Dylan  Iqbal

Dylan Iqbal


A Design Pattern for Flutter

A closer look at a design pattern for Flutter apps

In my last article, I took a look at the example app first introduced Weather App with “flutter_bloc”, and moved it from using Bloc to using a more MVC approach. Below is that article for your reference.

A Design Pattern for Flutter

Now in this article, I’m going to take a deeper dive into the MVC approach. This will be like ‘looking under the hood’ of BloC and Redux. In this case, we’re going to be getting into the weeds of the MVC framework as I’ve implemented it. As it would, it’s going to get a little complicated. For some, your eyes may glaze over, but it’s hoped using the same sample app will help us move right along. It‘s going to be long read — make a coffee first.

A Design Pattern for Flutter

The MVC Approach

The MVC design pattern is an explicit effort to separate three aspects of a software application. In this case, Model-View-Controller describes the separation of the app’s Data (Model) from the app’s Interface (View) from the app’s Logic (Controller). If you haven’t already, there’s an article explaining my interpretation of MVC as it was implemented in the Flutter package, mvc_pattern:

A Design Pattern for Flutter

A MVC Example

Now in this article, the three aspects of the ‘sample app’ are separated even further — incorporating and integrating even further Flutter’s own API and framework. This sample app has its own Github repository called, Weathercast, and is also available on Google Play.

AAs always, I prefer using screenshots over gists in my articles to show code. I find them easier to work with, and easier to read. Click/Tap on the screenshots themselves or on their captions to see the code.

Design Patterns Provides Structure

Design patterns provide structure. They provide a means to organize your code. Doing so, it’s hoped, allows developers familiar with the design pattern to ‘hit the ground running’ when assigned to a project. We’re going to see how a design pattern can help organize your code, your files and even your directories that make up your project.

This article will not only suggest a structure, but will also suggest specific programming practices to perform while developing a Flutter app. Note, all suggested here is far from canon. They’re something I do — you may find it useful to do too. In the end, you do what you do.

A MVC Directory Structure

In this sample app, the MVC design pattern is even conveyed in its directory structure. Looking at the three screenshots below, you’re looking at the directory structure that stores the sample app. Each screenshot is the previous one but with sub directories opened further. Notice there’s some files and even directories named, model, view and controller. Therefore, even at a glance, you know what ‘type’ of code is in what file and in what directory. Nice, no?

A Design Pattern for Flutter

Export MVC

Note, in the last two screenshots above, the three library files, model.dart, view.dart and controller.dart are highlighted with little red arrows. They’re now listed below, and you’ll discover each contains a list of export statements. Each represents the ‘three aspects’ of the MVC design pattern. With that, guess what’s contained in the library file, controller.dart. Look closely.

A Design Pattern for Flutter

The library file, controller.dart, contains all the ‘controller’ code for the app. So what’s the idea behind all this, you ask. This approach was inspired by the Dart documentation itself when organizing a library package and serves to help expedite the developing phase. I’ll explain.

Everything In Its Place

So, all the source code located under a ‘controller’ directory is listed in the library file, controller.dart. All the source code considered part of ‘the View’ in this app are found in the library file, view.dart. Finally, the file, model.dart, contains references to all the code concerning the app’s data. It’s all part of the practice of organizing the code in such a way in the effort to expedite the development process. Time is money after all.

Get On With It

As an example, you see those three files listed above now referenced in the import statements highlighted by three red arrows in the screenshots below. While developing, the practice of automatically supplying these three import statements right away after you create a ‘new Dart file’ ensures you as a developer that you’ll have all dependencies necessary to get on with your work. Near the end of development, I would then include the ‘show’ directive for future reference (the second screenshot). With that, weeks, months, years from now, I or another developer can then return to this library file, and readily see the dependencies involved. Nice, no?

A Design Pattern for Flutter

Admittedly, for larger apps, this practice proves impractical to maintain, but, for simple apps, the idea is to use these three import files to quickly gather the dependencies needed. Time is money.

