Roberta  Ward

Roberta Ward

1595806965

QuickStart: CRUD Operations in Rust

This Quick Start post will help you connect your Rust application to a MongoDB cluster. It will then show you how to do Create, Read, Update, and Delete (CRUD) operations on a collection. Finally, it’ll cover how to use serde to map between MongoDB’s BSON documents and Rust structs.

Series Tools & Versions

This series assumes that you have a recent version of the Rust toolchain installed (v1.44+), and that you’re comfortable with Rust syntax. It also assumes that you’re reasonably comfortable using the command-line and your favourite code editor.

Rust is a powerful systems programming language with high performance and low memory usage which is suitable for a wide variety of tasks. Although currently a niche language for working with data, its popularity is quickly rising!

If you use Rust and want to work with MongoDB, this blog series is the place to start! I’m going to show you how to do the following:

  • Install the MongoDB Rust driver. The Rust driver is the mongodb crate which allows you to communicate with a MongoDB cluster.
  • Connect to a MongoDB instance.
  • Create, Read, Update & Delete (CRUD) documents in your database.

Later blog posts in the series will cover things like Change StreamsTransactions and the amazing Aggregation Pipeline feature which allows you to run advanced queries on your data.

Prerequisites

I’m going to assume you have a working knowledge of Rust. I won’t use any complex Rust code - this is a MongoDB tutorial, not a Rust tutorial - but you’ll want to know the basics of error-handling and borrowing in Rust, at least! You may want to run rustup update if you haven’t since March 2020 because I’ll be working with a recent release.

You’ll need the following:

  • An up-to-date Rust toolchain, version 1.44+. I recommend you install it with Rustup if you haven’t already.
  • A code editor of your choice. I recommend either IntelliJ Rust or the free VS Code with the official Rust plugin

The MongoDB Rust driver uses Tokio by default - and this tutorial will do that too. If you’re interested in running under async-std, or synchronously, the changes are straightforward. I’ll cover them at the end

Creating your database

You’ll use MongoDB Atlas to host a MongoDB cluster, so you don’t need to worry about how to configure MongoDB itself.

Get started with an M0 cluster on Atlas. It’s free forever, and it’s the easiest way to try out the steps in this blog series. You won’t even need to provide payment details.

You’ll need to create a new cluster and load it with sample data My awesome colleague Maxime Beugnet has created a video tutorial to help you out, but I also explain the steps below:

  • Click “Start free” on the MongoDB homepage.
  • Enter your details, or just sign up with your Google account, if you have one.
  • Accept the Terms of Service
  • Create a Starter cluster.
  • Select the same cloud provider you’re used to, or just leave it as-is. Pick a region that makes sense for you.
  • You can change the name of the cluster if you like. I’ve called mine “RustQuickstart”.

It will take a couple of minutes for your cluster to be provisioned, so while you’re waiting you can move on to the next step.

Starting your project

In your terminal, change to the directory where you keep your coding projects and run the following command:

1
cargo new --bin rust_quickstart

copy code

This will create a new directory called rust_quickstart containing a new, nearly-empty project. In the directory, open Cargo.toml and change the [dependencies] section so it looks like this:

1
2
[dependencies]
mongodb = "1.0.0"

copy code

Now you can download and build the dependencies by running:

1
cargo run

copy code

You should see lots of dependencies downloaded and compiled. Don’t worry, most of this only happens the first time you run it! At the end, if everything went well, it should print “Hello, World!” in your console.

#mongodb

What is GEEK

Buddha Community

QuickStart: CRUD Operations in Rust
Sigrid  Farrell

Sigrid Farrell

1624096385

Spring Boot CRUD Operations

In the video in this article, we take a closer look at the Spring Boot CRUD Operations Example alongside Exception Handling!

In the video below, we take a closer look at the Spring Boot CRUD Operations example with exception handling. Let’s get started!

#spring boot #spring boot tutorial for beginners #crud #crud #crud #spring boot crud operations

Laravel 8 CRUD Operation Example

Hello Friend,

As you know Laravel 8 already officially released and today I will show you how to create CRUD operation in laravel 8, I have already perform many CRUD operations in my previous post like CRUD operation in ajax, CRUD operation in laravel 6 etc. So, today I will give you laravel 8 CRUD application example.

