Mastering styled text in Flutter

Mastering styled text in Flutter

In this tutorial we are going to start with an overview of Dart strings and Unicode. Next we’ll move on to styling text for your app, first for entire strings and then for spans within a string.

Introduction

In this tutorial we are going to start with an overview of Dart strings and Unicode. Next we’ll move on to styling text for your app, first for entire strings and then for spans within a string.

Prerequisites

To go through this tutorial you should have the Flutter development environment set up and know how to run an app. I’m using Android Studio with the Flutter 1.1 plugin, which uses Dart 2.1.

Setup

Create a new Flutter app. I’m calling mine flutter_text.

Open main.dart and replace the code with the following:

    import 'package:flutter/material.dart';

    void main() => runApp(MyApp());

    class MyApp extends StatelessWidget {
      @override
      Widget build(BuildContext context) {
        return MaterialApp(
          debugShowCheckedModeBanner: false,
          home: Scaffold(
            appBar: AppBar(title: Text('Styling text')),
            body: Container(
              child: Center(
                child: _myWidget(context),
              ),
            ),
          ),
        );
      }
    }

    // modify this widget with the example code below
    Widget _myWidget(BuildContext context) {
      String myString = 'I ❤️ Flutter';
      print(myString);
      return Text(
        myString,
        style: TextStyle(fontSize: 30.0),
      );
    }

Note the _myWidget() function at the end. You can modify or replace it using the examples below. The more you experiment on your own, the more you will learn.

If you are already familiar with concepts like grapheme clusters and Dart strings, you can skip down to the text styling sections below.

Unicode

Coded messages

When I was a kid I liked to write “secret” messages in code, where 1=a, 2=b, 3=c and so on until 26=z. A message using this code might be:

    9   12 9 11 5   6 12 21 20 20 5 18


To make the code even more secret you could shift the numbers, where 1=b, 2=c, 3=d and so on until it wrapped around where 26=a. As long as my friend and I had the same code key, we could decode each other’s messages. The wrong code key, though, would give garbled nonsense.

Computers are similar, except most of the time we don’t want secret messages. We want to make our messages easy to decode, so we agree on a code key, or should I say, a standard. ASCII was an early example of this, where the code key was 97=a, 98=b, 99=c, and so on. That worked fine for English but ASCII only had 128 codes (from 7 bits of data) and that wasn’t enough for all of the characters in other languages. So people made other code keys with more numbers. The problem was that the numbers overlapped and when you used the wrong decoding key you ended up with garbled nonsense.

Unicode to the rescue

Unicode is an international standard that assigns unique code numbers for the characters of every language in the world. The code numbers are called code points. In addition to what we normally think of as characters, there are also code points for control characters (like a new line), diacritical marks (like the accent over an é), and pictures (like 😊). As long as everyone agrees to use this code standard, there are no more fewer garbled messages.

Unicode is just a long list of code points. Saving these code points or sending them is another matter. To help you understand this, take my secret message from above as an example. If I write it as a string of numbers without whitespace and try to send it to you, you get:

    9129115612212020518


This is almost impossible to decode now. Does 912 mean 9, 1, 2 or does it mean 9, 12? It’s the same situation with Unicode. We have to use an agreed upon means to save and send Unicode text, or else it would be very difficult to decode. There are three main ways to do it: UTF-8, UTF-16, and UTF-32. UTF stands for Unicode Transformation Format, and each method of encoding has its advantages and disadvantages.

  • UTF-8 saves each code point using one to four bytes of data.
  • UTF-16 saves each code point as two or four bytes of data. One 16-bit code unit is big enough to uniquely reference a lot of Unicode code points, but not big enough for all of them (emojis, for example). In order to save code points with numbers higher than 16 bits (that is, higher than the number 65,535), UTF-16 uses two 16-bit code units (called surrogate pairs) to map the other code points.
  • UTF-32 saves each code point using four bytes of data. It provides a direct one-to-one mapping of UTF-32 code units to Unicode code points.

When working with UTF-16 code units, you need to be careful not to forget about the other half of a surrogate pair. And even if you are working with UTF-32, you shouldn’t assume that a single code point is the same as what a user perceives to be a character. For example, country flags (like 🇨🇦) are made of two code points. An accented character (like é) can also optionally be made from two code points. In addition to this, there are emoji with skin tone (like 👩🏾, 2 code points) and family emoji (like 👨‍👩‍👧, 5 code points).

So as a programmer, it is better not to think of UTF code units or Unicode code points as characters themselves. That will lead to bugs (for example, when trying to move the cursor one place to the left). Instead, you should think about what Unicode calls a grapheme cluster. These are user-perceived characters. So 🇨🇦, é, 👩🏾, and 👨‍👩‍👧 are each a single grapheme cluster because they each look like a single character even though they are made up of multiple Unicode code points.

Further reading

If you find this interesting or would like a deeper understand of the issues related to Unicode, I encourage you to read the following articles:

  • UTF-8 saves each code point using one to four bytes of data.
  • UTF-16 saves each code point as two or four bytes of data. One 16-bit code unit is big enough to uniquely reference a lot of Unicode code points, but not big enough for all of them (emojis, for example). In order to save code points with numbers higher than 16 bits (that is, higher than the number 65,535), UTF-16 uses two 16-bit code units (called surrogate pairs) to map the other code points.
  • UTF-32 saves each code point using four bytes of data. It provides a direct one-to-one mapping of UTF-32 code units to Unicode code points.
Dart strings

Let’s move on from talking about Unicode in a general way to seeing how Dart uses it.

Code units

In Dart, strings are sequences of UTF-16 code units. That makes string manipulation look deceptively easy because you can get the string value of a code unit by a random integer index:

    String myString = 'Flutter';
    String myChar = myString[0]; // F

But this creates bugs if you split a surrogate pair.

    String myString = '🍎';                    // apple emoji
    List<int> codeUnits = myString.codeUnits;  // [55356, 57166]
    String myChar = myString[0];               // 55356 (half of a surrogate pair)

This will throw an exception if you try to display myChar in a Text widget.

Runes

A better alternative is to work with code points, which are called runes in Dart.