A Flutter Directory Structure

Notice there’s a directory called, home, in the app’s directory structure. This tells you, at a glance, where the code for the ‘Home’ widget is located. The ‘Home’ widget, as you may know, is usually the main screen for the mobile app in most cases. It’s named after the property found in the class, MaterialApp.

A Design Pattern for Flutter

MVC within MVC

Notice in the last screenshot, under the home directory, there’s another set of directories named, model, view and controller respectively. They’re all pertaining to the ‘Home’ widget. Guess what’s under each directory? See where I’m going with this? At a glance, you can see what code does what.

A Design Pattern for Flutter

Again, Everything In Its Place

At a glance, you can see there’s a drawer widget accessed in the ‘Home’ widget. Look at the last screenshot above. See where the drawer code is located? Pretty logical place for it, right? So where’s the data accessed by the ‘Home’ widget, I wonder? Under the directory, model, of course.

In The Beginning

So let’s step back a bit, and ask where is this ‘Home’ Widget called in this app? Like with most Flutter apps, you can guess it’s being passed to the ‘home’ property of some MaterialApp widget somewhere. But where? Look below, and you’ll see where.

A Design Pattern for Flutter

What’s All This?

So there’s the home property being passed the class object, Weather. Where is this class, Weather? Where is this class, WeatherApp? What’s this AppView class that extends WeatherApp? What’s this method, onTheme()? And finally, what’s this con.WeatherApp passed to the property, con? A lot is going on here, uh. We’ll walk through this one step at a time.

Where’s Waldo…I mean Weather?

First of all, where is this class, Weather? Well, you already have a good idea where that is. It’s the ‘Home’ widget after all. More specifically, it’s the screen or interface for the ‘Home’ widget. You know where the ‘Home’ widget code lives, and you know the ‘interface stuff’ for the ‘Home’ widget is under the directory called, view. Looking there, you’ll see a library file called, of all things, home.dart. Bet it’s in there.

A Design Pattern for Flutter

I was right! And unlike Java, you don’t have to name the file after the name of the ‘main’ class in the file. You can have any number of classes, variables and high-level functions in that file! Huge. And so, in the file home.dart, we find the class, Weather. The first part of this class is listed below.

A Design Pattern for Flutter

By the way, note the last three import statements above. You’ve seen those three files before. Notice, at a glance, you can determine the dependencies involved in this particular library file. Nice, no?

It’s All In The Name

So where is this class, WeatherApp? It appears to be the start of this app. Note, the class name, WeatherApp, has the word, ‘App’, appended on the end. That should give you a clue as to where this code could be found. Let’s take a look at the sample app’s directory structure again. Notice there’s a directory called, app. Bet, you can guess what’s in there. Yup, three dire…Oops, two directories! Guess the app doesn’t need to access any data. That’s fine.

A Design Pattern for Flutter

Again And Again, Everything In Its Place

So, where is this class, WeatherApp? Let’s look at the three screenshots below. Ok, we can figure this out. It’s part of the interface. Hence, it should be under a directory called, view. Looking in the directory, view, we see a library file called, weatherapp.dart. Look’s promising. Let’s open that one up.

A Design Pattern for Flutter

This is too easy. We’re getting to know this app pretty fast, aren’t we? Like it’s by design! Take a look below at the class, WeatherApp. Look at the last two import statements. It’s our old friends again — minus the Model. At a glance, you can see what’s being used in this library file and where they live.

Note, the ‘as’ directive is being used on the last import statement. That’s Dart’s way of handling the case when two classes have the same name.

A Design Pattern for Flutter

In The Beginning?

So is this the start of the app? How about we look at the library file, main.dart. By convention, this is the start of most Flutter applications because it contains the function, main().

A Design Pattern for Flutter

The App Layer

So, what do you see? You see a class called, App, being instantiated from the library package, mvc_application. Those familiar with my past articles may recognize this as part of my up and coming package release to develop Flutter apps.

You also see our class, WeatherApp, is referenced in one of the three ‘export’ files, view.dart. So, what is the method, runApp(), taking in to start this app? We know the function, runApp(), takes in a Widget, and so we must assume the App object is a Widget. Below is a screenshot of the class, App, and then a screenshot of it’s parent, AppMVC.

