Dylan North

Dylan North

1565774421

Create a Custom useFetch() React Hook

Originally published by Chris Nwamba at scotch.io

Table of Contents

  • Abstracting fetch into useFetch()
  • Avoiding reference loops
  • useEffect’s return error
  • Handling errors
  • Setting loading indicators
  • Usage
  • Final thoughts
  1. the function name to start with use and
  2. the function may call other Hooks

The whole idea behind custom hooks is just so that we can extract component logic into reusable functions.

Often times as we build out React applications, we see ourselves writing almost the same exact codes in two or more different components. Ideally what we could do in such cases would be to extract that recurrent logic into a reusable piece of code (hook) and reuse it where the need be.

Before hooks, we share stateful logic between components using render props and higher order components, however, since the introduction of hooks and since we came to understand how neat they make these concepts, it no longer made sense to keep using those. Basically, when we want to share logic between two JavaScript functions, we extract it to a third function possibly because both components and hooks are equally just functions.

Abstracting fetch into useFetch()

The rationale behind this move is not different from what we have already explained above. Compared to using the native fetch API out of the box, abstracting it into the useFetch hook gives us a one-liner ability, more declarative code style, reusable logic and an overall cleaner code as we’ll see in a minute. Consider this simple useFetch example:

const useFetch = (url, options) => {
  const [response, setResponse] = React.useState(null);
  useEffect(async () => {
      const res = await fetch(url, options);
      const json = await res.json();
      setResponse(json);
  });
  return response;
};

Here, the effect hook called useEffect is used to perform to major functions —

  1. fetch the data with the native fetch API and
  2. Set the data in the local state of the component with the state hook’s update function.

Also notice that the promise resolving happens with async/await.

Avoiding reference loops

The effect hook runs on two occasions — When the component mounts and also when the component updates. What this means is, if nothing is done about the useFetch example above, we will most definitely run into a scary recurrent loop cycle. Why? Because we are setting the state after every data fetch, as a result, when we set the state, the component updates and the effect runs again.

Obviously, this will result in an infinite data fetching loop and we don’t want that. What we do want, is to only fetch data when the component mounts and we have a neat way of doing it. All we have to do is provide an empty array as second argument to the effect hook, this will stop it from activating on component updates but only when the component is mounted.

 useEffect(async () => {
      const res = await fetch(url, options);
      const json = await res.json();
      setResponse(json);
  }, []); // empty array

The second is an array containing all the variables on which the hook depends on. If any of the variables change, the hook runs again, but if the argument is an empty array, the hook doesn’t run when updating the component since there are no variables to watch.

UseEffect’s return error

You may have noticed that in the effect hook above, we are using async/await to fetch data. However, according to documentation stipulations, every function annotated with async returns an implicit promise. So in our effect hook, we are returning an implicit promise whereas an effect hook should only return either nothing or a clean up function.

So by design, we are already breaking this rule because —

  1. We are not returning nothing
  2. A promise does not clean up anything

As a result, if we go ahead with the code as is, we will get a warning in the console pointing out the fact that useEffect function must return a cleanup function or nothing.

Simply put, using async functions directly in the useEffect() function is frowned at. What we can do to fix this is exactly what is recommended in the warning above. Write the async function and use it inside the effect.

React.useEffect(() => {
    const fetchData = async () => {
      const res = await fetch(url, options);
      const json = await res.json();
      setResponse(json);
    };
    fetchData();
  }, []);

Instead of using the async function directly inside the effect function, we created a new async function fetchData() to perform the fetching operation and simply call the function inside useEffect. This way, we abide by the rule of returning nothing or just a cleanup function in an effect hook. And if you should check back on the console, you won’t see any more warnings.