    String myString = '🍎π';

    List<int> codeUnits = myString.codeUnits;    // [55356, 57166, 960]
    int numberOfCodeUnits = myString.length;     // 3
    int firstCodeUnit = myString.codeUnitAt(0);  // 55356

    Runes runes = myString.runes;                // (127822, 960)
    int numberOfCodPoints = runes.length;        // 2
    int firstCodePoint = runes.first;            // 127822

Grapheme clusters

Even runes will fail when you have grapheme clusters composed of multiple code points.

    String myString = '🇨🇦';
    Runes runes = myString.runes;                // (127464, 127462)
    int numberOfCodePoints = runes.length;       // 2
    int firstCodePoint = runes.first;            // 127464
    String halfFlag = String.fromCharCode(firstCodePoint); // 🇨

Displaying the halfFlag string in your app won’t crash it, but users will perceive it as a bug since it only contains one of the two regional indicator symbols used to make the Canadian flag.

Unfortunately, at the time of this writing, there is no support for grapheme clusters in Dart, though there is talk of implementing it. You should still keep them in mind while writing tests and working with strings, though.

Hexadecimal notation

If you are starting with a Unicode hex value, this is how you get a string:

    String s1 = '\u0043';                // C
    String s2 = '\u{43}';                // C
    String s3 = '\u{1F431}';             // 🐱 (cat emoji)
    String s4 = '\u{65}\u{301}\u{20DD}'; //  é⃝ = "e" + accent mark + circle
    int charCode = 0x1F431;              // 🐱 (cat emoji)
    String s5 = String.fromCharCode(charCode);

Substrings

The String documentation (here and here) is pretty good, and you should read it if you haven’t already. I want to review substrings before we go on to text styling, though, since we will be using it later.

To get a substring you do the following:

    String myString = 'I ❤️ Flutter.';
    int startIndex = 5;
    int endIndex = 12;
    String mySubstring = myString.substring(startIndex, endIndex); // Flutter

You can find index numbers with indexOf():

    int startIndex = myString.indexOf('Flutter');

OK, that’s enough background information. Let’s get on to styling text in Flutter.

Text styling with the Text widget

We are going to look first at styling strings in a Text widget. After that we will see how to style substrings within a RichText widget. Both of these widgets use a TextStyle widget to hold the styling information.

Replace _myWidget() with the following code:

    Widget _myWidget(BuildContext context) {
      return Text(
        'Styling text in Flutter',
        style: TextStyle(
          fontSize: 30.0,
        ),
      );
    }

Or, if you would like to compare multiple style settings at once, you can use the following column layout.

    Widget _myWidget(BuildContext context) {
      return Column(
        mainAxisAlignment: MainAxisAlignment.center,
        children: <Widget>[
          Text(
            'Styling text in Flutter',
            style: TextStyle(
              fontSize: 8,
            ),
          ),
          Text(
            'Styling text in Flutter',
            style: TextStyle(
              fontSize: 12,
            ),
          ),
          Text(
            'Styling text in Flutter',
            style: TextStyle(
              fontSize: 16,
            ),
          ),
        ],
      );
    }

Note that I am setting the TextStyle using the style property of the Text widget. I will modify the TextStyle options below. Try them out yourself by pressing hot reload between every change. You may want to leave a large font size (like fontSize: 30) for some of the later examples below so that you can see what is happening.

Text size

    TextStyle(
      fontSize: 30.0,
    )

When fontSize is not given, the default size is 14 logical pixels. Logical pixels are independent of a device’s density. That is, the text should appear to be to be basically the same size no matter what the pixel density of a user’s device may be. However, this font size is also multiplied by a textScaleFactor depending on the user’s preferred font size.

If you wish to disable accessibility scaling, you can set it on the Text widget. (I’m very impressed that Flutter has accessibility enabled by default, and I definitely don’t suggest that you disable it without reason. In some rare cases, though, an oversized font might break a layout…in which case it would still probably be better to redesign your layout rather than disable accessibility.)

    // This text will always display at 30.0 logical pixels, no matter
    // what the user's preferred size is.
    Text(
      'Some text',
      textScaleFactor: 1.0, // disables accessibility
      style: TextStyle(
        fontSize: 30.0
      ),
    )

You can also use the theme data to set the text size. See the section on themes below.

Text color

    TextStyle(
      color: Colors.green,
    )

In addition to predefined colors like Colors.green and Colors.red, you can also set shades on a color, like Colors.blue[100] or Colors.blue[700].

Background color

    Widget _myWidget(BuildContext context) {
      Paint paint = Paint();
      paint.color = Colors.green;
      return Text(
        'Styling text in Flutter',
        style: TextStyle(
          background: paint,
          fontSize: 30.0,
        ),
      );
    }

For a Text widget you could also just wrap it in a Container and set the color on the Container.

Bold

    TextStyle(
      fontWeight: FontWeight.bold,
    )

You can set the weight with numbers like FontWeight.w100 where w400 is the same as normal and w700 is the same as bold.

Italic

    TextStyle(
      fontStyle: FontStyle.italic,
    )

The only choices are italic and normal.

Shadow

    TextStyle(
      shadows: [
        Shadow(
          blurRadius: 10.0,
          color: Colors.blue,
          offset: Offset(5.0, 5.0),
        ),
      ],
    )

When setting the shadow you can change the blur radius (bigger means more blurry), color, and offset. You can even set multiple shadows as if there were more than one light source.

    TextStyle(
      shadows: [
        Shadow(
          color: Colors.blue,
          blurRadius: 10.0,
          offset: Offset(5.0, 5.0),
        ),
        Shadow(
          color: Colors.red,
          blurRadius: 10.0,
          offset: Offset(-5.0, 5.0),
        ),
      ],
    )

I’m not sure if more than one shadow is useful or not, but it is interesting.

Underline

    TextStyle(
      decoration: TextDecoration.underline,
      decorationColor: Colors.black,
      decorationStyle: TextDecorationStyle.solid,
    )

The decoration can be underline, lineThrough, or overline. The last line of text in the image above has an overline.

The choices for decorationStyle are solid, double, dashed, dotted, and wavy.

Spacing

    TextStyle(
      letterSpacing: -1.0,
      wordSpacing: 5.0,
    )

In the example image, the six lines on top use letter spacing ranging from -2.0 to 3.0. The six lines on bottom use word spacing ranging from -3.0 to 12.0. A negative value moves the letters or words closer together.