A Design Pattern for Flutter

Yup, turns out it’s a StatefulWidget. In short, this ‘App’ object starts things using the the following composition: App(View(Controller(Model()))). Note, the last two red arrows in the second screenshot. Those functions, initApp() and init() are going to come up in this article a little shortly.

And so, following this composition, the parameter supplied to the App object must be a ‘View’ of this MVC approach applied to the application. In this case, the ‘View’ is the class, WeatherApp, which extends the class, AppView. We’re peeking ‘looking under the hood’ at this point by the way.

A Design Pattern for Flutter

Note, in turn, a Controller is then supplied to the ‘View’ class in the form of con.WeatherApp(). Again, following the composition, App(View(Controller(Model()))).

Import Control

Notice, I don’t bother passing the Controller as a parameter inside the file, main.dart. Way bother. Make your code more modular, and instantiate the Controller class inside the View in the form of con.WeatherApp(). See below. It happens to have the same class name as the View, WeatherApp, and so the ‘as’ directive to used to make the distinction. That’s fine. Some consistency.

A Design Pattern for Flutter

The App’s Controller

The purpose of this ‘App layer’, by the way, is to set up the ‘environment’ for the app to run on. What you see below is the Controller for the app first instantiated above in the form of, con.WeatherApp().

A Design Pattern for Flutter

You can see there’s a lot going on here. As it should, it’s ‘initializing’ the app at startup after all. You can see it extends the class, AppController. Remember those two functions I mentioned earlier, initApp() and init()? Well, they’ve such come into play. See them? We’ll get into specifics on them in a little bit.

The App’s View

Let’s return to the app’s View, also called WeatherApp, for a moment. It extends the class, AppView, and is first instantiated in the file, main.dart. Remember?

A Design Pattern for Flutter

The View Under The Hood

Looking at a truncated screenshot of the class, AppView. Here, you can see its build() function. And look! There’s that MaterialApp we’ve been looking for!

A Design Pattern for Flutter

In there, we see the MaterialApp class object being supplied an long list of parameters in the form of class variables and or functions. What’s that all about? Well, as you may have already guessed, you’re able to ‘pass in’ all the properties that make up the MaterialApp class with either those variables or functions. And with those functions, you can then dynamically ‘rebuild’ the Widget Tree with new property values if you wish. This feature will, in fact, be demonstrated in the sample app.

Keep It Static If You Can

By the way, I noted while writing this article that I made a misstep. It’s always good programming practice to keep your code static and immutable if you can. Since there should only be ‘one instance’ of these two classes at the ‘app level,’ the use of static factories make sense, and so the two classes we just covering were changed accordingly:

A Design Pattern for Flutter

It’s beyond the scope with this article, but to accentuate the case, here are some reference to Joshua Bloch’s now famous publication: Effective Java. Of course, it doesn’t just apply to Java, but is good practice for any Object-Oriented Programming Language.

Item 1: Consider static factory methods instead of constructors

Item 15: Minimize mutability

What’s In The Drawer?

Ok, back to it. Now, there’s a drawer used in this app. Remember? How do know? Again, we saw it in the directory structure under the directory, view. See below. Nice.

So further, with this naming convention imposed on the directory structure, you can readily see what makes up the drawer for this particular sample app. Under the directory, drawer, there’s another directory named, weather_locations. Looking inside that directory, we see our old friends again: the directories, controller, model and view. We also see something new. A library file called, mvc.dart.

A Design Pattern for Flutter

Looking at the last screenshot above, we can induce weather_locations is another screen displayed inside the drawer. It’s a screen because there’s a directory called, view. There’s a directory called, controller, and there’s even a directory called, model?! There must be data specific to this screen, weather_locations?! Great! Now, what’s this library file, mvc.dart? Let’s take a look at it below.

A Design Pattern for Flutter

Well, will you look at that. It contains a list of export statements. A closer look reveals that it’s all the code that makes up the ‘weather location’ screen. The first line contains the model, the second line contains the view and the third contains the controller: M-V-C. All in a file named, mvc.dart. Fun! Look below and you can see the library files it refers to and an example of the ‘weather location’ screen displayed in the drawer.