Handling errors

One thing we haven’t mentioned or covered so far is how we can handle error boundaries in this concept. Well, it’s not complicated, when using async/await, it is common practice to use the good old try/catch construct for error handling and thankfully it will also work for us here.

const useFetch = (url, options) => {
  const [response, setResponse] = React.useState(null);
  const [error, setError] = React.useState(null);
  React.useEffect(() => {
    const fetchData = async () => {
      try {
        const res = await fetch(url, options);
        const json = await res.json();
        setResponse(json);
      } catch (error) {
        setError(error);
      }
    };
    fetchData();
  }, []);
  return { response, error };
};

Here, we used the very popular JavaScript try/catch syntax to set and handle error boundaries. The error itself is just another state initialized with a state hook so whenever the hook runs, the error state resets. However, whenever there is an error state, the component renders feedback to the user or practically you can perform any desired operation with it.

Setting loading indicators

You may already know this, but i still feel that it’ll be helpful to point out that you can use hooks to handle loading states for your fetching operations. The good thing is, It’s just another state variable managed by a state hook so if we wanted to implement a loading state in our last example, we’ll set the state variable and update our useFetch() function accordingly.

const useFetch = (url, options) => {
  const [response, setResponse] = React.useState(null);
  const [error, setError] = React.useState(null);
  const [isLoading, setIsLoading] = React.useState(false);
  React.useEffect(() => {
    const fetchData = async () => {
      setIsLoading(true);
      try {
        const res = await fetch(url, options);
        const json = await res.json();
        setResponse(json);
        setIsLoading(false)
      } catch (error) {
        setError(error);
      }
    };
    fetchData();
  }, []);
  return { response, error, isLoading };
    };

Usage

We cannot complete this tutorial without working on a hands-on demonstration to put everything we’ve talked about in practice. Let’s build a mini app that will fetch a bunch of dog images and their names. We’ll use useFetch to call the very good dog API for the data we’ll need for this app.

First we define our useFetch() function which is exactly the same as what we did before. We will simply reuse the one we created while demonstrating error handling above to explain the data fetching concept in practice since it already has most of the things we’ll need.

const useFetch = (url, options) => {
  const [response, setResponse] = React.useState(null);
  const [error, setError] = React.useState(null);
  React.useEffect(() => {
    const fetchData = async () => {
      try {
        const res = await fetch(url, options);
        const json = await res.json();
        setResponse(json);
      } catch (error) {
        setError(error);
      }
    };
    fetchData();
  }, []);
  return { response, error };
};

Next, we create the App() function that will actually use our useFetch() function to request for the dog data that we need and display it on screen.

function App() {
  const res = useFetch("https://dog.ceo/api/breeds/image/random", {});
  if (!res.response) {
    return <div>Loading...</div>
  }
  const dogName = res.response.status
  const imageUrl = res.response.message
  return (
    <div className="App">
      <div>
        <h3>{dogName}</h3>
        <div>
          <img src={imageUrl} alt="avatar" />
        </div>
      </div>
    </div>
  );
}

Here, we just passed the url into the useFetch() function with an empty options object to fetch the data for the cat. It’s really that simple, nothing elaborate or complex. Once we’ve fetched the data, we just extract it from the response object and display it on screen. Here’s a demo on Codesandbox:


Final thoughts

Data fetching has always been an issue to contend with when building frontend-end applications, this is usually because of all the edge cases that you will need to account for. In this post, we have explained and made a small demo to explain how we can declaratively fetch data and render it on screen by using the useFetch hook with the native fetch() API.

Originally published by Chris Nwamba at scotch.io

=======================================================

Thanks for reading :heart: If you liked this post, share it with all of your programming buddies! Follow me on Facebook | Twitter

Learn More

☞ Understanding TypeScript

☞ Typescript Masterclass & FREE E-Book

☞ React - The Complete Guide (incl Hooks, React Router, Redux)

☞ Modern React with Redux [2019 Update]

☞ The Complete React Developer Course (w/ Hooks and Redux)

☞ React JS Web Development - The Essentials Bootcamp

☞ React JS, Angular & Vue JS - Quickstart & Comparison

☞ The Complete React Js & Redux Course - Build Modern Web Apps

☞ React JS and Redux Bootcamp - Master React Web Development



#reactjs #javascript #web-development

What is GEEK

Buddha Community

Create a Custom useFetch() React Hook
Autumn  Blick

Autumn Blick

1598839687

How native is React Native? | React Native vs Native App Development

If you are undertaking a mobile app development for your start-up or enterprise, you are likely wondering whether to use React Native. As a popular development framework, React Native helps you to develop near-native mobile apps. However, you are probably also wondering how close you can get to a native app by using React Native. How native is React Native?