Font

Using a custom font requires a few more steps:

  1. Add a directory called assets to the root of your project.
  2. Copy a font into it. (I downloaded the Dancing Script font from here, unzipped it, and renamed the regular one to dancing_script.ttf.)
  3. In pubspec.yaml register the font:
    flutter:
      fonts:
      - family: DancingScript
        fonts:
        - asset: assets/dancing_script.ttf

  1. Add a directory called assets to the root of your project.
  2. Copy a font into it. (I downloaded the Dancing Script font from here, unzipped it, and renamed the regular one to dancing_script.ttf.)
  3. In pubspec.yaml register the font:
    TextStyle(
      fontFamily: 'DancingScript',
    )

  1. Add a directory called assets to the root of your project.
  2. Copy a font into it. (I downloaded the Dancing Script font from here, unzipped it, and renamed the regular one to dancing_script.ttf.)
  3. In pubspec.yaml register the font:

See this post for more help.

Using themes

Our root widget is a MaterialApp widget, which uses the Material Design theme. Through the BuildContext we have access to its predefined text styles. Instead of creating our own style with TextStyle, you can use a default one like this:

    Text(
      'Styling text in Flutter',
      style: Theme.of(context).textTheme.title,
    )

That was the default style for titles. There are many more defaults for other types of text. Check them out:

If a style is not specified, Text uses the DefaultTextStyle. You can use it yourself like this:

    Text(
      'default',
      style: DefaultTextStyle.of(context).style,
    )

DefaultTextStyle gets its style from the build context.

See the documentation for more about using themes.

Text styling with the RichText widget

The final thing I want to teach you is how to style part of a text string. With a Text widget the whole string has the same style. A RichText widget, though, allows us to add TextSpans that include different styles.

Basic example

Replace _myWidget() with the following code:

    Widget _myWidget(BuildContext context) {
      return RichText(
        text: TextSpan(
          // set the default style for the children TextSpans
          style: Theme.of(context).textTheme.body1.copyWith(fontSize: 30),
          children: [
            TextSpan(
                text: 'Styling ',
            ),
            TextSpan(
              text: 'text',
              style: TextStyle(
                color: Colors.blue
              )
            ),
            TextSpan(
                text: ' in Flutter',
            ),
          ]
        )
      );
    }

Note: An alternate way to make text with styled spans is to use the Text.rich() constructor, which has the same default style as the Text widget.
RichText takes a TextSpan tree. Every very TextSpan takes more TextSpan children, which inherit the style of their parent. To make the word “text” blue, I had to divide the string into three TextSpans. I used a color for the style, but I could have just as easily used any of the other styles that we have already looked at. Try adding a few more styles yourself.

Styling programmatically

In a real application we would probably have a longer string. For example, let’s highlight every occurrence of “text” in the following string:

To do that we have to look at the string and find the indexes of the text that we want to style. Then we use substring to cut the string up and put it in a list of TextSpans.

Replace _myWidget() with the following code:

    Widget _myWidget(BuildContext context) {

      final String myString =
          'Styling text in Flutter Styling text in Flutter '
          'Styling text in Flutter Styling text in Flutter '
          'Styling text in Flutter Styling text in Flutter '
          'Styling text in Flutter Styling text in Flutter '
          'Styling text in Flutter Styling text in Flutter ';

      final wordToStyle = 'text';
      final style = TextStyle(color: Colors.blue);
      final spans = _getSpans(myString, wordToStyle, style);

      return RichText(
        text: TextSpan(
          style: Theme.of(context).textTheme.body1.copyWith(fontSize: 30),
          children: spans,
        ),
      );
    }

    List<TextSpan> _getSpans(String text, String matchWord, TextStyle style) {

      List<TextSpan> spans = [];
      int spanBoundary = 0;

      do {

        // look for the next match
        final startIndex = text.indexOf(matchWord, spanBoundary);

        // if no more matches then add the rest of the string without style
        if (startIndex == -1) {
          spans.add(TextSpan(text: text.substring(spanBoundary)));
          return spans;
        }

        // add any unstyled text before the next match
        if (startIndex > spanBoundary) {
          spans.add(TextSpan(text: text.substring(spanBoundary, startIndex)));
        }

        // style the matched text
        final endIndex = startIndex + matchWord.length;
        final spanText = text.substring(startIndex, endIndex);
        spans.add(TextSpan(text: spanText, style: style));

        // mark the boundary to start the next search from
        spanBoundary = endIndex;

      // continue until there are no more matches
      } while (spanBoundary < text.length);

      return spans;
    }

Experiment with changing the search word and style.

In this example we searched for plain text, but you can also do pattern matching using regular expressions.

Clickable spans

You can make a span clickable by adding a TapGestureRecognizer:

    TextSpan(
      text: spanText,
      style: style,
      recognizer: TapGestureRecognizer()
        ..onTap = () {
          // do something
        },
    )

This would allow you to open a URL, for example, if used along with the url_launcher plugin.

Final notes

Here are a few more related concepts that I didn’t have time or space to cover:

  • UTF-8 saves each code point using one to four bytes of data.
  • UTF-16 saves each code point as two or four bytes of data. One 16-bit code unit is big enough to uniquely reference a lot of Unicode code points, but not big enough for all of them (emojis, for example). In order to save code points with numbers higher than 16 bits (that is, higher than the number 65,535), UTF-16 uses two 16-bit code units (called surrogate pairs) to map the other code points.
  • UTF-32 saves each code point using four bytes of data. It provides a direct one-to-one mapping of UTF-32 code units to Unicode code points.
Conclusion

Text seems like it should be so simple, but it really isn’t. Language is messy and dealing with it as a programmer can be difficult. Much progress has been made in recent years, though. Unicode has solved a lot of problems. Dart and Flutter also give us a lot of tools to manipulate and style text. I expect to see these tools improve even more in the future.

The source code for this project is available on GitHub.

By the way, in case you were curious but lazy, my secret message was “I like Flutter”.

Flutter Tutorial for Beginners - Build Android and iOS Apps with a Flutter Framework

Build Android and iOS apps with a flutter framework


You’ll learn

  • Better understanding of flutter and it’s basic widgets
  • Develop basic flutter application for android and iOS


Thanks for watching

If you liked this post, share it with all of your programming buddies!