A Design Pattern for Flutter

The files all have the same name — again, adds some consistency, don’t it. Let’s see what’s inside those files. First, we’ll look at the first bit of the Controller:

A Design Pattern for Flutter

It Is All In The Name

Note the name of the Controller class. It’s has the abbreviation, Con, append on the end. Developers will then recognize this class as a Controller. (Of course, you could call it anything you want, but there it is.) Note the import statements. They’re using the ‘show’ directive so the next developer who happens to open up this file can readily see what is used and where it lives. Notice the last import statement is that mvc.dart file. All this is an attempt to impose a standard, a conformity, a means to help the next developer ‘hit the ground running’ when this project is handed off to them next.

Let’s take a look that the first bit of the Model class. As always, you can click on the screenshot below and view its full code in Github.

A Design Pattern for Flutter

The import statements, at a glance, tells you what classes are involved. The name of the class tells you this is a Model class. Note, like the Controller, it too uses a static factory and not a traditional constructor to instantiate the class. You only need ‘one instance’ of these classes after all. Now, to keep this moving along, what does the View look like?

A Design Pattern for Flutter

Looking at the View, you see it’s not even a class but a high-level function?! It returns the variable, demoItems, of type List DemoItems. Looking at the imports you see this View does indeed ‘talk to’ the Controller, LocationCon, and as well as reference the ‘MVC Pattern’ library package’s StateMVC class. So where is this high-level function called in the app?

Location! Location! Location!

Because of the way the directory structure is arranged, we can ‘walk this back’ and take a educated guess as to where this high-level function is called. Neat!

A Design Pattern for Flutter

Stepping back out of the View, weather_loctions.dart, with the high-level function, we’re still in the drawer directory. Now, going up one level in the directory structure but still in the drawer directory, what do you see? If you guessed it’s called in the file, settings_drawer.dart, you‘d be right.

Who Calls Who

The first screen shot below is the file, settings_drawer.dart. You can see the function call, LocationCon().listLocations(). This function, in turn, is found in the Controller class, LocationCon. Now that makes sense since, in this MVC arrangement, the View doesn’t directly ‘talk to’ the Model. Instead, your access the high-level function is through the Controller. Looking at the second screenshot, you can see the high-level function we’ve been looking for, weatherLocations, is indeed accessed in the Controller.

A Design Pattern for Flutter

Step Back To See The Bigger Picture

Let’s step back, now and look at one particular feature of this sample app. With every weather condition reported, a ‘color theme’ is presented to represent a particular ‘type’ of weather. Gives a little splash to the app.

A Design Pattern for Flutter

What’s The Theme

To be able to ‘dynamically’ change the app’s color theme, you need to be able to call the setState() function on the State object that contains the theme. In other words, the State object that has the class, MaterialApp, in its build() function.

In this sample app, the ‘Theme’ class is a Controller named, ThemeCon, and explicitly changes the color of the app depending on the weather conditions assigned to a location. It controls the color if not the weather.

So where is this ‘Theme Controller?’ It’s located under the ‘Home’ directory. Why? Because it’s called by the ‘Home’ Controller. Where’s the ‘Home’ Controller? It’s found in the file, home.dart. With me so far?

Below, is the stretch of code in the ‘Theme Controller’ responsible for the changing the color theme, and a screenshot of where this file is located.

A Design Pattern for Flutter

Now, this ‘Theme Controller’ may be called in the ‘home’ widget, but it’s changing the ‘theme’ property of the MaterialApp class, and we already know that’s back in the ‘App level’ in the State object, AppView. And so, how do you access the app’s State object?— through the app’s Controller of course.

Let’s go back to the app’s Controller, WeatherApp, running at the ‘App Level.’ At last, I’ll be talking about those two functions, initApp() and init().

You can see below the app’s Controller gets access to a lot of things. Make sense — it’s the app’s Controller! In one of those two ‘init’ functions, initApp(), the app’s State object, stateMVC, adds the Controller, ThemeCon. Look below.