In the article, we discuss the similarities between native mobile development and development using React Native. We also touch upon where they differ and how to bridge the gaps. Read on.

A brief introduction to React Native

Let’s briefly set the context first. We will briefly touch upon what React Native is and how it differs from earlier hybrid frameworks.

React Native is a popular JavaScript framework that Facebook has created. You can use this open-source framework to code natively rendering Android and iOS mobile apps. You can use it to develop web apps too.

Facebook has developed React Native based on React, its JavaScript library. The first release of React Native came in March 2015. At the time of writing this article, the latest stable release of React Native is 0.62.0, and it was released in March 2020.

Although relatively new, React Native has acquired a high degree of popularity. The “Stack Overflow Developer Survey 2019” report identifies it as the 8th most loved framework. Facebook, Walmart, and Bloomberg are some of the top companies that use React Native.

The popularity of React Native comes from its advantages. Some of its advantages are as follows:

  • Performance: It delivers optimal performance.
  • Cross-platform development: You can develop both Android and iOS apps with it. The reuse of code expedites development and reduces costs.
  • UI design: React Native enables you to design simple and responsive UI for your mobile app.
  • 3rd party plugins: This framework supports 3rd party plugins.
  • Developer community: A vibrant community of developers support React Native.

Why React Native is fundamentally different from earlier hybrid frameworks

Are you wondering whether React Native is just another of those hybrid frameworks like Ionic or Cordova? It’s not! React Native is fundamentally different from these earlier hybrid frameworks.

React Native is very close to native. Consider the following aspects as described on the React Native website:

  • Access to many native platforms features: The primitives of React Native render to native platform UI. This means that your React Native app will use many native platform APIs as native apps would do.
  • Near-native user experience: React Native provides several native components, and these are platform agnostic.
  • The ease of accessing native APIs: React Native uses a declarative UI paradigm. This enables React Native to interact easily with native platform APIs since React Native wraps existing native code.

Due to these factors, React Native offers many more advantages compared to those earlier hybrid frameworks. We now review them.

#android app #frontend #ios app #mobile app development #benefits of react native #is react native good for mobile app development #native vs #pros and cons of react native #react mobile development #react native development #react native experience #react native framework #react native ios vs android #react native pros and cons #react native vs android #react native vs native #react native vs native performance #react vs native #why react native #why use react native

Easter  Deckow

Easter Deckow

1655630160

PyTumblr: A Python Tumblr API v2 Client

PyTumblr

Installation

Install via pip:

$ pip install pytumblr

Install from source:

$ git clone https://github.com/tumblr/pytumblr.git
$ cd pytumblr
$ python setup.py install

Usage

Create a client

A pytumblr.TumblrRestClient is the object you'll make all of your calls to the Tumblr API through. Creating one is this easy:

client = pytumblr.TumblrRestClient(
    '<consumer_key>',
    '<consumer_secret>',
    '<oauth_token>',
    '<oauth_secret>',
)

client.info() # Grabs the current user information

Two easy ways to get your credentials to are:

  1. The built-in interactive_console.py tool (if you already have a consumer key & secret)
  2. The Tumblr API console at https://api.tumblr.com/console
  3. Get sample login code at https://api.tumblr.com/console/calls/user/info

Supported Methods

User Methods

client.info() # get information about the authenticating user
client.dashboard() # get the dashboard for the authenticating user
client.likes() # get the likes for the authenticating user
client.following() # get the blogs followed by the authenticating user

client.follow('codingjester.tumblr.com') # follow a blog
client.unfollow('codingjester.tumblr.com') # unfollow a blog

client.like(id, reblogkey) # like a post
client.unlike(id, reblogkey) # unlike a post

Blog Methods

client.blog_info(blogName) # get information about a blog
client.posts(blogName, **params) # get posts for a blog
client.avatar(blogName) # get the avatar for a blog
client.blog_likes(blogName) # get the likes on a blog
client.followers(blogName) # get the followers of a blog
client.blog_following(blogName) # get the publicly exposed blogs that [blogName] follows
client.queue(blogName) # get the queue for a given blog
client.submission(blogName) # get the submissions for a given blog

Post Methods

Creating posts

PyTumblr lets you create all of the various types that Tumblr supports. When using these types there are a few defaults that are able to be used with any post type.

