Halem  Rostt

Halem Rostt

1597029384

Deep Learning method for object detection: R-CNN explained

CNN’s have been extensively used to classify images. But to detect an object in an image and to draw bounding boxes around them is a tough problem to solve. To solve this problem, R-CNN algorithm was published in 2014. After R-CNN, many of its variants like  Fast-R-CNN,  Faster-R-CNN and  Mask-R-CNN came which improvised the task of object detection. To understand the latest R-CNN variants, it is important to have a clear understanding of R-CNN. Once this is understood, then all other variations can be understood easily.

This post will assume that the reader has familiarity with SVM, image classification using CNNs and linear regression.

Overview

The  R-CNN paper[1] was published in 2014. It was the first paper to show that CNN can lead to high performance in object detection. This algorithm does object detection in the following way:

  1. The method takes an image as input and extracts around 2000 region proposals from the image(Step 2 in the above image).
  2. Each region proposal is then warped(reshaped) to a fixed size to be passed on as an input to a CNN.
  3. The CNN extracts a fixed-length feature vector for each region proposal(Step 3 in the above image).
  4. These features are used to classify region proposals using category-specific linear SVM(Step 4 in the above image).
  5. The bounding boxes are refined using bounding box regression so that the object is properly captured by the box.

Now the post will dive into details explaining how the model is trained and how it predicts the bounding boxes.

#machine-learning #artificial-intelligence #r-cnn #deep-learning

What is GEEK

Buddha Community

Deep Learning method for object detection: R-CNN explained
Arvel  Parker

Arvel Parker

1591611780

How to Find Ulimit For user on Linux

How can I find the correct ulimit values for a user account or process on Linux systems?

For proper operation, we must ensure that the correct ulimit values set after installing various software. The Linux system provides means of restricting the number of resources that can be used. Limits set for each Linux user account. However, system limits are applied separately to each process that is running for that user too. For example, if certain thresholds are too low, the system might not be able to server web pages using Nginx/Apache or PHP/Python app. System resource limits viewed or set with the NA command. Let us see how to use the ulimit that provides control over the resources available to the shell and processes.

#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]

MEAN Stack Tutorial MongoDB ExpressJS AngularJS NodeJS

We are going to build a full stack Todo App using the MEAN (MongoDB, ExpressJS, AngularJS and NodeJS). This is the last part of three-post series tutorial.

MEAN Stack tutorial series:

AngularJS tutorial for beginners (Part I)
Creating RESTful APIs with NodeJS and MongoDB Tutorial (Part II)
MEAN Stack Tutorial: MongoDB, ExpressJS, AngularJS and NodeJS (Part III) 👈 you are here
Before completing the app, let’s cover some background about the this stack. If you rather jump to the hands-on part click here to get started.

#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]

Brain  Crist

Brain Crist

1595434320

Docker Applikationen mit Visual Studio Code debuggen

Mit dem integrierten Debugger von Visual Studio Code lassen sich ASP.NET Core bzw. .NET Core Applikationen einfach und problemlos debuggen. Der Debugger unterstützt auch Remote Debugging, somit lassen sich zum Beispiel .NET Core Programme, die in einem Docker-Container laufen, debuggen.

Als Beispiel Applikation reicht das Default-Template für MVC Applikationen dotnet new mvc

$ md docker-core-debugger
$ cd docker-core-debugger
$ dotnet new mvc

Mit dotnet run prüfen wir kurz, ob die Applikation läuft und unter der Adresse http://localhost:5000 erreichbar ist.

$ dotnet run
$ Hosting environment: Production
$ Content root path: D:\Temp\docker-aspnetcore
$ Now listening on: http://localhost:5000

Die .NET Core Applikation builden wir mit dotnet build und publishen alles mit Hilfe von dotnet publish

$ dotnet build
$ dotnet publish -c Debug -o out --runtime linux-x64

Dabei gilt es zu beachten, dass die Build Configuration mit -c Debug gesetzt ist und das Output Directory auf -o out. Sonst findet Docker die nötigen Binaries nicht. Für den Docker Container brauchen wir nun ein Dockerfile, dass beim Start vorgängig den .NET Core command line debugger (VSDBG) installiert. Das Installations-Script für VSDBG ist unter https://aka.ms/getvsdbgsh abfrufbar.

FROM microsoft/aspnetcore:latest
WORKDIR /app

RUN apt-get update \
    && apt-get install -y --no-install-recommends \
       unzip procps \
    && rm -rf /var/lib/apt/lists/* \
    && curl -sSL https://aka.ms/getvsdbgsh | bash /dev/stdin -v latest -l /vsdbg

COPY ./out .
ENTRYPOINT ["dotnet", "docker-core-debugger.dll"]

Den Docker Container erstellen wir mit dem docker build Kommando

$ docker build -t coreapp .

und starten die Applikation mit docker run.

$ docker run -d -p 8080:80 --name coreapp coreapp

Jetzt muss Visual Studio Code nur noch wissen, wo unsere Applikation läuft. Dazu definieren wir eine launch.json vom Typ attach und konfigurieren die nötigen Parameter für den Debugger.

{
    "version": "0.2.0",
    "configurations": [
         {
            "name": ".NET Core Remote Attach",
            "type": "coreclr",
            "request": "attach",
            "processId": "${command:pickRemoteProcess}",
            "pipeTransport": {
                "pipeProgram": "docker",
                "pipeArgs": ["exec", "-i coreapp ${debuggerCommand}"],
                "quoteArgs": false,
                "debuggerPath": "/vsdbg/vsdbg",
                "pipeCwd": "${workspaceRoot}"
            },

            "logging": {
                "engineLogging": true,
                "exceptions": true,
                "moduleLoad": true,
                "programOutput": true
            },
        }
    ]
}

Mit F5 starten wir den Debugger. Wenn alles klappt, sollte eine Auswahl der Prozesse des Docker-Containers sichtbar sein.

vscode

Nun muss der dotnet Prozess ausgewählt werden. Der Visual Studio Code Debugger verbindet sich darauf mit VSDBG und wir können wie gewohnt unseren Code debuggen. Dazu setzen wir einen Breakpoint in der Index-Action des HomeControllers und rufen mit dem Browser die URL http://localhost:8080/ auf.

vscode

#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]

Creating RESTful APIs with NodeJS and MongoDB Tutorial

Welcome to this tutorial about RESTful API using Node.js (Express.js) and MongoDB (mongoose)! We are going to learn how to install and use each component individually and then proceed to create a RESTful API.

MEAN Stack tutorial series:

AngularJS tutorial for beginners (Part I)
Creating RESTful APIs with NodeJS and MongoDB Tutorial (Part II) 👈 you are here
MEAN Stack Tutorial: MongoDB, ExpressJS, AngularJS and NodeJS (Part III)

#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]

systemctl List All Failed Units/Services on Linux

Is there is a command to print list all failed units or services when using systemd on Linux? Can you tell me the systemctl command to list all failed services on Linux?

This quick tutorial explains how to find/list all failed systemd services/units on Linux operating systems using the systemctl command.

#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]