Laravel 8 CRUD Operation Example

https://websolutionstuff.com/post/laravel-8-crud-operation-example

#laravel #php #laravel 8 crud operation example #crud operation #laravel 8 crud tutorial #crud operation in laravel 8

Serde Rust: Serialization Framework for Rust

Serde

*Serde is a framework for serializing and deserializing Rust data structures efficiently and generically.*

You may be looking for:

Serde in action

Click to show Cargo.toml. Run this code in the playground.

[dependencies]

# The core APIs, including the Serialize and Deserialize traits. Always
# required when using Serde. The "derive" feature is only required when
# using #[derive(Serialize, Deserialize)] to make Serde work with structs
# and enums defined in your crate.
serde = { version = "1.0", features = ["derive"] }

# Each data format lives in its own crate; the sample code below uses JSON
# but you may be using a different one.
serde_json = "1.0"

 

use serde::{Serialize, Deserialize};

#[derive(Serialize, Deserialize, Debug)]
struct Point {
    x: i32,
    y: i32,
}

fn main() {
    let point = Point { x: 1, y: 2 };

    // Convert the Point to a JSON string.
    let serialized = serde_json::to_string(&point).unwrap();

    // Prints serialized = {"x":1,"y":2}
    println!("serialized = {}", serialized);

    // Convert the JSON string back to a Point.
    let deserialized: Point = serde_json::from_str(&serialized).unwrap();

    // Prints deserialized = Point { x: 1, y: 2 }
    println!("deserialized = {:?}", deserialized);
}

Getting help

Serde is one of the most widely used Rust libraries so any place that Rustaceans congregate will be able to help you out. For chat, consider trying the #rust-questions or #rust-beginners channels of the unofficial community Discord (invite: https://discord.gg/rust-lang-community), the #rust-usage or #beginners channels of the official Rust Project Discord (invite: https://discord.gg/rust-lang), or the #general stream in Zulip. For asynchronous, consider the [rust] tag on StackOverflow, the /r/rust subreddit which has a pinned weekly easy questions post, or the Rust Discourse forum. It's acceptable to file a support issue in this repo but they tend not to get as many eyes as any of the above and may get closed without a response after some time.

Download Details:
Author: serde-rs
Source Code: https://github.com/serde-rs/serde
License: View license

#rust  #rustlang 

Ray  Patel

Ray Patel

1619565060

Ternary operator in Python?

  1. Ternary Operator in Python

What is a ternary operator: The ternary operator is a conditional expression that means this is a comparison operator and results come on a true or false condition and it is the shortest way to writing an if-else statement. It is a condition in a single line replacing the multiline if-else code.

syntax : condition ? value_if_true : value_if_false

condition: A boolean expression evaluates true or false

value_if_true: a value to be assigned if the expression is evaluated to true.

value_if_false: A value to be assigned if the expression is evaluated to false.

How to use ternary operator in python here are some examples of Python ternary operator if-else.

Brief description of examples we have to take two variables a and b. The value of a is 10 and b is 20. find the minimum number using a ternary operator with one line of code. ( **min = a if a < b else b ) **. if a less than b then print a otherwise print b and second examples are the same as first and the third example is check number is even or odd.

#python #python ternary operator #ternary operator #ternary operator in if-else #ternary operator in python #ternary operator with dict #ternary operator with lambda

Awesome  Rust

Awesome Rust

1654894080

Serde JSON: JSON Support for Serde Framework

Serde JSON

Serde is a framework for serializing and deserializing Rust data structures efficiently and generically.

[dependencies]
serde_json = "1.0"

You may be looking for:

JSON is a ubiquitous open-standard format that uses human-readable text to transmit data objects consisting of key-value pairs.

{
    "name": "John Doe",
    "age": 43,
    "address": {
        "street": "10 Downing Street",
        "city": "London"
    },
    "phones": [
        "+44 1234567",
        "+44 2345678"
    ]
}

There are three common ways that you might find yourself needing to work with JSON data in Rust.