The default supported types are described below.

  • state - a string, the state of the post. Supported types are published, draft, queue, private
  • tags - a list, a list of strings that you want tagged on the post. eg: ["testing", "magic", "1"]
  • tweet - a string, the string of the customized tweet you want. eg: "Man I love my mega awesome post!"
  • date - a string, the customized GMT that you want
  • format - a string, the format that your post is in. Support types are html or markdown
  • slug - a string, the slug for the url of the post you want

We'll show examples throughout of these default examples while showcasing all the specific post types.

Creating a photo post

Creating a photo post supports a bunch of different options plus the described default options * caption - a string, the user supplied caption * link - a string, the "click-through" url for the photo * source - a string, the url for the photo you want to use (use this or the data parameter) * data - a list or string, a list of filepaths or a single file path for multipart file upload

#Creates a photo post using a source URL
client.create_photo(blogName, state="published", tags=["testing", "ok"],
                    source="https://68.media.tumblr.com/b965fbb2e501610a29d80ffb6fb3e1ad/tumblr_n55vdeTse11rn1906o1_500.jpg")

#Creates a photo post using a local filepath
client.create_photo(blogName, state="queue", tags=["testing", "ok"],
                    tweet="Woah this is an incredible sweet post [URL]",
                    data="/Users/johnb/path/to/my/image.jpg")

#Creates a photoset post using several local filepaths
client.create_photo(blogName, state="draft", tags=["jb is cool"], format="markdown",
                    data=["/Users/johnb/path/to/my/image.jpg", "/Users/johnb/Pictures/kittens.jpg"],
                    caption="## Mega sweet kittens")

Creating a text post

Creating a text post supports the same options as default and just a two other parameters * title - a string, the optional title for the post. Supports markdown or html * body - a string, the body of the of the post. Supports markdown or html

#Creating a text post
client.create_text(blogName, state="published", slug="testing-text-posts", title="Testing", body="testing1 2 3 4")

Creating a quote post

Creating a quote post supports the same options as default and two other parameter * quote - a string, the full text of the qote. Supports markdown or html * source - a string, the cited source. HTML supported

#Creating a quote post
client.create_quote(blogName, state="queue", quote="I am the Walrus", source="Ringo")

Creating a link post

  • title - a string, the title of post that you want. Supports HTML entities.
  • url - a string, the url that you want to create a link post for.
  • description - a string, the desciption of the link that you have
#Create a link post
client.create_link(blogName, title="I like to search things, you should too.", url="https://duckduckgo.com",
                   description="Search is pretty cool when a duck does it.")

Creating a chat post

Creating a chat post supports the same options as default and two other parameters * title - a string, the title of the chat post * conversation - a string, the text of the conversation/chat, with diablog labels (no html)

#Create a chat post
chat = """John: Testing can be fun!
Renee: Testing is tedious and so are you.
John: Aw.
"""
client.create_chat(blogName, title="Renee just doesn't understand.", conversation=chat, tags=["renee", "testing"])

Creating an audio post

Creating an audio post allows for all default options and a has 3 other parameters. The only thing to keep in mind while dealing with audio posts is to make sure that you use the external_url parameter or data. You cannot use both at the same time. * caption - a string, the caption for your post * external_url - a string, the url of the site that hosts the audio file * data - a string, the filepath of the audio file you want to upload to Tumblr

#Creating an audio file
client.create_audio(blogName, caption="Rock out.", data="/Users/johnb/Music/my/new/sweet/album.mp3")

