1638869666
Using the print sc on your laptop would take a snap of the whole screen. But to know how to print screen on HP laptop without printscreen button, try pressing the combination keys of 'Windows + Shift + S' method and select your desired areas to capture.
1669003576
In this Python article, let's learn about Mutable and Immutable in Python.
Mutable is a fancy way of saying that the internal state of the object is changed/mutated. So, the simplest definition is: An object whose internal state can be changed is mutable. On the other hand, immutable doesn’t allow any change in the object once it has been created.
Both of these states are integral to Python data structure. If you want to become more knowledgeable in the entire Python Data Structure, take this free course which covers multiple data structures in Python including tuple data structure which is immutable. You will also receive a certificate on completion which is sure to add value to your portfolio.
Mutable is when something is changeable or has the ability to change. In Python, ‘mutable’ is the ability of objects to change their values. These are often the objects that store a collection of data.
Immutable is the when no change is possible over time. In Python, if the value of an object cannot be changed over time, then it is known as immutable. Once created, the value of these objects is permanent.
Objects of built-in type that are mutable are:
Objects of built-in type that are immutable are:
Object mutability is one of the characteristics that makes Python a dynamically typed language. Though Mutable and Immutable in Python is a very basic concept, it can at times be a little confusing due to the intransitive nature of immutability.
In Python, everything is treated as an object. Every object has these three attributes:
While ID and Type cannot be changed once it’s created, values can be changed for Mutable objects.
Check out this free python certificate course to get started with Python.
I believe, rather than diving deep into the theory aspects of mutable and immutable in Python, a simple code would be the best way to depict what it means in Python. Hence, let us discuss the below code step-by-step:
#Creating a list which contains name of Indian cities
cities = [‘Delhi’, ‘Mumbai’, ‘Kolkata’]
# Printing the elements from the list cities, separated by a comma & space
for city in cities:
print(city, end=’, ’)
Output [1]: Delhi, Mumbai, Kolkata
#Printing the location of the object created in the memory address in hexadecimal format
print(hex(id(cities)))
Output [2]: 0x1691d7de8c8
#Adding a new city to the list cities
cities.append(‘Chennai’)
#Printing the elements from the list cities, separated by a comma & space
for city in cities:
print(city, end=’, ’)
Output [3]: Delhi, Mumbai, Kolkata, Chennai
#Printing the location of the object created in the memory address in hexadecimal format
print(hex(id(cities)))
Output [4]: 0x1691d7de8c8
The above example shows us that we were able to change the internal state of the object ‘cities’ by adding one more city ‘Chennai’ to it, yet, the memory address of the object did not change. This confirms that we did not create a new object, rather, the same object was changed or mutated. Hence, we can say that the object which is a type of list with reference variable name ‘cities’ is a MUTABLE OBJECT.
Let us now discuss the term IMMUTABLE. Considering that we understood what mutable stands for, it is obvious that the definition of immutable will have ‘NOT’ included in it. Here is the simplest definition of immutable– An object whose internal state can NOT be changed is IMMUTABLE.
Again, if you try and concentrate on different error messages, you have encountered, thrown by the respective IDE; you use you would be able to identify the immutable objects in Python. For instance, consider the below code & associated error message with it, while trying to change the value of a Tuple at index 0.
#Creating a Tuple with variable name ‘foo’
foo = (1, 2)
#Changing the index[0] value from 1 to 3
foo[0] = 3
TypeError: 'tuple' object does not support item assignment
Once again, a simple code would be the best way to depict what immutable stands for. Hence, let us discuss the below code step-by-step:
#Creating a Tuple which contains English name of weekdays
weekdays = ‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’
# Printing the elements of tuple weekdays
print(weekdays)
Output [1]: (‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’)
#Printing the location of the object created in the memory address in hexadecimal format
print(hex(id(weekdays)))
Output [2]: 0x1691cc35090
#tuples are immutable, so you cannot add new elements, hence, using merge of tuples with the # + operator to add a new imaginary day in the tuple ‘weekdays’
weekdays += ‘Pythonday’,
#Printing the elements of tuple weekdays
print(weekdays)
Output [3]: (‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’, ‘Pythonday’)
#Printing the location of the object created in the memory address in hexadecimal format
print(hex(id(weekdays)))
Output [4]: 0x1691cc8ad68
This above example shows that we were able to use the same variable name that is referencing an object which is a type of tuple with seven elements in it. However, the ID or the memory location of the old & new tuple is not the same. We were not able to change the internal state of the object ‘weekdays’. The Python program manager created a new object in the memory address and the variable name ‘weekdays’ started referencing the new object with eight elements in it. Hence, we can say that the object which is a type of tuple with reference variable name ‘weekdays’ is an IMMUTABLE OBJECT.