In other words, this other Controller called, ThemeCon, is given access to the app’s State object — found in the app’s View, AppView. ThemeCon is now able to call the setState() function in the State object that contains the theme. Are you lost? We’ll step back a little…well actually a lot!

A Design Pattern for Flutter

All Starts Under The Hood!

Let’s step back all the way to the beginning. Remember the ‘App’ object that’s passed to the function, runApp()? It’s a StatefulWidget, remember? That means it creates a State object. It creates the app’s State object. Both that StatefulWidget, and its State object, call those two ‘init’ functions respectively. It’s all part of the process in setting up the environment to run your app. Let’s take a peek.

A Design Pattern for Flutter

Follow the breakpoints

Below are screenshots of my IDE where the execution of the sample app was paused at specific breakpoints. The first screenshot is stopped in the app’s State object’s initState() function. Look at the name of the StatefulWidget function being called there. It too is called, initApp(). Consistency.

The second screenshot has gone into that function up in the Statefulwidget — which you now see is the ‘App’ object passed to the function, runApp(). The breakpoint has stopped on the initApp() belonging to the controller that was assigned to the app’s View. The property, _vw, is the app’s View which is the WeatherApp class in main.dart. Are things coming together for you yet?

A Design Pattern for Flutter

Don’t worry if you’re getting lost. I mean, if you’re not the sort who walks through code, for example, trying to get to know how the other design patterns work like Redux, Scoped Model or BLOC, then your probably wasting your time here. Guess, you’re just one of those wants to get it done, right? Although, I will suggest there is less boilerplate in this one. How about reading further? You got this far.

A Design Pattern for Flutter

So now we’re back in the initApp() function, where the ‘Theme Controller’ is given access to the app’s State object, stateMVC, highlighted in blue. See?

And so, it turns out, it’s the app’s State object’s initState() function that, in turn, calls the initApp() function in the app’s Controller. It’s all by design.

It’s where synchronous operations are to be performed. Now how about asynchronous?

Wait For The Future!

With any computer program, a lot of things have got to happen before it’s ready for the user to…well, use. There’s a lot of ‘initializing’ to be done first. This is a simple little sample app, but it too has to ‘get ready’ first before it’s, well…ready. Let’s take a further peek at how this Flutter app gets ready.

A Design Pattern for Flutter

After the initApp() is called in the app’s State object’s initState() function, the ‘App’ object fires its own build() function. In the first screenshot above, notice the ‘App’ object takes advantage of the FutureBuilder class. The property, future, is given the a function called, init(). Recognize the name?

This is how asynchronous operations are handled. However, it such a way, that the user may have to wait until they’re done. What will the user see til then? The little spinning circle in the center of the screen of course.

In the second screenshot above, you see what’s inside that init() function. It’s stopped at the app’s View own init() function. Let’s look below and see what’s in that init() function. Notice we’re moving up the layers of the framework.

A Design Pattern for Flutter

So now, in the first screenshot, we see we’re in the app’s View where some ‘internal’ stuff is done before it stops at the init() function for the parent class, AppViewState. The second screenshot above has us in that init() function where we’re about to now go into the app’s Controller and run its init() function. A lot happening here under the hood — like a framework should.

A Design Pattern for Flutter

And now we’re back in the app’s Controller. For our simple little sample app, it’s called, WeatherApp and it’s there, in its init() function, where it actually calls the ‘Location Controller’ — the one we were first introduced to back in the directory, weather_locations. Remember? Here, it’s opening the database that lists the locations on that drawer that’s in the ‘Home’ widget. Remember the drawer? Opening database may take a couple of microseconds, and so the app ‘waits’ for that to get done before it’s ready for the user. Peachy.

There’s another thing called, LocationTimer, listed there as well it would seem, but I’ll let you find out what that is when you download the sample app.

Back To Our Theme!

Let’s get back now to how this app changes its color theme on command. The app’s View has a function called, onTheme(). Remember, using such functions allows the MaterialApp to dynamically change its properties the next time it ‘rebuilds’ its Widget tree (i.e. the next time the setState() function is called.) It’s all coming together!