#lets use soundcloud!
client.create_audio(blogName, caption="Mega rock out.", external_url="https://soundcloud.com/skrillex/sets/recess")

Creating a video post

Creating a video post allows for all default options and has three other options. Like the other post types, it has some restrictions. You cannot use the embed and data parameters at the same time. * caption - a string, the caption for your post * embed - a string, the HTML embed code for the video * data - a string, the path of the file you want to upload

#Creating an upload from YouTube
client.create_video(blogName, caption="Jon Snow. Mega ridiculous sword.",
                    embed="http://www.youtube.com/watch?v=40pUYLacrj4")

#Creating a video post from local file
client.create_video(blogName, caption="testing", data="/Users/johnb/testing/ok/blah.mov")

Editing a post

Updating a post requires you knowing what type a post you're updating. You'll be able to supply to the post any of the options given above for updates.

client.edit_post(blogName, id=post_id, type="text", title="Updated")
client.edit_post(blogName, id=post_id, type="photo", data="/Users/johnb/mega/awesome.jpg")

Reblogging a Post

Reblogging a post just requires knowing the post id and the reblog key, which is supplied in the JSON of any post object.

client.reblog(blogName, id=125356, reblog_key="reblog_key")

Deleting a post

Deleting just requires that you own the post and have the post id

client.delete_post(blogName, 123456) # Deletes your post :(

A note on tags: When passing tags, as params, please pass them as a list (not a comma-separated string):

client.create_text(blogName, tags=['hello', 'world'], ...)

Getting notes for a post

In order to get the notes for a post, you need to have the post id and the blog that it is on.

data = client.notes(blogName, id='123456')

The results include a timestamp you can use to make future calls.

data = client.notes(blogName, id='123456', before_timestamp=data["_links"]["next"]["query_params"]["before_timestamp"])

Tagged Methods

# get posts with a given tag
client.tagged(tag, **params)

Using the interactive console

This client comes with a nice interactive console to run you through the OAuth process, grab your tokens (and store them for future use).

You'll need pyyaml installed to run it, but then it's just:

$ python interactive-console.py

and away you go! Tokens are stored in ~/.tumblr and are also shared by other Tumblr API clients like the Ruby client.

Running tests

The tests (and coverage reports) are run with nose, like this:

python setup.py test

Author: tumblr
Source Code: https://github.com/tumblr/pytumblr
License: Apache-2.0 license

#python #api 

What are hooks in React JS? - INFO AT ONE

In this article, you will learn what are hooks in React JS? and when to use react hooks? React JS is developed by Facebook in the year 2013. There are many students and the new developers who have confusion between react and hooks in react. Well, it is not different, react is a programming language and hooks is a function which is used in react programming language.
Read More:- https://infoatone.com/what-are-hooks-in-react-js/

#react #hooks in react #react hooks example #react js projects for beginners #what are hooks in react js? #when to use react hooks

Tamale  Moses

Tamale Moses

1669003576

Exploring Mutable and Immutable in Python

In this Python article, let's learn about Mutable and Immutable in Python. 

Mutable and Immutable in Python

Mutable is a fancy way of saying that the internal state of the object is changed/mutated. So, the simplest definition is: An object whose internal state can be changed is mutable. On the other hand, immutable doesn’t allow any change in the object once it has been created.

Both of these states are integral to Python data structure. If you want to become more knowledgeable in the entire Python Data Structure, take this free course which covers multiple data structures in Python including tuple data structure which is immutable. You will also receive a certificate on completion which is sure to add value to your portfolio.

Mutable Definition

Mutable is when something is changeable or has the ability to change. In Python, ‘mutable’ is the ability of objects to change their values. These are often the objects that store a collection of data.

Immutable Definition

Immutable is the when no change is possible over time. In Python, if the value of an object cannot be changed over time, then it is known as immutable. Once created, the value of these objects is permanent.