Also Read: Understanding the Exploratory Data Analysis (EDA) in Python
Where can you use mutable and immutable objects:
Mutable objects can be used where you want to allow for any updates. For example, you have a list of employee names in your organizations, and that needs to be updated every time a new member is hired. You can create a mutable list, and it can be updated easily.
Immutability offers a lot of useful applications to different sensitive tasks we do in a network centred environment where we allow for parallel processing. By creating immutable objects, you seal the values and ensure that no threads can invoke overwrite/update to your data. This is also useful in situations where you would like to write a piece of code that cannot be modified. For example, a debug code that attempts to find the value of an immutable object.
Watch outs: Non transitive nature of Immutability:
OK! Now we do understand what mutable & immutable objects in Python are. Let’s go ahead and discuss the combination of these two and explore the possibilities. Let’s discuss, as to how will it behave if you have an immutable object which contains the mutable object(s)? Or vice versa? Let us again use a code to understand this behaviour–
#creating a tuple (immutable object) which contains 2 lists(mutable) as it’s elements
#The elements (lists) contains the name, age & gender
person = (['Ayaan', 5, 'Male'], ['Aaradhya', 8, 'Female'])
#printing the tuple
print(person)
Output [1]: (['Ayaan', 5, 'Male'], ['Aaradhya', 8, 'Female'])
#printing the location of the object created in the memory address in hexadecimal format
print(hex(id(person)))
Output [2]: 0x1691ef47f88
#Changing the age for the 1st element. Selecting 1st element of tuple by using indexing [0] then 2nd element of the list by using indexing [1] and assigning a new value for age as 4
person[0][1] = 4
#printing the updated tuple
print(person)
Output [3]: (['Ayaan', 4, 'Male'], ['Aaradhya', 8, 'Female'])
#printing the location of the object created in the memory address in hexadecimal format
print(hex(id(person)))
Output [4]: 0x1691ef47f88
In the above code, you can see that the object ‘person’ is immutable since it is a type of tuple. However, it has two lists as it’s elements, and we can change the state of lists (lists being mutable). So, here we did not change the object reference inside the Tuple, but the referenced object was mutated.
Also Read: Real-Time Object Detection Using TensorFlow
Same way, let’s explore how it will behave if you have a mutable object which contains an immutable object? Let us again use a code to understand the behaviour–
#creating a list (mutable object) which contains tuples(immutable) as it’s elements
list1 = [(1, 2, 3), (4, 5, 6)]
#printing the list
print(list1)
Output [1]: [(1, 2, 3), (4, 5, 6)]
#printing the location of the object created in the memory address in hexadecimal format
print(hex(id(list1)))
Output [2]: 0x1691d5b13c8
#changing object reference at index 0
list1[0] = (7, 8, 9)
#printing the list
Output [3]: [(7, 8, 9), (4, 5, 6)]
#printing the location of the object created in the memory address in hexadecimal format
print(hex(id(list1)))
Output [4]: 0x1691d5b13c8
As an individual, it completely depends upon you and your requirements as to what kind of data structure you would like to create with a combination of mutable & immutable objects. I hope that this information will help you while deciding the type of object you would like to select going forward.
Before I end our discussion on IMMUTABILITY, allow me to use the word ‘CAVITE’ when we discuss the String and Integers. There is an exception, and you may see some surprising results while checking the truthiness for immutability. For instance:
#creating an object of integer type with value 10 and reference variable name ‘x’
x = 10
#printing the value of ‘x’
print(x)
Output [1]: 10
#Printing the location of the object created in the memory address in hexadecimal format
print(hex(id(x)))
Output [2]: 0x538fb560
#creating an object of integer type with value 10 and reference variable name ‘y’
y = 10
#printing the value of ‘y’
print(y)
Output [3]: 10
#Printing the location of the object created in the memory address in hexadecimal format
print(hex(id(y)))
Output [4]: 0x538fb560
As per our discussion and understanding, so far, the memory address for x & y should have been different, since, 10 is an instance of Integer class which is immutable. However, as shown in the above code, it has the same memory address. This is not something that we expected. It seems that what we have understood and discussed, has an exception as well.