  • As text data. An unprocessed string of JSON data that you receive on an HTTP endpoint, read from a file, or prepare to send to a remote server.
  • As an untyped or loosely typed representation. Maybe you want to check that some JSON data is valid before passing it on, but without knowing the structure of what it contains. Or you want to do very basic manipulations like insert a key in a particular spot.
  • As a strongly typed Rust data structure. When you expect all or most of your data to conform to a particular structure and want to get real work done without JSON's loosey-goosey nature tripping you up.

Serde JSON provides efficient, flexible, safe ways of converting data between each of these representations.

Operating on untyped JSON values

Any valid JSON data can be manipulated in the following recursive enum representation. This data structure is serde_json::Value.

enum Value {
    Null,
    Bool(bool),
    Number(Number),
    String(String),
    Array(Vec<Value>),
    Object(Map<String, Value>),
}

A string of JSON data can be parsed into a serde_json::Value by the serde_json::from_str function. There is also from_slice for parsing from a byte slice &[u8] and from_reader for parsing from any io::Read like a File or a TCP stream.

use serde_json::{Result, Value};

fn untyped_example() -> Result<()> {
    // Some JSON input data as a &str. Maybe this comes from the user.
    let data = r#"
        {
            "name": "John Doe",
            "age": 43,
            "phones": [
                "+44 1234567",
                "+44 2345678"
            ]
        }"#;

    // Parse the string of data into serde_json::Value.
    let v: Value = serde_json::from_str(data)?;

    // Access parts of the data by indexing with square brackets.
    println!("Please call {} at the number {}", v["name"], v["phones"][0]);

    Ok(())
}

The result of square bracket indexing like v["name"] is a borrow of the data at that index, so the type is &Value. A JSON map can be indexed with string keys, while a JSON array can be indexed with integer keys. If the type of the data is not right for the type with which it is being indexed, or if a map does not contain the key being indexed, or if the index into a vector is out of bounds, the returned element is Value::Null.

When a Value is printed, it is printed as a JSON string. So in the code above, the output looks like Please call "John Doe" at the number "+44 1234567". The quotation marks appear because v["name"] is a &Value containing a JSON string and its JSON representation is "John Doe". Printing as a plain string without quotation marks involves converting from a JSON string to a Rust string with as_str() or avoiding the use of Value as described in the following section.

The Value representation is sufficient for very basic tasks but can be tedious to work with for anything more significant. Error handling is verbose to implement correctly, for example imagine trying to detect the presence of unrecognized fields in the input data. The compiler is powerless to help you when you make a mistake, for example imagine typoing v["name"] as v["nmae"] in one of the dozens of places it is used in your code.

Parsing JSON as strongly typed data structures

Serde provides a powerful way of mapping JSON data into Rust data structures largely automatically.

use serde::{Deserialize, Serialize};
use serde_json::Result;

#[derive(Serialize, Deserialize)]
struct Person {
    name: String,
    age: u8,
    phones: Vec<String>,
}

fn typed_example() -> Result<()> {
    // Some JSON input data as a &str. Maybe this comes from the user.
    let data = r#"
        {
            "name": "John Doe",
            "age": 43,
            "phones": [
                "+44 1234567",
                "+44 2345678"
            ]
        }"#;

    // Parse the string of data into a Person object. This is exactly the
    // same function as the one that produced serde_json::Value above, but
    // now we are asking it for a Person as output.
    let p: Person = serde_json::from_str(data)?;

    // Do things just like with any other Rust data structure.
    println!("Please call {} at the number {}", p.name, p.phones[0]);

    Ok(())
}

This is the same serde_json::from_str function as before, but this time we assign the return value to a variable of type Person so Serde will automatically interpret the input data as a Person and produce informative error messages if the layout does not conform to what a Person is expected to look like.

Any type that implements Serde's Deserialize trait can be deserialized this way. This includes built-in Rust standard library types like Vec<T> and HashMap<K, V>, as well as any structs or enums annotated with #[derive(Deserialize)].