Follow us on Facebook | Twitter

Further reading

Learn Flutter & Dart to Build iOS & Android Apps

Flutter & Dart - The Complete Flutter App Development Course

Dart and Flutter: The Complete Developer’s Guide

Flutter - Advanced Course

Flutter Tutorial - Flight List UI Example In Flutter

Flutter Tutorial for Beginners - Full Tutorial

Using Go Library in Flutter

Parsing JSON in Flutter

Flutter Tutorial - Build iOS & Android App with Google Flutter & Dart

Flutter Tutorial - Build iOS & Android App with Google Flutter & Dart

In this Flutter Tutorial for Beginners, you will learn how to build iOS & Android apps with Google Flutter and Dart

In this post, Flutter Tutorial for Beginners; you will learn how to build iOS & Android apps with Googles Flutter and Dart.

You don't need to learn Android/ Java and iOS/ Swift development to build real native mobile apps!

Flutter - a framework developed by Google - allows you to learn one language (Dart) and build beautiful native mobile apps in no time. Flutter is a SDK providing the tooling to compile that Dart code into native code and it also gives you a rich set of pre-built and pre-styled UI elements (so called widgets) which you can use to compose your user interfaces!

Let's get started in this video!

Take the full course on Udemy at a discount with the following link: http://bit.ly/2O5EaKu

Introduction to Flutter: Building iOS and Android Apps from a Single Codebase

Introduction to Flutter: Building iOS and Android Apps from a Single Codebase

Flutter allows developers to develop both Android and iOS apps using a single codebase. In this tutorial, we will introduce Flutter by building iOS and Android Apps from a Single Codebase.

Flutter allows developers to develop both Android and iOS apps using a single codebase. In this tutorial, we will introduce Flutter by building iOS and Android Apps from a Single Codebase.

Welcome to my first tutorial on Flutter. I have never written any post on cross-platform or hybrid app framework but Flutter has changed this mindset of mine.

Previously, I have developed on React Native, Cordova, Phone Gap, Ionic and now of these really work out for me until I found Flutter along with its huge community of developers and its showcase apps.

What is Flutter?

In a nutshell, it is a multi-layered system, such that higher layers are easier to use and allow you to express a lot with little code and lower layers give you more control at the expense of having to deal with some complexity.

Flutter Framework is written entirely in Dart. Most of the engine is written in C++, with Android-specific parts written in Java, and iOS-specific parts written in Objective-C. Like React Native, Flutter also provides reactive-style views, but Flutter takes a different approach to avoid performance problems caused by the need for a JavaScript bridge by using a compiled programming language, namely Dart.

Dart is compiled “ahead of time” (AOT) into native code for multiple platforms. This allows Flutter to communicate with the platform without going through a JavaScript bridge that does a context switch. It also compiles to native code which in turn improves app startup times.

In Flutter, it is all about Widgets. Widgets are the elements that affect and control the view and interface to an app.

Flutter renders the widget tree and paints it to a platform canvas. This is nice and simple (and fast). It’s Hot-Reload capability allows real-time development experience.

You can read more about Flutter and learn about its goodness here.

Getting Started

Today, we will be building a very simple Flutter app that can be deployed on both iOS & Android called Contactly as we go through this tutorial. This is a very simple Contacts List app which will demonstrate the capabilities of Flutter. Capabilities include:

  1. TextField & Validations
  2. Button Clicks
  3. Navigations
  4. Image Rendering (Local & Online)
  5. Error Alert Dialog
  6. Scrollable List View
  7. List View Search
  8. JSON File Parsing
  9. JSON to Objects Mapping
  10. Opening External Web Browser

The final product of this app should look something like this:

It includes these features:

  1. TextField & Validations
  2. Button Clicks
  3. Navigations
  4. Image Rendering (Local & Online)
  5. Error Alert Dialog
  6. Scrollable List View
  7. List View Search
  8. JSON File Parsing
  9. JSON to Objects Mapping
  10. Opening External Web Browser
The Flutter’s Project Structure

While you haven’t built any apps using Flutter, let me give you a quick overview of its project structure. Later when you create a Flutter project, you should see a project structure as such:

  1. TextField & Validations
  2. Button Clicks
  3. Navigations
  4. Image Rendering (Local & Online)
  5. Error Alert Dialog
  6. Scrollable List View
  7. List View Search
  8. JSON File Parsing
  9. JSON to Objects Mapping
  10. Opening External Web Browser

I know you can’t wait to try out Flutter. Let’s dive in and set up all the required tools on your machine.

Installing Flutter

At the time of this writing, I’m using the following machine configuration and software version:

  1. TextField & Validations
  2. Button Clicks
  3. Navigations
  4. Image Rendering (Local & Online)
  5. Error Alert Dialog
  6. Scrollable List View
  7. List View Search
  8. JSON File Parsing
  9. JSON to Objects Mapping
  10. Opening External Web Browser

I cannot guarantee that my tutorial will work for every configuration and platform, hence, I will not include configuration troubleshooting here to keep this tutorial short and objective-oriented.

First up, head over to Flutter Installation page to install Flutter. I will skip the steps here as the steps in the document is detailed enough.

Once you run flutter doctor and you got (1~4 checked), you are good to go! It’s not necessary to have Connected Devices checked.

Doctor summary (to see all details, run flutter doctor -v):
[✓] Flutter (Channel stable, v1.0.0, on Mac OS X 10.13.6 17G4015, locale en-SG)
[✓] Android toolchain - develop for Android devices (Android SDK 28.0.3)
[✓] iOS toolchain - develop for iOS devices (Xcode 10.1)
[✓] Android Studio (version 3.2)
[✓] Connected device (2 available)

If you have encountered any errors like below, follow the suggested solutions to fix it. For example, if your Mac has not installed with Android Studio, head over to this website to download the software. Just make sure you have the first 4 items checked before moving on.

Creating a new Flutter Project

With Flutter installed, now let’s start to build your first Flutter project.

First, fire up Android Studio and click Start a new Flutter Project.

Next, select Flutter Application and click Next.

Then fill in Project name as contactly, or anything you like. By default, it should show your default path of the Flutter path. In case it doesn’t work for you, navigate and specify your own Flutter SDK path. Optionally, you can change your project location and give a simple description. Then, click Next.

