
with custom comparison function. This function comes as the second argument, right after the component we want to memoize.
// Functional component with memo():
// Import memo from React:
import { memo } from 'react'
import { isEqual } from 'lodash'
// Create custom comparison function:
function compareProps(prevProps, nextProps) {
return isEqual(prevProps, nextProps)
}
// Wrap with memo() and use custom comparison function:
export const App = memo(() => {
return (
<div className="App">
<h1>Hello world</h1>
</div>
)
}, compareProps) // Pass compareProps as the 2nd argument
// Create component and memoize it later:
// Import memo from React:
import { memo } from 'react'
import { isEqual } from 'lodash'
// Create component:
const App = () => {
return (
<div className="App">
<h1>Hello world</h1>
</div>
)
}
// Memoize with custom comparison function:
export const AppMemoized = memo(App, compareProps) // Pass compareProps as the 2nd argument
If you want to use custom comparison function, remember two important things. First, this function must always return a boolean. Second, it must return true
if previous props and next props are equal. Otherwise, it should return false
.
Everything has some price. This is why before you try to use memo()
by default you should consider one thing. When you use it, React stores the result of rendering component in memory. If you decide to memoize a large number of components it will lead to more memory consumption.
Another thing to consider is the comparison. When React compares previous and next props it requires some resources. This might not be such a big deal if your app is small or if you don’t have too many memoized components. If you work on a bigger project, re-renders might be actually cheaper than memoization.
The fact is that React is already doing a good job at optimizing rendering performance. So, before trying to memoize everything, profile your app and identify issues. If you find that some components render when it is not necessary, try using React.memo()
. Then, profile your app again and compare the results.
Repeat this process with all components you want to try to memoize. If you see some meaningful improvements, keep the memoized version. Otherwise, if there is no improvement in performance or there is some penalty, just let the component re-render.
Aside to the above, there are some rules of thumb that can help you find components that might be worth memoizing. First, look for components that re-render often, usually with the same props. This often happens when component is forced to re-render by its parent component, even though the component itself didn’t change.
React.memo()
can help you avoid these re-renders induced by parents. Second, try memoizing a component if the component always renders the same result given the same props. Third, your component renders a lot of UI. The more UI a component renders, the more expensive these renders usually are.
In these cases, resources necessary for memoization and comparison check might be smaller than resources for subsequent re-renders.
React.memo()
can be very useful tool when we want to improve performance of our React apps. It makes it very easy to memoize components and avoid unnecessary re-renders. I hope that this tutorial helped you understand what memo()
is, how it works and how to use it.
Original article sourced at: https://blog.alexdevero.com
1598839687
If you are undertaking a mobile app development for your start-up or enterprise, you are likely wondering whether to use React Native. As a popular development framework, React Native helps you to develop near-native mobile apps. However, you are probably also wondering how close you can get to a native app by using React Native. How native is React Native?
In the article, we discuss the similarities between native mobile development and development using React Native. We also touch upon where they differ and how to bridge the gaps. Read on.
Let’s briefly set the context first. We will briefly touch upon what React Native is and how it differs from earlier hybrid frameworks.
React Native is a popular JavaScript framework that Facebook has created. You can use this open-source framework to code natively rendering Android and iOS mobile apps. You can use it to develop web apps too.
Facebook has developed React Native based on React, its JavaScript library. The first release of React Native came in March 2015. At the time of writing this article, the latest stable release of React Native is 0.62.0, and it was released in March 2020.
Although relatively new, React Native has acquired a high degree of popularity. The “Stack Overflow Developer Survey 2019” report identifies it as the 8th most loved framework. Facebook, Walmart, and Bloomberg are some of the top companies that use React Native.
The popularity of React Native comes from its advantages. Some of its advantages are as follows:
Are you wondering whether React Native is just another of those hybrid frameworks like Ionic or Cordova? It’s not! React Native is fundamentally different from these earlier hybrid frameworks.
React Native is very close to native. Consider the following aspects as described on the React Native website:
Due to these factors, React Native offers many more advantages compared to those earlier hybrid frameworks. We now review them.