Once we have p of type Person, our IDE and the Rust compiler can help us use it correctly like they do for any other Rust code. The IDE can autocomplete field names to prevent typos, which was impossible in the serde_json::Value representation. And the Rust compiler can check that when we write p.phones[0], then p.phones is guaranteed to be a Vec<String> so indexing into it makes sense and produces a String.

The necessary setup for using Serde's derive macros is explained on the Using derive page of the Serde site.

Constructing JSON values

Serde JSON provides a json! macro to build serde_json::Value objects with very natural JSON syntax.

use serde_json::json;

fn main() {
    // The type of `john` is `serde_json::Value`
    let john = json!({
        "name": "John Doe",
        "age": 43,
        "phones": [
            "+44 1234567",
            "+44 2345678"
        ]
    });

    println!("first phone number: {}", john["phones"][0]);

    // Convert to a string of JSON and print it out
    println!("{}", john.to_string());
}

The Value::to_string() function converts a serde_json::Value into a String of JSON text.

One neat thing about the json! macro is that variables and expressions can be interpolated directly into the JSON value as you are building it. Serde will check at compile time that the value you are interpolating is able to be represented as JSON.

let full_name = "John Doe";
let age_last_year = 42;

// The type of `john` is `serde_json::Value`
let john = json!({
    "name": full_name,
    "age": age_last_year + 1,
    "phones": [
        format!("+44 {}", random_phone())
    ]
});

This is amazingly convenient, but we have the problem we had before with Value: the IDE and Rust compiler cannot help us if we get it wrong. Serde JSON provides a better way of serializing strongly-typed data structures into JSON text.

Creating JSON by serializing data structures

A data structure can be converted to a JSON string by serde_json::to_string. There is also serde_json::to_vec which serializes to a Vec<u8> and serde_json::to_writer which serializes to any io::Write such as a File or a TCP stream.

use serde::{Deserialize, Serialize};
use serde_json::Result;

#[derive(Serialize, Deserialize)]
struct Address {
    street: String,
    city: String,
}

fn print_an_address() -> Result<()> {
    // Some data structure.
    let address = Address {
        street: "10 Downing Street".to_owned(),
        city: "London".to_owned(),
    };

    // Serialize it to a JSON string.
    let j = serde_json::to_string(&address)?;

    // Print, write to a file, or send to an HTTP server.
    println!("{}", j);

    Ok(())
}

Any type that implements Serde's Serialize trait can be serialized this way. This includes built-in Rust standard library types like Vec<T> and HashMap<K, V>, as well as any structs or enums annotated with #[derive(Serialize)].

Performance

It is fast. You should expect in the ballpark of 500 to 1000 megabytes per second deserialization and 600 to 900 megabytes per second serialization, depending on the characteristics of your data. This is competitive with the fastest C and C++ JSON libraries or even 30% faster for many use cases. Benchmarks live in the serde-rs/json-benchmark repo.

Getting help

Serde is one of the most widely used Rust libraries, so any place that Rustaceans congregate will be able to help you out. For chat, consider trying the #rust-questions or #rust-beginners channels of the unofficial community Discord (invite: https://discord.gg/rust-lang-community), the #rust-usage or #beginners channels of the official Rust Project Discord (invite: https://discord.gg/rust-lang), or the #general stream in Zulip. For asynchronous, consider the [rust] tag on StackOverflow, the /r/rust subreddit which has a pinned weekly easy questions post, or the Rust Discourse forum. It's acceptable to file a support issue in this repo, but they tend not to get as many eyes as any of the above and may get closed without a response after some time.

No-std support

As long as there is a memory allocator, it is possible to use serde_json without the rest of the Rust standard library. This is supported on Rust 1.36+. Disable the default "std" feature and enable the "alloc" feature:

[dependencies]
serde_json = { version = "1.0", default-features = false, features = ["alloc"] }

For JSON support in Serde without a memory allocator, please see the serde-json-core crate.

Link: https://crates.io/crates/serde_json

#rust  #rustlang  #encode   #json