A Design Pattern for Flutter

Looking at the ‘Theme Controller’ listed below, you see that the property, theme, is in fact a getter. And, in fact, it’s the function further down below called, weatherChanged(), that ‘reassigns’ a value to the variable, _theme.

A Design Pattern for Flutter

And so, going back to the app’s View class, inside the framework, there’s the MaterialApp that takes in either a variable or (if that variable is null) a function. In our sample app, we utilize the function to dynamically assign a new theme. I’d suggest ‘stepping’ through the sample app to see what I mean.

A Design Pattern for Flutter

How’s It Works…Really

This article is turning into a novel, I know. However, there’s a two more things I want to cover here. Firstly, how does the framework work in performing the main function of this small simple sample app: Get the weather for a city. Let’s do a quick ‘walk-through’ of that. If you’ve read Felix Angelov’s story, Weather App with “flutter_bloc”, you know how it goes. You type in the city’s name, it gets the weather.

A Design Pattern for Flutter

Follow The Code

Ok, here we go. In the ‘Home’ widget file, home.dart, there’s a State object there that allows you to click on a magnifying glass and type in a city name to get its current weather. Below (just above the little red arrow) there is an IconButton widget that, when pressed, returns a city in a variable called, city. That variable is passed to the ‘Weather Controller.’ See below.

A Design Pattern for Flutter

Note, the ‘Weather Controller’ has a function named, onPressed(). I try to follow the practice of mimicking the API used in the View’s code to be also used in the Controller’s code. That consistency thing again. Let’s see where that takes us.

In the onPressed() function listed below, we see the variable, city, is passed along to another function called, getWeather(). We see inside the function, getWeather(), there’s a ‘then’ method. It’s in that ‘then’ method where the function, rebuild(), is called. Finally, the ‘Theme Controller’ comes into the picture to call it’s function, weatherChanged(). Remember that function?

A Design Pattern for Flutter

Now, if you guessed that the two functions, refresh(), eventually get to actually calling a State object’s setState() function, you’d be right. Congratulations, you’re starting to see the whole picture.

The ‘Theme Controller’s refresh() function calls the AppView’s State object with its MarterialApp object. This will change the app’s AppBar color. While the second refresh() function you see above calls the ‘Home’ Widget’s State object. This will change the screen’s background color. Magic.

What’s Your Preference?

The last thing I want to cover quickly is app preferences. If and when you try out this sample app, you’ll notice it’ll ‘remember’ the last city you picked, and will, in fact, bring up it’s current weather conditions the next time you start up the app. That’s because the ‘last city’ entered is recorded in the app’s preferences — with help from the framework.

It’s All In The Init

The ‘Weather Controller’, WeatherCon, will go and fetch the last city if any in the its initState() function. There, it calls the function, initFetch(). Below is a truncated screenshot of the controller, WeatherCon. The red arrow show you where the app’s preferences is accessed.

A Design Pattern for Flutter

Saved For Later

You see in the screenshot above where the ‘last city’ is retrieved and, in fact, where the ‘last city’ is recorded — in the function, fetchWeather(). Remember, the function, fetchWeather(), iseventually called every time the user clicks the magnifying glass, and the function, onPressed(), is executed in the View’s code and then in the Controller’s code.

The Prefs

That Prefs class you see in the screenshot above is a library I wrote a few months after first discovering Flutter. I had a need for such a library in my projects, and I talk about that in an article I would then write soon after:

A Design Pattern for Flutter

The Prefs library is actually part of the framework I’m working on, and you’ve already seen in being initialized above, in the class AppController, when the app was setting up its environment.

Prefs Been Published!

Oh! To heck with it! I decided to publish Prefs as a library package! I just did it! Just now! Here your go: prefs 1.0.2

It’s proven useful in my projects. Might as well as share, right?! Try it out. If you like it, use it. If not, then don’t, right?! Again, read the article above to get the load down on how to use it. It’ll still be a part of the framework when it too gets published. Whenever that’s going to happen?! Just not enough time in the day, is there. Anyway!


Ok, that was bit of a read. I’m sure you’re hungry, and or want to get on with your Life. However, I will be following up on this article as there is much more one has to consider when developing software as you know. It just happens, this framework will allow you to do so, and I’ll show you how in other articles.