Quick check – Python Data Structures
Tuples are immutable and hence cannot have any changes in them once they are created in Python. This is because they support the same sequence operations as strings. We all know that strings are immutable. The index operator will select an element from a tuple just like in a string. Hence, they are immutable.
Like all, there are exceptions in the immutability in python too. Not all immutable objects are really mutable. This will lead to a lot of doubts in your mind. Let us just take an example to understand this.
Consider a tuple ‘tup’.
Now, if we consider tuple tup = (‘GreatLearning’,[4,3,1,2]) ;
We see that the tuple has elements of different data types. The first element here is a string which as we all know is immutable in nature. The second element is a list which we all know is mutable. Now, we all know that the tuple itself is an immutable data type. It cannot change its contents. But, the list inside it can change its contents. So, the value of the Immutable objects cannot be changed but its constituent objects can. change its value.
Mutable Object | Immutable Object |
State of the object can be modified after it is created. | State of the object can’t be modified once it is created. |
They are not thread safe. | They are thread safe |
Mutable classes are not final. | It is important to make the class final before creating an immutable object. |
list, dictionary, set, user-defined classes.
int, float, decimal, bool, string, tuple, range.
Lists in Python are mutable data types as the elements of the list can be modified, individual elements can be replaced, and the order of elements can be changed even after the list has been created.
(Examples related to lists have been discussed earlier in this blog.)
Tuple and list data structures are very similar, but one big difference between the data types is that lists are mutable, whereas tuples are immutable. The reason for the tuple’s immutability is that once the elements are added to the tuple and the tuple has been created; it remains unchanged.
A programmer would always prefer building a code that can be reused instead of making the whole data object again. Still, even though tuples are immutable, like lists, they can contain any Python object, including mutable objects.
A set is an iterable unordered collection of data type which can be used to perform mathematical operations (like union, intersection, difference etc.). Every element in a set is unique and immutable, i.e. no duplicate values should be there, and the values can’t be changed. However, we can add or remove items from the set as the set itself is mutable.
Strings are not mutable in Python. Strings are a immutable data types which means that its value cannot be updated.
Join Great Learning Academy’s free online courses and upgrade your skills today.
Original article source at: https://www.mygreatlearning.com
1672928580
Bash has no built-in function to take the user’s input from the terminal. The read command of Bash is used to take the user’s input from the terminal. This command has different options to take an input from the user in different ways. Multiple inputs can be taken using the single read command. Different ways of using this command in the Bash script are described in this tutorial.
read [options] [var1, var2, var3…]
The read command can be used without any argument or option. Many types of options can be used with this command to take the input of the particular data type. It can take more input from the user by defining the multiple variables with this command.
Some options of the read command require an additional parameter to use. The most commonly used options of the read command are mentioned in the following:
Option | Purpose |
---|---|
-d <delimiter> | It is used to take the input until the delimiter value is provided. |
-n <number> | It is used to take the input of a particular number of characters from the terminal and stop taking the input earlier based on the delimiter. |
-N <number> | It is used to take the input of the particular number of characters from the terminal, ignoring the delimiter. |
-p <prompt> | It is used to print the output of the prompt message before taking the input. |
-s | It is used to take the input without an echo. This option is mainly used to take the input for the password input. |
-a | It is used to take the input for the indexed array. |
-t <time> | It is used to set a time limit for taking the input. |
-u <file descriptor> | It is used to take the input from the file. |
-r | It is used to disable the backslashes. |
The uses of read command with different options are shown in this part of this tutorial.
Example 1: Using Read Command without Any Option and variable
Create a Bash file with the following script that takes the input from the terminal using the read command without any option and variable. If no variable is used with the read command, the input value is stored in the $REPLY variable. The value of this variable is printed later after taking the input.