Finally, fill in a Company domain. This will be replicated in your Bundle Identifier (iOS) & Package Name (Android). For my case, I checked both Kotlin & Swift support. Then, click Finish.

Trying out an App on iOS Simulator

Once you started your Flutter Application, some boilerplate code is automatically generated with a sample app that allows you to hit a button and perform some text updates. Before we make any code changes, it is a good checkpoint to try running it on your iOS simulator.

To run the app, find the dropdown list somewhere at the top right that says , click on it and select Open iOS Simulator.

Your last selected simulator hardware will be chosen, which is iPhone XR for my case.

Click Run, which is the green triangle, and the app should open in your simulator. You should be able to interact with the Demo app and push a few buttons!

Building the Main Page

With the demo app running successfully, we are now ready to start building our first Flutter App!

Let’s start by deleting all the code in main.dart. Yes! Press command-a to select the whole code snippet and hit Delete.

Now we will begin to write the code from scratch. First, insert the following line of code to import the material package:

import 'package:flutter/material.dart';

This package is essential for building the UI of the app. To ensure that the app knows what to run after it finishes launching, add the main() method like this:

void main() => runApp(ContactlyApp());

It’s always a good practice to organize files into separate packages and put the constants in a separate. So, let’s create the helper package and the Constants.dart file to place some of our constant values we will be using in this app.

Right-click on the lib folder and then select New > Package. Name the package helpers.

Now we have a separate folder to store our helper classes. To create a new dart file, right-click on helpers and then select New > File. Name it Constants.dart.

In Constants.dart, insert the following code:

import 'package:flutter/material.dart';
 
// Colors
Color appDarkGreyColor = Color.fromRGBO(58, 66, 86, 1.0);
 
// Strings
const appTitle = "Contactly";

Here we import the same material package, so we can use the Color declaration and declare an appTitle to be used app-wide.

Now head back to main.dart and add this import statement after the first import line.

import 'helpers/Constants.dart';

Let’s start building our Main Page by adding these lines of codes:

class ContactlyApp extends StatelessWidget {
 
  @override
  Widget build(BuildContext context) {
    return MaterialApp(
      debugShowCheckedModeBanner: false,
      title: appTitle,
      theme: new ThemeData(
        primaryColor: appDarkGreyColor,
      ),
    );
  }
 
}

MaterialApp is one of the convenience widgets which allows customisations like adding navigation routes, appBar etc. Setting debugShowCheckedModeBanner to false will get rid of the Red Debug label at the top right. We use our declared appTitle in our constant file here to give it a title. Then, we set the primaryColor.

All the code looks good here and you might be eager to try running it. If you really did, you will get a huge red-colored error screen!

This is because we are not yet ready to paint the canvas. Be Patient!

In most tutorials, they will guide you on building everything into main.dart. But I find that we could make it cleaner by separating each page into separate files, which you will be eventually doing so when building production-ready apps.

Meanwhile, Android Studio should indicate an error in the widget_test.dart file. Since we change the class name from MyApp to ContactlyApp, you should change the following line of code from:

await tester.pumpWidget(MyApp());

to:

await tester.pumpWidget(ContactlyApp());

Building the Login Page

Now let’s go ahead to create a new page called LoginPage.dart and place it under lib. Perform the same ritual of importing material package.

Here we will be creating a Stateless Widget since we don’t need to store any form of data. You can find more details about Stateless VS Stateful here.

Before we go into the code, let’s look at how the login screen should look like:

As you can see, the screen has the following components:

  1. TextField & Validations
  2. Button Clicks
  3. Navigations
  4. Image Rendering (Local & Online)
  5. Error Alert Dialog
  6. Scrollable List View
  7. List View Search
  8. JSON File Parsing
  9. JSON to Objects Mapping
  10. Opening External Web Browser

To implement the screen component, insert the following code. Just copy & paste it first, we will go through them in awhile!

import 'package:flutter/material.dart';
import 'helpers/Constants.dart';
 
// 1
class LoginPage extends StatelessWidget {
 
  // 2
  final _pinCodeController = TextEditingController();
 
  // 3
  @override
  Widget build(BuildContext context) {
     // 3a
    final logo = CircleAvatar(
        backgroundColor: Colors.transparent,
        radius: bigRadius,
        child: appLogo,
    );
 
     // 3b
    final pinCode = TextFormField(
      controller: _pinCodeController,
      keyboardType: TextInputType.phone,
      maxLength: 4,
      maxLines: 1,
      autofocus: true,
      decoration: InputDecoration(
          hintText: pinCodeHintText,
          contentPadding: EdgeInsets.fromLTRB(20.0, 10.0, 20.0, 10.0),
          border: OutlineInputBorder(
            borderRadius: BorderRadius.circular(32.0),
          ),
          hintStyle: TextStyle(
              color: Colors.white
          )
      ),
      style: TextStyle(
        color: Colors.white,
      ),
    );
 
     // 3c
    final loginButton = Padding(
      padding: EdgeInsets.symmetric(vertical: 16.0),
      child: RaisedButton(
        shape: RoundedRectangleBorder(
          borderRadius: BorderRadius.circular(24),
        ),
        onPressed: () {},
        padding: EdgeInsets.all(12),
        color: appGreyColor,
        child: Text(loginButtonText, style: TextStyle(color: Colors.white)),
      ),
    );
 
     // 3d
    return Scaffold(
      backgroundColor: appDarkGreyColor,
      body: Center(
        child: ListView(
          shrinkWrap: true,
          padding: EdgeInsets.only(left: 24.0, right: 24.0),
          children: [
            logo,
            SizedBox(height: bigRadius),
            pinCode,
            SizedBox(height: buttonHeight),
            loginButton
          ],
        ),
      ),
    );
  }
}

And, for the Constants.dart file, please update it like this to add a number of constants that we use in the build method:

import 'package:flutter/material.dart';
 
// Colors
Color appDarkGreyColor = Color.fromRGBO(58, 66, 86, 1.0);
Color appGreyColor = Color.fromRGBO(64, 75, 96, .9);
 
// Strings
const appTitle = "Contactly";
const pinCodeHintText = "Pin Code";
const loginButtonText = "Login";
 
// Images
Image appLogo = Image.asset('assets/images/flutter-logo-round.png');
 
// Sizes
const bigRadius = 66.0;
const buttonHeight = 24.0;

OMG! That’s a huge chunk of code! Yes, but no worries. This is the first time we are really going deep into huge piles of the Dart code. Trust me, after going through these, you will get more familiar with how Flutter works 🙂

I have broken down this large piece of code into 3 major parts so that we can digest them easier:

  1. TextField & Validations
  2. Button Clicks
  3. Navigations
  4. Image Rendering (Local & Online)
  5. Error Alert Dialog
  6. Scrollable List View
  7. List View Search
  8. JSON File Parsing
  9. JSON to Objects Mapping
  10. Opening External Web Browser
  • First, we have our logo. It is embedded in a Circular Frame by using the CircularAvatar class. It also has an appLogo image.