#mobile-apps #flutter #design-pattern

What is GEEK

Buddha Community

A Design Pattern for Flutter

Google's Flutter 1.20 stable announced with new features - Navoki

Flutter Google cross-platform UI framework has released a new version 1.20 stable.

Flutter is Google’s UI framework to make apps for Android, iOS, Web, Windows, Mac, Linux, and Fuchsia OS. Since the last 2 years, the flutter Framework has already achieved popularity among mobile developers to develop Android and iOS apps. In the last few releases, Flutter also added the support of making web applications and desktop applications.

Last month they introduced the support of the Linux desktop app that can be distributed through Canonical Snap Store(Snapcraft), this enables the developers to publish there Linux desktop app for their users and publish on Snap Store.  If you want to learn how to Publish Flutter Desktop app in Snap Store that here is the tutorial.

Flutter 1.20 Framework is built on Google’s made Dart programming language that is a cross-platform language providing native performance, new UI widgets, and other more features for the developer usage.

Here are the few key points of this release:

Performance improvements for Flutter and Dart

In this release, they have got multiple performance improvements in the Dart language itself. A new improvement is to reduce the app size in the release versions of the app. Another performance improvement is to reduce junk in the display of app animation by using the warm-up phase.


If your app is junk information during the first run then the Skia Shading Language shader provides for pre-compilation as part of your app’s build. This can speed it up by more than 2x.

Added a better support of mouse cursors for web and desktop flutter app,. Now many widgets will show cursor on top of them or you can specify the type of supported cursor you want.

Autofill for mobile text fields

Autofill was already supported in native applications now its been added to the Flutter SDK. Now prefilled information stored by your OS can be used for autofill in the application. This feature will be available soon on the flutter web.


A new widget for interaction

InteractiveViewer is a new widget design for common interactions in your app like pan, zoom drag and drop for resizing the widget. Informations on this you can check more on this API documentation where you can try this widget on the DartPad. In this release, drag-drop has more features added like you can know precisely where the drop happened and get the position.

Updated Material Slider, RangeSlider, TimePicker, and DatePicker

In this new release, there are many pre-existing widgets that were updated to match the latest material guidelines, these updates include better interaction with Slider and RangeSliderDatePicker with support for date range and time picker with the new style.


New pubspec.yaml format

Other than these widget updates there is some update within the project also like in pubspec.yaml file format. If you are a flutter plugin publisher then your old pubspec.yaml  is no longer supported to publish a plugin as the older format does not specify for which platform plugin you are making. All existing plugin will continue to work with flutter apps but you should make a plugin update as soon as possible.

Preview of embedded Dart DevTools in Visual Studio Code

Visual Studio code flutter extension got an update in this release. You get a preview of new features where you can analyze that Dev tools in your coding workspace. Enable this feature in your vs code by _dart.previewEmbeddedDevTools_setting. Dart DevTools menu you can choose your favorite page embed on your code workspace.

Network tracking

The updated the Dev tools comes with the network page that enables network profiling. You can track the timings and other information like status and content type of your** network calls** within your app. You can also monitor gRPC traffic.

Generate type-safe platform channels for platform interop

Pigeon is a command-line tool that will generate types of safe platform channels without adding additional dependencies. With this instead of manually matching method strings on platform channel and serializing arguments, you can invoke native class and pass nonprimitive data objects by directly calling the Dartmethod.

There is still a long list of updates in the new version of Flutter 1.2 that we cannot cover in this blog. You can get more details you can visit the official site to know more. Also, you can subscribe to the Navoki newsletter to get updates on these features and upcoming new updates and lessons. In upcoming new versions, we might see more new features and improvements.

You can get more free Flutter tutorials you can follow these courses:

#dart #developers #flutter #app developed #dart devtools in visual studio code #firebase local emulator suite in flutter #flutter autofill #flutter date picker #flutter desktop linux app build and publish on snapcraft store #flutter pigeon #flutter range slider #flutter slider #flutter time picker #flutter tutorial #flutter widget #google flutter #linux #navoki #pubspec format #setup flutter desktop on windows

Terry  Tremblay

Terry Tremblay


What is Flutter and why you should learn it?