#!/bin/bash
#Print the prompt message
echo "Enter your favorite color: "
#Take the input
read
#Print the input value
echo "Your favorite color is $REPLY"
Output:
The following output appears if the “Blue” value is taken as an input:
Example 2: Using Read Command with a Variable
Create a Bash file with the following script that takes the input from the terminal using the read command with a variable. The method of taking the single or multiple variables using a read command is shown in this example. The values of all variables are printed later.
#!/bin/bash
#Print the prompt message
echo "Enter the product name: "
#Take the input with a single variable
read item
#Print the prompt message
echo "Enter the color variations of the product: "
#Take three input values in three variables
read color1 color2 color3
#Print the input value
echo "The product name is $item."
#Print the input values
echo "Available colors are $color1, $color2, and $color3."
Output:
The following output appears after taking a single input first and three inputs later:
Example 3: Using Read Command with -p Option
Create a Bash file with the following script that takes the input from the terminal using the read command with a variable and the -p option. The input value is printed later.
#!/bin/bash
#Take the input with the prompt message
read -p "Enter the book name: " book
#Print the input value
echo "Book name: $book"
Output:
The following output appears after taking the input:
Example 4: Using Read Command with -s Option
Create a Bash file with the following script that takes the input from the terminal using the read command with a variable and the -s option. The input value of the password will not be displayed for the -s option. The input values are checked later for authentication. A success or failure message is also printed.
#!/bin/bash
#Take the input with the prompt message
read -p "Enter your email: " email
#Take the secret input with the prompt message
read -sp "Enter your password: " password
#Add newline
echo ""
#Check the email and password for authentication
if [[ $email == "admin@example.com" && $password == "secret" ]]
then
#Print the success message
echo "Authenticated."
else
#Print the failure message
echo "Not authenticated."
fi
Output:
The following output appears after taking the valid and invalid input values:
Example 5: Using Read Command with -a Option
Create a Bash file with the following script that takes the input from the terminal using the read command with a variable and the -a option. The array values are printed later after taking the input values from the terminal.
#!/bin/bash
echo "Enter the country names: "
#Take multiple inputs using an array
read -a countries
echo "Country names are:"
#Read the array values
for country in ${countries[@]}
do
echo $country
done
Output:
The following output appears after taking the array values:
Example 6: Using Read Command with -n Option
Create a Bash file with the following script that takes the input from the terminal using the read command with a variable and the -n option.
#!/bin/bash
#Print the prompt message
echo "Enter the product code: "
#Take the input of five characters
read -n 5 code
#Add newline
echo ""
#Print the input value
echo "The product code is $code"
Output:
The following output appears if the “78342” value is taken as input:
Example 7: Using Read Command with -t Option
Create a Bash file with the following script that takes the input from the terminal using the read command with a variable and the -t option.
#!/bin/bash
#Print the prompt message
echo -n "Write the result of 10-6: "
#Take the input of five characters
read -t 3 answer
#Check the input value
if [[ $answer == "4" ]]
then
echo "Correct answer."
else
echo "Incorrect answer."
fi
Output:
The following output appears after taking the correct and incorrect input values:
The uses of some useful options of the read command are explained in this tutorial using multiple examples to know the basic uses of the read command.
Original article source at: https://linuxhint.com/
1661584697
If you are looking for a printer, which can help you in every possible ways with your office work, the Officejet 9000 can be the best model for you. It is packed with numerous features, and thus, you should get it. Here are all the facts, you should know about the printer. The HP Officejet 9000 is a multi-function printer, where you can get scanning facility, as well. It has wireless connectivity, which means, you can print out documents from anywhere and any device, you would like to. The printer is quite easy to use, which is another big reason, behind the popularity of the printer.Recently, a couple of clients utilizing the download and install Officejet pro 9000 all-in-one printer range have faced challenges while downloading the desired drivers. Assuming that you are additionally here with a similar reason this post is for you.
In the given article we have referenced various methods to download driver hp or update 123.hp.com/officejet 9000 for Windows 7, 8, 10, 11 devices. These driver updates not only improve the communication of the printer with your operating system but also enhance the speed of your Windows PC. Accordingly, go through the possible methods and apply the reasonable choice for Download and Install HP Printer drivers for Windows PC.
If your printer has bugs, blank printing issues, or other errors download the latest hp officejet pro 9000 driver for Windows 7, 8, 10, or 11 devices to maintain the bridge between your PC and hardware device. No need to implement all the options, read the steps for each and apply the one that is suitable for you.