#android app #frontend #ios app #mobile app development #benefits of react native #is react native good for mobile app development #native vs #pros and cons of react native #react mobile development #react native development #react native experience #react native framework #react native ios vs android #react native pros and cons #react native vs android #react native vs native #react native vs native performance #react vs native #why react native #why use react native
1667425440
Perl script converts PDF files to Gerber format
Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.
The general workflow is as follows:
Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).
See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.
#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;
use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)
##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file
use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call
#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software. \nGerber files MAY CONTAIN ERRORS. Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG
use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC
use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)
#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1);
#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
.010, -.001, #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
.031, -.014, #used for vias
.041, -.020, #smallest non-filled plated hole
.051, -.025,
.056, -.029, #useful for IC pins
.070, -.033,
.075, -.040, #heavier leads
# .090, -.043, #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
.100, -.046,
.115, -.052,
.130, -.061,
.140, -.067,
.150, -.079,
.175, -.088,
.190, -.093,
.200, -.100,
.220, -.110,
.160, -.125, #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
.090, -.040, #want a .090 pad option, but use dummy hole size
.065, -.040, #.065 x .065 rect pad
.035, -.040, #.035 x .065 rect pad
#traces:
.001, #too thin for real traces; use only for board outlines
.006, #minimum real trace width; mainly used for text
.008, #mainly used for mid-sized text, not traces
.010, #minimum recommended trace width for low-current signals
.012,
.015, #moderate low-voltage current
.020, #heavier trace for power, ground (even if a lighter one is adequate)
.025,
.030, #heavy-current traces; be careful with these ones!
.040,
.050,
.060,
.080,
.100,
.120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);
#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size: parsed PDF diameter: error:
# .014 .016 +.002
# .020 .02267 +.00267
# .025 .026 +.001
# .029 .03167 +.00267
# .033 .036 +.003
# .040 .04267 +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};
#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
CIRCLE_ADJUST_MINX => 0,
CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
CIRCLE_ADJUST_MAXY => 0,
SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};
#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches
#line join/cap styles:
use constant
{
CAP_NONE => 0, #butt (none); line is exact length
CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
#number of elements in each shape type:
use constant
{
RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
rect => RECT_SHAPELEN,
line => LINE_SHAPELEN,
curve => CURVE_SHAPELEN,
circle => CIRCLE_SHAPELEN,
);
#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions
# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?
#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes.
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes
#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches
# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)
# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time
# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const
use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool
my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time
print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load
#############################################################################################
#junk/experiment:
#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html
#my $caller = "pdf2gerb::";
#sub cfg
#{
# my $proto = shift;
# my $class = ref($proto) || $proto;
# my $settings =
# {
# $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
# };
# bless($settings, $class);
# return $settings;
#}
#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;
#print STDERR "read cfg file\n";
#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names
#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }
Author: swannman
Source Code: https://github.com/swannman/pdf2gerb
License: GPL-3.0 license
1607768450
In this article, you will learn what are hooks in React JS? and when to use react hooks? React JS is developed by Facebook in the year 2013. There are many students and the new developers who have confusion between react and hooks in react. Well, it is not different, react is a programming language and hooks is a function which is used in react programming language.
Read More:- https://infoatone.com/what-are-hooks-in-react-js/
#react #hooks in react #react hooks example #react js projects for beginners #what are hooks in react js? #when to use react hooks
1615544450
Since March 2020 reached 556 million monthly downloads have increased, It shows that React JS has been steadily growing. React.js also provides a desirable amount of pliancy and efficiency for developing innovative solutions with interactive user interfaces. It’s no surprise that an increasing number of businesses are adopting this technology. How do you select and recruit React.js developers who will propel your project forward? How much does a React developer make? We’ll bring you here all the details you need.
Facebook built and maintains React.js, an open-source JavaScript library for designing development tools. React.js is used to create single-page applications (SPAs) that can be used in conjunction with React Native to develop native cross-platform apps.
In the United States, the average React developer salary is $94,205 a year, or $30-$48 per hour, This is one of the highest among JavaScript developers. The starting salary for junior React.js developers is $60,510 per year, rising to $112,480 for senior roles.