List of Mutable and Immutable objects

Objects of built-in type that are mutable are:

  • Lists
  • Sets
  • Dictionaries
  • User-Defined Classes (It purely depends upon the user to define the characteristics) 

Objects of built-in type that are immutable are:

  • Numbers (Integer, Rational, Float, Decimal, Complex & Booleans)
  • Strings
  • Tuples
  • Frozen Sets
  • User-Defined Classes (It purely depends upon the user to define the characteristics)

Object mutability is one of the characteristics that makes Python a dynamically typed language. Though Mutable and Immutable in Python is a very basic concept, it can at times be a little confusing due to the intransitive nature of immutability.

Objects in Python

In Python, everything is treated as an object. Every object has these three attributes:

  • Identity – This refers to the address that the object refers to in the computer’s memory.
  • Type – This refers to the kind of object that is created. For example- integer, list, string etc. 
  • Value – This refers to the value stored by the object. For example – List=[1,2,3] would hold the numbers 1,2 and 3

While ID and Type cannot be changed once it’s created, values can be changed for Mutable objects.

Check out this free python certificate course to get started with Python.

Mutable Objects in Python

I believe, rather than diving deep into the theory aspects of mutable and immutable in Python, a simple code would be the best way to depict what it means in Python. Hence, let us discuss the below code step-by-step:

#Creating a list which contains name of Indian cities  

cities = [‘Delhi’, ‘Mumbai’, ‘Kolkata’]

# Printing the elements from the list cities, separated by a comma & space

for city in cities:
		print(city, end=’, ’)

Output [1]: Delhi, Mumbai, Kolkata

#Printing the location of the object created in the memory address in hexadecimal format

print(hex(id(cities)))

Output [2]: 0x1691d7de8c8

#Adding a new city to the list cities

cities.append(‘Chennai’)

#Printing the elements from the list cities, separated by a comma & space 

for city in cities:
	print(city, end=’, ’)

Output [3]: Delhi, Mumbai, Kolkata, Chennai

#Printing the location of the object created in the memory address in hexadecimal format

print(hex(id(cities)))

Output [4]: 0x1691d7de8c8

The above example shows us that we were able to change the internal state of the object ‘cities’ by adding one more city ‘Chennai’ to it, yet, the memory address of the object did not change. This confirms that we did not create a new object, rather, the same object was changed or mutated. Hence, we can say that the object which is a type of list with reference variable name ‘cities’ is a MUTABLE OBJECT.

Let us now discuss the term IMMUTABLE. Considering that we understood what mutable stands for, it is obvious that the definition of immutable will have ‘NOT’ included in it. Here is the simplest definition of immutable– An object whose internal state can NOT be changed is IMMUTABLE.

Again, if you try and concentrate on different error messages, you have encountered, thrown by the respective IDE; you use you would be able to identify the immutable objects in Python. For instance, consider the below code & associated error message with it, while trying to change the value of a Tuple at index 0. 

#Creating a Tuple with variable name ‘foo’

foo = (1, 2)

#Changing the index[0] value from 1 to 3

foo[0] = 3
	
TypeError: 'tuple' object does not support item assignment 

Immutable Objects in Python

Once again, a simple code would be the best way to depict what immutable stands for. Hence, let us discuss the below code step-by-step:

#Creating a Tuple which contains English name of weekdays

weekdays = ‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’

# Printing the elements of tuple weekdays

print(weekdays)

Output [1]:  (‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’)

#Printing the location of the object created in the memory address in hexadecimal format

print(hex(id(weekdays)))

Output [2]: 0x1691cc35090

#tuples are immutable, so you cannot add new elements, hence, using merge of tuples with the # + operator to add a new imaginary day in the tuple ‘weekdays’

weekdays  +=  ‘Pythonday’,

#Printing the elements of tuple weekdays

print(weekdays)

Output [3]: (‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’, ‘Pythonday’)

#Printing the location of the object created in the memory address in hexadecimal format

print(hex(id(weekdays)))

Output [4]: 0x1691cc8ad68

This above example shows that we were able to use the same variable name that is referencing an object which is a type of tuple with seven elements in it. However, the ID or the memory location of the old & new tuple is not the same. We were not able to change the internal state of the object ‘weekdays’. The Python program manager created a new object in the memory address and the variable name ‘weekdays’ started referencing the new object with eight elements in it.  Hence, we can say that the object which is a type of tuple with reference variable name ‘weekdays’ is an IMMUTABLE OBJECT.