If you run the app now, you will probably end up with an error saying that the image asset cannot be loaded. We know the path is given to load the Image but there are 2 missing pieces: the image itself and the path that we need to include in pubspec.yaml.

First, you can get the logo image I use from here. Then, create a new directory called assets in the root directory, and create a sub-directory called images.

Your image should be placed in root/assets/images.

Then, go to pubspec.yaml and add the following code to inform the app what assets to bundle together during runtime so it can be loaded.

assets:
    - assets/images/flutter-logo-round.png

Please note that you must add the configuration above to the flutter: section like this:

flutter:
  assets:
    - assets/images/flutter-logo-round.png

  • First, we have our logo. It is embedded in a Circular Frame by using the CircularAvatar class. It also has an appLogo image.

That was like an Effiel Tower of Codes! UI codes are tough 😭

Before we run the app, we also need to tell our main() to run LoginPage as the home page. So, head back to main.dart and add home: LoginPage() after theme. Your build code should look like this:

  @override
  Widget build(BuildContext context) {
    return MaterialApp(
      debugShowCheckedModeBanner: false,
      title: appTitle,
      theme: new ThemeData(
        primaryColor: appDarkGreyColor,
      ),
      home: LoginPage() // just added
    );
  }
 

Also, you will need to import LoginPage.dart at the very beginning of the file:

import 'LoginPage.dart';

Now run the app! You should see the Login Screen like this:

Cool, right? Let’s continue to build the rest of the screens.

Building Contacts List Page

Now we are warmed up a little, we can go a bit faster. We will now build the main feature of this app, the Contact List page. We will create a new file called HomePage.dart. Once you created the file, make sure you import material package:

import 'package:flutter/material.dart';

Contacts List Page will be a Stateful widget since we need to maintain the state of our contacts data. So add these first few lines of boilerplate codes:

class HomePage extends StatefulWidget {
 
  @override
  _HomePageState createState() {
    return _HomePageState();
  }
 
}
 
class _HomePageState extends State {
 
}

The first class HomePage will be called and used when navigating/presenting the page, while the private class _HomePageState will be called everytime the HomePage is called. This is also the mutable state object which we will maintain as the page get called.

Before we dive into coding again, let’s look at how our contact list screen looks like:

There are many things that we will need to do here:

  1. TextField & Validations
  2. Button Clicks
  3. Navigations
  4. Image Rendering (Local & Online)
  5. Error Alert Dialog
  6. Scrollable List View
  7. List View Search
  8. JSON File Parsing
  9. JSON to Objects Mapping
  10. Opening External Web Browser

Setting up the Routing

Let’s hook up our navigation route between LoginPage & HomePage. Head over to Constants.dart and add these tags:

// Pages
const loginPageTag = 'Login Page';
const homePageTag = 'Home Page';

Then, go to main.dart and add these just before our build function:

  final routes = {
    loginPageTag: (context) => LoginPage(),
    homePageTag: (context) => HomePage(),
  };
 

You will also need to import the HomePage.dart file:

 	
import 'HomePage.dart';

The code above allows us to use tags to associate each individual page. 🙂 Finally, let’s add the routes to our build function just after home.

  Widget build(BuildContext context) {
     ...
     home: LoginPage(),
     routes: routes
    );
  }

We can’t really test this out yet as we have not implemented the UI for our ListView. So, let’s do that first.

Populate JSON data and map to ListView

For this demo, I store all the contact data in a JSON file. You can download the sample JSON file here and create a data folder under assets. Put the records.json file into the folder. Then, update pubspec.yaml with the below asset configuration:

  assets:
    - assets/images/flutter-logo-round.png
    - assets/data/records.json

Now that we have prepared the JSON data, we will need to create:

  • First, we have our logo. It is embedded in a Circular Frame by using the CircularAvatar class. It also has an appLogo image.

Record Class to hold a Contact

First, let’s create a new models package under lib and create a new file named Record.dart. You can insert these lines of code into the file:

class Record {
  String name;
  String address;
  String contact;
  String photo;
  String url;
 
  Record({
    this.name,
    this.address,
    this.contact,
    this.photo,
    this.url
  });
 
  factory Record.fromJson(Map json){
    return new Record(
        name: json['name'],
        address: json['address'],
        contact: json ['contact'],
        photo: json['photo'],
        url: json['url']
    );
  }
}

Dart provides factory constructors to support the factory pattern. The factory constructor is able to return values (objects). Here it parses the given JSON string and returns a Record instance, which represents a contact.

RecordList Class to hold the list of Contacts

In the same models package, create another file called RecordList.dart. Then, put in these lines of code:

import 'Record.dart';
 
class RecordList {
  List records = new List();
 
  RecordList({
    this.records
  });
 
  factory RecordList.fromJson(List parsedJson) {
 
    List records = new List();
 
    records = parsedJson.map((i) => Record.fromJson(i)).toList();
 
    return new RecordList(
      records: records,
    );
  }
}

RecordService Class to perform the loading task

Lastly, create another file named RecordService.dart in the same package and insert the following code:

import 'RecordList.dart';
import 'package:flutter/services.dart' show rootBundle;
import 'dart:convert';
 
class RecordService {
 
  Future _loadRecordsAsset() async {
    return await rootBundle.loadString('assets/data/records.json');
  }
 
  Future loadRecords() async {
    String jsonString = await _loadRecordsAsset();
    final jsonResponse = json.decode(jsonString);
    RecordList records = new RecordList.fromJson(jsonResponse);
    return records;
  }
 
}

Here, the loadRecords() function parses the records.json file and map it into a RecordList object, holding a list of Record objects. The keyword Future should be new to you if you are unfamiliar with Dart. To perform asynchronous operation in Dart, we use futures. Future objects (futures) represent the results of asynchronous operations.