In context of software developer wage rates, the United States continues to lead. In high-tech cities like San Francisco and New York, average React developer salaries will hit $98K and $114per year, overall.
However, the need for React.js and React Native developer is outpacing local labour markets. As a result, many businesses have difficulty locating and recruiting them locally.
It’s no surprise that for US and European companies looking for professional and budget engineers, offshore regions like India are becoming especially interesting. This area has a large number of app development companies, a good rate with quality, and a good pool of React.js front-end developers.
As per Linkedin, the country’s IT industry employs over a million React specialists. Furthermore, for the same or less money than hiring a React.js programmer locally, you may recruit someone with much expertise and a broader technical stack.
React is a very strong framework. React.js makes use of a powerful synchronization method known as Virtual DOM, which compares the current page architecture to the expected page architecture and updates the appropriate components as long as the user input.
React is scalable. it utilises a single language, For server-client side, and mobile platform.
React is steady.React.js is completely adaptable, which means it seldom, if ever, updates the user interface. This enables legacy projects to be updated to the most new edition of React.js without having to change the codebase or make a few small changes.
React is adaptable. It can be conveniently paired with various state administrators (e.g., Redux, Flux, Alt or Reflux) and can be used to implement a number of architectural patterns.
Is there a market for React.js programmers?
The need for React.js developers is rising at an unparalleled rate. React.js is currently used by over one million websites around the world. React is used by Fortune 400+ businesses and popular companies such as Facebook, Twitter, Glassdoor and Cloudflare.
As you’ve seen, locating and Hire React js Developer and Hire React Native developer is a difficult challenge. You will have less challenges selecting the correct fit for your projects if you identify growing offshore locations (e.g. India) and take into consideration the details above.
If you want to make this process easier, You can visit our website for more, or else to write a email, we’ll help you to finding top rated React.js and React Native developers easier and with strives to create this operation
#hire-react-js-developer #hire-react-native-developer #react #react-native #react-js #hire-react-js-programmer
1651604400
React Starter Kit is an opinionated boilerplate for web development built on top of Node.js, Express, GraphQL and React, containing modern web development tools such as Webpack, Babel and Browsersync. Helping you to stay productive following the best practices. A solid starting point for both professionals and newcomers to the industry.
See getting started guide, demo, docs, roadmap | Join #react-starter-kit chat room on Gitter | Visit our sponsors:
The master
branch of React Starter Kit doesn't include a Flux implementation or any other advanced integrations. Nevertheless, we have some integrations available to you in feature branches that you can use either as a reference or merge into your project:
master
)feature/redux
)feature/apollo
)master
)You can see status of most reasonable merge combination as PRs labeled as TRACKING
If you think that any of these features should be on master
, or vice versa, some features should removed from the master
branch, please let us know. We love your feedback!
React Starter Kit
| React Static Boilerplate
| ASP.NET Core Starter Kit
| |
---|---|---|---|
App type | Isomorphic (universal) | Single-page application | Single-page application |
Frontend | |||
Language | JavaScript (ES2015+, JSX) | JavaScript (ES2015+, JSX) | JavaScript (ES2015+, JSX) |
Libraries | React, History, Universal Router | React, History, Redux | React, History, Redux |
Routes | Imperative (functional) | Declarative | Declarative, cross-stack |
Backend | |||
Language | JavaScript (ES2015+, JSX) | n/a | C#, F# |
Libraries | Node.js, Express, Sequelize, GraphQL | n/a | ASP.NET Core, EF Core, ASP.NET Identity |
SSR | Yes | n/a | n/a |
Data API | GraphQL | n/a | Web API |
♥ React Starter Kit? Help us keep it alive by donating funds to cover project expenses via OpenCollective or Bountysource!
Anyone and everyone is welcome to contribute to this project. The best way to start is by checking our open issues, submit a new issue or feature request, participate in discussions, upvote or downvote the issues you like or dislike, send pull requests.
Copyright © 2014-present Kriasoft, LLC. This source code is licensed under the MIT license found in the LICENSE.txt file. The documentation to the project is licensed under the CC BY-SA 4.0 license.
Author: kriasoft
Source Code: https://github.com/kriasoft/react-starter-kit
License: MIT License