Also Read: Understanding the Exploratory Data Analysis (EDA) in Python

Where can you use mutable and immutable objects:

Mutable objects can be used where you want to allow for any updates. For example, you have a list of employee names in your organizations, and that needs to be updated every time a new member is hired. You can create a mutable list, and it can be updated easily.

Immutability offers a lot of useful applications to different sensitive tasks we do in a network centred environment where we allow for parallel processing. By creating immutable objects, you seal the values and ensure that no threads can invoke overwrite/update to your data. This is also useful in situations where you would like to write a piece of code that cannot be modified. For example, a debug code that attempts to find the value of an immutable object.

Watch outs:  Non transitive nature of Immutability:

OK! Now we do understand what mutable & immutable objects in Python are. Let’s go ahead and discuss the combination of these two and explore the possibilities. Let’s discuss, as to how will it behave if you have an immutable object which contains the mutable object(s)? Or vice versa? Let us again use a code to understand this behaviour–

#creating a tuple (immutable object) which contains 2 lists(mutable) as it’s elements

#The elements (lists) contains the name, age & gender 

person = (['Ayaan', 5, 'Male'], ['Aaradhya', 8, 'Female'])

#printing the tuple

print(person)

Output [1]: (['Ayaan', 5, 'Male'], ['Aaradhya', 8, 'Female'])

#printing the location of the object created in the memory address in hexadecimal format

print(hex(id(person)))

Output [2]: 0x1691ef47f88

#Changing the age for the 1st element. Selecting 1st element of tuple by using indexing [0] then 2nd element of the list by using indexing [1] and assigning a new value for age as 4

person[0][1] = 4

#printing the updated tuple

print(person)

Output [3]: (['Ayaan', 4, 'Male'], ['Aaradhya', 8, 'Female'])

#printing the location of the object created in the memory address in hexadecimal format

print(hex(id(person)))

Output [4]: 0x1691ef47f88

In the above code, you can see that the object ‘person’ is immutable since it is a type of tuple. However, it has two lists as it’s elements, and we can change the state of lists (lists being mutable). So, here we did not change the object reference inside the Tuple, but the referenced object was mutated.

Also Read: Real-Time Object Detection Using TensorFlow

Same way, let’s explore how it will behave if you have a mutable object which contains an immutable object? Let us again use a code to understand the behaviour–

#creating a list (mutable object) which contains tuples(immutable) as it’s elements

list1 = [(1, 2, 3), (4, 5, 6)]

#printing the list

print(list1)

Output [1]: [(1, 2, 3), (4, 5, 6)]

#printing the location of the object created in the memory address in hexadecimal format

print(hex(id(list1)))

Output [2]: 0x1691d5b13c8	

#changing object reference at index 0

list1[0] = (7, 8, 9)

#printing the list

Output [3]: [(7, 8, 9), (4, 5, 6)]

#printing the location of the object created in the memory address in hexadecimal format

print(hex(id(list1)))

Output [4]: 0x1691d5b13c8

As an individual, it completely depends upon you and your requirements as to what kind of data structure you would like to create with a combination of mutable & immutable objects. I hope that this information will help you while deciding the type of object you would like to select going forward.

Before I end our discussion on IMMUTABILITY, allow me to use the word ‘CAVITE’ when we discuss the String and Integers. There is an exception, and you may see some surprising results while checking the truthiness for immutability. For instance:
#creating an object of integer type with value 10 and reference variable name ‘x’ 

x = 10
 

#printing the value of ‘x’

print(x)

Output [1]: 10

#Printing the location of the object created in the memory address in hexadecimal format

print(hex(id(x)))

Output [2]: 0x538fb560

#creating an object of integer type with value 10 and reference variable name ‘y’

y = 10

#printing the value of ‘y’

print(y)

Output [3]: 10

#Printing the location of the object created in the memory address in hexadecimal format

print(hex(id(y)))

Output [4]: 0x538fb560

As per our discussion and understanding, so far, the memory address for x & y should have been different, since, 10 is an instance of Integer class which is immutable. However, as shown in the above code, it has the same memory address. This is not something that we expected. It seems that what we have understood and discussed, has an exception as well.