Flutter is an open-source UI toolkit for mobile developers, so they can use it to build native-looking** Android and iOS** applications from the same code base for both platforms. Flutter is also working to make Flutter apps for Web, PWA (progressive Web-App) and Desktop platform (Windows,macOS,Linux).


Flutter was officially released in December 2018. Since then, it has gone a much stronger flutter community.

There has been much increase in flutter developers, flutter packages, youtube tutorials, blogs, flutter examples apps, official and private events, and more. Flutter is now on top software repos based and trending on GitHub.

Flutter meaning?

What is Flutter? this question comes to many new developer’s mind.


Flutter means flying wings quickly, and lightly but obviously, this doesn’t apply in our SDK.

So Flutter was one of the companies that were acquired by **Google **for around $40 million. That company was based on providing gesture detection and recognition from a standard webcam. But later when the Flutter was going to release in alpha version for developer it’s name was Sky, but since Google already owned Flutter name, so they rename it to Flutter.

Where Flutter is used?

Flutter is used in many startup companies nowadays, and even some MNCs are also adopting Flutter as a mobile development framework. Many top famous companies are using their apps in Flutter. Some of them here are





Reflectly app

Reflectly app

Abbey Road Studios

Abbey Road Studios

and many more other apps. Mobile development companies also adopted Flutter as a service for their clients. Even I was one of them who developed flutter apps as a freelancer and later as an IT company for mobile apps.

Flutter as a service

#dart #flutter #uncategorized #flutter framework #flutter jobs #flutter language #flutter meaning #flutter meaning in hindi #google flutter #how does flutter work #what is flutter

Samanta  Moore

Samanta Moore


Builder Design Pattern

What is Builder Design Pattern ? Why we should care about it ?

Starting from **Creational Design Pattern, **so wikipedia says “creational design pattern are design pattern that deals with object creation mechanism, trying to create objects in manner that is suitable to the situation”.

The basic form of object creations could result in design problems and result in complex design problems, so to overcome this problem Creational Design Pattern somehow allows you to create the object.

Builder is one of the** Creational Design Pattern**.

When to consider the Builder Design Pattern ?

Builder is useful when you need to do lot of things to build an Object. Let’s imagine DOM (Document Object Model), so if we need to create the DOM, We could have to do lot of things, appending plenty of nodes and attaching attributes to them. We could also imagine about the huge XML Object creation where we will have to do lot of work to create the Object. A Factory is used basically when we could create the entire object in one shot.

As **Joshua Bloch (**He led the Design of the many library Java Collections Framework and many more) – “Builder Pattern is good choice when designing the class whose constructor or static factories would have more than handful of parameters

#java #builder #builder pattern #creational design pattern #design pattern #factory pattern #java design pattern

Adobe XD plugin for Flutter with CodePen Tutorial

Recently Adobe XD releases a new version of the plugin that you can use to export designs directly into flutter widgets or screens. Yes, you read it right, now you can make and export your favorite design in Adobe XD and export all the design in the widget form or as a full-screen design, this can save you a lot of time required in designing.

What we will do?
I will make a simple design of a dialogue box with a card design with text over it as shown below. After you complete this exercise you can experiment with the UI. You can make your own components or import UI kits available with the Adobe XD.

#developers #flutter #adobe xd design export to flutter #adobe xd flutter code #adobe xd flutter code generator - plugin #adobe xd flutter plugin #adobe xd flutter plugin tutorial #adobe xd plugins #adobe xd to flutter #adobe xd tutorial #codepen for flutter.

Joseph  Murray

Joseph Murray


Prototype Design Pattern - Java

Prototype design pattern tutorial

Definition of Prototype pattern

The prototype pattern is a creational design pattern in software development. It is used when the type of objects to create is determined by a prototypical instance, which is cloned to produce new objects.

Where to use the Prototype pattern

If the cost for creating a new object is expensive and costs resources.

#java #design-patterns #code #tutorial #prototype-design-pattern #design pattern