Implementing the Home Page to list the Contacts

Now let’s use what we have implemented in our HomePage. Open the HomePage.dart and add these import statements at the very beginning:

import 'models/Record.dart';
import 'models/RecordList.dart';
import 'models/RecordService.dart';

Other than listing the contact records, the home page has a search feature that lets users search the contacts. So, first, declare the following variables in the _HomePageState class of the HomePage.dart file:

final TextEditingController _filter = new TextEditingController();
 
RecordList _records = new RecordList();
RecordList _filteredRecords = new RecordList();
 
String _searchText = "";
 
Icon _searchIcon = new Icon(Icons.search);
 
Widget _appBarTitle = new Text(appTitle);

Here is the purpose of each variable:

  • First, we have our logo. It is embedded in a Circular Frame by using the CircularAvatar class. It also has an appLogo image.

Since it’s a Stateful widget, we can add some small settings when the state is initialized:

@override
  void initState() {
    super.initState();
 
    _records.records = new List();
    _filteredRecords.records = new List();
 
    _getRecords();
  }
 
  void _getRecords() async {
    RecordList records = await RecordService().loadRecords();
    setState(() {
      for (Record record in records.records) {
        this._records.records.add(record);
        this._filteredRecords.records.add(record);
      }
    });
  } 

In the init state of the home page, we empty our records data and get fresh data from the JSON file. Here we don’t need to really use an Async Call, but it is to introduce its concept and how you could call it if you were to perform a data fetch from a server.

Remember that in our previous section, we return a Scaffold in the build function as the main UI structure. So, continue to insert the following code to create the UI structure:

@override
  Widget build(BuildContext context) {
    return Scaffold(
      appBar: _buildBar(context),
      backgroundColor: appDarkGreyColor,
      body: _buildList(context),
      resizeToAvoidBottomPadding: false,
    );
  }

Like most ListView pages we have seen in mobile apps, there is a navigation bar at the top. In the code above, the appBar is the navigation bar. We specify to call _buildBar(context) to generate the bar, however, we haven’t implemented the function yet. So, continue to insert the following code:

Widget _buildBar(BuildContext context) {
    return new AppBar(
      elevation: 0.1,
      backgroundColor: appDarkGreyColor,
      centerTitle: true,
      title: _appBarTitle,
      leading: new IconButton(
            icon: _searchIcon
      )
    );
  }

Next, it’s the body. Again, we haven’t implemented the _buildList(context) function. Continue to add these lines of code:

Widget _buildList(BuildContext context) {
    if (!(_searchText.isEmpty)) {
    _filteredRecords.records = new List();
      for (int i = 0; i < _records.records.length; i++) {
        if (_records.records[i].name.toLowerCase().contains(_searchText.toLowerCase())
            || _records.records[i].address.toLowerCase().contains(_searchText.toLowerCase())) {
          _filteredRecords.records.add(_records.records[i]);
        }
      }
    }
 
    return ListView(
      padding: const EdgeInsets.only(top: 20.0),
      children: this._filteredRecords.records.map((data) => _buildListItem(context, data)).toList(),
    );
  }

Here, we handle the mapping of our RecordList data into our ListVew, and also handle any searches performed.

The final piece of our ListView is the UI for each ListViewItem. Let’s create the _buildListItem function:

Widget _buildListItem(BuildContext context, Record record) {
    return Card(
      key: ValueKey(record.name),
      elevation: 8.0,
      margin: new EdgeInsets.symmetric(horizontal: 10.0, vertical: 6.0),
      child: Container(
        decoration: BoxDecoration(color: Color.fromRGBO(64, 75, 96, .9)),
        child: ListTile(
          contentPadding:
          EdgeInsets.symmetric(horizontal: 20.0, vertical: 10.0),
          leading: Container(
              padding: EdgeInsets.only(right: 12.0),
              decoration: new BoxDecoration(
                  border: new Border(
                      right: new BorderSide(width: 1.0, color: Colors.white24))),
              child: Hero(
                  tag: "avatar_" + record.name,
                  child: CircleAvatar(
                    radius: 32,
                    backgroundImage: NetworkImage(record.photo),
                  )
              )
          ),
          title: Text(
            record.name,
            style: TextStyle(color: Colors.white, fontWeight: FontWeight.bold),
          ),
          subtitle: Row(
            children: [
              new Flexible(
                  child: new Column(
                      crossAxisAlignment: CrossAxisAlignment.start,
                      children: [
                        RichText(
                          text: TextSpan(
                            text: record.address,
                            style: TextStyle(color: Colors.white),
                          ),
                          maxLines: 3,
                          softWrap: true,
                        )
                      ]))
            ],
          ),
          trailing:
          Icon(Icons.keyboard_arrow_right, color: Colors.white, size: 30.0),
          onTap: () {},
        ),
      ),
    );
  }

This is a long chunky piece of code. We can again break down and digest this in a simpler way:

  1. TextField & Validations
  2. Button Clicks
  3. Navigations
  4. Image Rendering (Local & Online)
  5. Error Alert Dialog
  6. Scrollable List View
  7. List View Search
  8. JSON File Parsing
  9. JSON to Objects Mapping
  10. Opening External Web Browser
  • First, we have our logo. It is embedded in a Circular Frame by using the CircularAvatar class. It also has an appLogo image.

After implementing all these, it’s almost ready to run the app and test it out! One last thing to make it work is to handle the onPressed event of the login button. Previously, we haven’t specified anything in the implementation. Now go to LoginPage.dart and change the onPressed event of the loginButton variable to the following:

onPressed: () {
          Navigator.of(context).pushNamed(homePageTag);
        },

That’s it! Hit the run button and try to navigate the app from the login page to the home page!