Quick checkPython Data Structures

Immutability of Tuple

Tuples are immutable and hence cannot have any changes in them once they are created in Python. This is because they support the same sequence operations as strings. We all know that strings are immutable. The index operator will select an element from a tuple just like in a string. Hence, they are immutable.

Exceptions in immutability

Like all, there are exceptions in the immutability in python too. Not all immutable objects are really mutable. This will lead to a lot of doubts in your mind. Let us just take an example to understand this.

Consider a tuple ‘tup’.

Now, if we consider tuple tup = (‘GreatLearning’,[4,3,1,2]) ;

We see that the tuple has elements of different data types. The first element here is a string which as we all know is immutable in nature. The second element is a list which we all know is mutable. Now, we all know that the tuple itself is an immutable data type. It cannot change its contents. But, the list inside it can change its contents. So, the value of the Immutable objects cannot be changed but its constituent objects can. change its value.

FAQs

1. Difference between mutable vs immutable in Python?

Mutable ObjectImmutable Object
State of the object can be modified after it is created.State of the object can’t be modified once it is created.
They are not thread safe.They are thread safe
Mutable classes are not final.It is important to make the class final before creating an immutable object.

2. What are the mutable and immutable data types in Python?

  • Some mutable data types in Python are:

list, dictionary, set, user-defined classes.

  • Some immutable data types are: 

int, float, decimal, bool, string, tuple, range.

3. Are lists mutable in Python?

Lists in Python are mutable data types as the elements of the list can be modified, individual elements can be replaced, and the order of elements can be changed even after the list has been created.
(Examples related to lists have been discussed earlier in this blog.)

4. Why are tuples called immutable types?

Tuple and list data structures are very similar, but one big difference between the data types is that lists are mutable, whereas tuples are immutable. The reason for the tuple’s immutability is that once the elements are added to the tuple and the tuple has been created; it remains unchanged.

A programmer would always prefer building a code that can be reused instead of making the whole data object again. Still, even though tuples are immutable, like lists, they can contain any Python object, including mutable objects.

5. Are sets mutable in Python?

A set is an iterable unordered collection of data type which can be used to perform mathematical operations (like union, intersection, difference etc.). Every element in a set is unique and immutable, i.e. no duplicate values should be there, and the values can’t be changed. However, we can add or remove items from the set as the set itself is mutable.

6. Are strings mutable in Python?

Strings are not mutable in Python. Strings are a immutable data types which means that its value cannot be updated.

Join Great Learning Academy’s free online courses and upgrade your skills today.


Original article source at: https://www.mygreatlearning.com

#python 

How to Fix Memory Leaks with a Simple React Custom Hook

See error logs in your console with the message “Cannot perform state update on an unmounted component” from your React application? There is a simple cause and easy fix.

The Cause

React components which run asynchronous operations and perform state updates can cause memory leaks if state updates are made after the component is unmounted. Here is a common scenario where this could pop up:

  1. User performs an action triggering an event handler to fetch data from an API.
  2. The user clicks on a link, navigating them to a different page, before (1) completes.
  3. The event handler from (1) completes the fetch, and calls a state setter function, passing it the data that was retrieved from the API.

Since the component was unmounted, a state setter function is being called in a component that is no longer mounted. Essentially, the setter function is updating state no longer exists. Memory Leak.

Here is a contrived example of unsafe code:

const [value, setValue] = useState({});
useEffect(() => {
    const runAsyncOperation = () => {
        setTimeout(() => {
            // MEMORY LEAK HERE, COMPONENT UNMOUNTED
            setValue({ key: 'value' });
        }, 1000);
    }
    runAsyncOperation();
    // USER NAVIGATES AWAY FROM PAGE HERE,
    // IN LESS THAN 1000 MS
}, []); 

#web-development #react #javascript #react-hook #custom-react-hook