Adding Search Feature

To allow search capability, we have to enable the text editor’s listener. Insert the code below after the _buildListItem method of the HomePage.dart file:

_HomePageState() {
    _filter.addListener(() {
      if (_filter.text.isEmpty) {
        setState(() {
          _searchText = "";
          _resetRecords();
        });
      } else {
        setState(() {
          _searchText = _filter.text;
        });
      }
    });
  }
 
  void _resetRecords() {
    this._filteredRecords.records = new List();
    for (Record record in _records.records) {
      this._filteredRecords.records.add(record);
    }
  }

The search process starts by tapping the search icon. When the search is triggered, we will perform some UI changes:

  1. TextField & Validations
  2. Button Clicks
  3. Navigations
  4. Image Rendering (Local & Online)
  5. Error Alert Dialog
  6. Scrollable List View
  7. List View Search
  8. JSON File Parsing
  9. JSON to Objects Mapping
  10. Opening External Web Browser

So here is the code you need. Continue to add the following method to handle the search:

void _searchPressed() {
    setState(() {
      if (this._searchIcon.icon == Icons.search) {
        this._searchIcon = new Icon(Icons.close);
        this._appBarTitle = new TextField(
          controller: _filter,
          style: new TextStyle(color: Colors.white),
          decoration: new InputDecoration(
            prefixIcon: new Icon(Icons.search, color: Colors.white),
            fillColor: Colors.white,
            hintText: 'Search by name',
            hintStyle: TextStyle(color: Colors.white),
          ),
        );
      } else {
        this._searchIcon = new Icon(Icons.search);
        this._appBarTitle = new Text(appTitle);
        _filter.clear();
      }
    });
  }

In order to trigger _searchPressed(), add this method in onPressed to _buildBar:

Widget _buildBar(BuildContext context) {
    ...
    icon: _searchIcon,
    onPressed: _searchPressed
    ... 
}  

Now you’re ready to go! Try running the app now and perform some searches! like “Mark”.

Building Contact Details Page

To finish up our Contactly App, let’s build our final Details Page to allow the app to show some more info about a contact. Let’s look at how the final screen looks like first:

It shows the contact’s profile image, its name, address, and phone number. One hidden feature not shown here is to allow user to navigate to an external web browser to view the technology’s website. So let’s get started!

In lib, create a new file called DetailsPage.dart and paste in the following code:

import 'package:flutter/material.dart';
import 'models/Record.dart';
 
// 1
class DetailPage extends StatelessWidget {
  final Record record;
  // 2
  DetailPage({this.record});
 
  @override
  Widget build(BuildContext context) {
    return new Scaffold(
        appBar: new AppBar(
          title: new Text(record.name),
        ),
        body: new ListView(
            children: [
              Hero(
                tag: "avatar_" + record.name,
                child: new Image.network(
                    record.photo
                ),
              ),
              // 3
              GestureDetector(
                   onTap: () {
                     URLLauncher().launchURL(record.url);
                   },
                  child: new Container(
                    padding: const EdgeInsets.all(32.0),
                    child: new Row(
                      children: [
                        // First child in the Row for the name and the
                        // Release date information.
                        new Expanded(
                          // Name and Address are in the same column
                          child: new Column(
                            crossAxisAlignment: CrossAxisAlignment.start,
                            children: [
                              // Code to create the view for name.
                              new Container(
                                padding: const EdgeInsets.only(bottom: 8.0),
                                child: new Text(
                                  "Name: " + record.name,
                                  style: new TextStyle(
                                    fontWeight: FontWeight.bold,
                                  ),
                                ),
                              ),
                              // Code to create the view for address.
                              new Text(
                                "Address: " + record.address,
                                style: new TextStyle(
                                  color: Colors.grey[500],
                                ),
                              ),
                            ],
                          ),
                        ),
                        // Icon to indicate the phone number.
                        new Icon(
                          Icons.phone,
                          color: Colors.red[500],
                        ),
                        new Text(' ${record.contact}'),
                      ],
                    ),
                  )
              ),
            ]
        )
    );
  }
}

Here is what this above code does:

  1. TextField & Validations
  2. Button Clicks
  3. Navigations
  4. Image Rendering (Local & Online)
  5. Error Alert Dialog
  6. Scrollable List View
  7. List View Search
  8. JSON File Parsing
  9. JSON to Objects Mapping
  10. Opening External Web Browser
  • First, we have our logo. It is embedded in a Circular Frame by using the CircularAvatar class. It also has an appLogo image.

You should notice a new UI component called GestureDetector. As its name suggests, this widget class is designed to detect touches. When a user touches one of the fields, the app will call URLLauncher().launchURL(record.url) to load the URL in a web browser. This URLLauncher class is not ready yet.

Let’s create a new file called URLLauncher.dart in the helpers directory.

To perform a url launch, we need to install a new package called url-launcher. To do this, we need to update our pubspec.yaml like this:

Here we add a line of configuration to load the url_launcher. After editing, run flutter packages get by hitting the Packages Get button. This is how we install extra packages to increase the capabilities of our app 🙂 Great! You have just gained another skill!

Now go back to URLLauncher.dart, insert the following code to implement the launchURL method:

import 'package:url_launcher/url_launcher.dart';
 
class URLLauncher {
 
  launchURL(String url) async {
    if (await canLaunch(url)) {
      await launch(url);
    } else {
      throw 'Could not launch $url';
    }
  }
 
}

Head back to the DetailsPage.dart file and import the file we just implemented:

import 'helpers/URLLauncher.dart';

Great! The last step is to enable the navigation from HomePage to DetailsPage. Head back to HomePage.dart and edit the onTap: event of the _buildListItem method like this:

Widget _buildListItem(BuildContext context, Record record) {
            ...
          onTap: () {
            Navigator.push(
                context, MaterialPageRoute(builder: (context) => new DetailPage(record: record)));
          },
        ),
      ),
    );
  }  

Also, don’t forget to import the following file in HomePage.dart:

import 'DetailsPage.dart';

Viola! You are done with the app (not just iOS but Android too)! Run it and enjoy your great work 🙂

Conclusion

You have just gone through a very basic tutorial to get you started in developing on Flutter. In my own opinion, Flutter is developed based on the knowledge of popular mobile apps around where we can easily build UI components in just a few lines of codes. While its scalability is still questionable, we can see that Google and it’s community is investing a lot in this framework, and we could possibly forsee a bright future ahead for Flutter, striving past React Native.

You can download the finished project here.