If you have the time, there’s a built-in utility on your Windows devices that enables you to download HP Officejet 9000 drivers in a partly automatic way. Here’s how to use the utility for downloading HP Officejet 9000 driver for Windows 7, 8, 10, or 11 PCs or Laptops.
Although there are numerous methods for HP Officejet 9000 driver download the automatic one tops our list. It simplifies the task to update drivers with automatic hp printer software download. The software can store the system specifications and quickly offer compatible and latest drivers for your device.
The Bit Driver Updater software updates HP Officejet 9000 driver and all the other drivers with a single click. Along with updating drivers the tool also empowers users to backup and restore the entire data in its huge driver database. Moreover, with the Pro update, it is easier to get technical assistance from the support team 24*7 regarding any relative concerns. You can perform quick scans and schedule driver updates with the help of this tool. All these features can be availed with Bit Driver Updater Pro which comes with a 60 day money back guarantee.
Here are the steps to be followed to download the software and use it for hp printer driver download.
Restart your Windows device to apply the updated driver software. The automatic driver updater software method for driver updates is the most convenient one. However, if you have the time and patience you can opt for the following method to hp officejet pro 9000 download.
Another and the most common method to download or update HP Officejet 9000 driver for Windows 11, 10, 8, or 7 devices is from the official website of HP. However, before you begin with the steps, find out the specifications of your system and its requirements to download the right drivers.
Open Windows Settings on your device and move to the about section. Check the Windows Edition and system type that are 9000 driver update.
The all-in-one printer series HP Officejet 9000 is supported by various Windows versions. We hope the guide proved to be useful in downloading the latest HP Officejet pro 9000 printer Drivers for your Windows devices. Although all the methods are reliable in our opinion automatic driver downloads through Bit Driver Updater is the simplest of all. Use the tool to update all the drivers at the ease of a single click.
tags
#Download and Install HP Printer drivers for Windows PC
#hp officejet pro 9000 download
#HP Officejet pro 9000 printer Drivers
#hp printer drivers for windows 10
1635844603
जानें कि पाइथन में प्री-ट्रेन्ड DialoGPT मॉडल के साथ संवादी प्रतिक्रियाएं उत्पन्न करने के लिए हगिंगफेस ट्रांसफॉर्मर लाइब्रेरी का उपयोग कैसे करें।
हाल के वर्षों में चैटबॉट्स ने बहुत लोकप्रियता हासिल की है, और जैसे-जैसे व्यवसाय के लिए चैटबॉट्स का उपयोग करने में रुचि बढ़ती है, शोधकर्ताओं ने संवादी एआई चैटबॉट्स को आगे बढ़ाने पर भी बहुत अच्छा काम किया है।
इस ट्यूटोरियल में, हम संवादी प्रतिक्रिया पीढ़ी के लिए पूर्व-प्रशिक्षित DialoGPT मॉडल को नियोजित करने के लिए हगिंगफेस ट्रांसफॉर्मर लाइब्रेरी का उपयोग करेंगे ।
DialoGPT एक बड़े पैमाने पर ट्यून करने योग्य तंत्रिका संवादी प्रतिक्रिया पीढ़ी मॉडल है जिसे रेडिट से निकाले गए 147M वार्तालापों पर प्रशिक्षित किया गया था, और अच्छी बात यह है कि आप स्क्रैच से प्रशिक्षण की तुलना में बेहतर प्रदर्शन प्राप्त करने के लिए इसे अपने डेटासेट के साथ ठीक कर सकते हैं।
आरंभ करने के लिए, आइए ट्रांसफॉर्मर स्थापित करें :
$ pip3 install transformers
एक नई पायथन फ़ाइल या नोटबुक खोलें और निम्न कार्य करें:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# model_name = "microsoft/DialoGPT-large"
model_name = "microsoft/DialoGPT-medium"
# model_name = "microsoft/DialoGPT-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
DialoGPT के तीन संस्करण हैं; छोटा, मध्यम और बड़ा। बेशक, जितना बड़ा बेहतर होगा, लेकिन अगर आप इसे अपनी मशीन पर चला रहे हैं, तो मुझे लगता है कि छोटा या मध्यम आपकी याददाश्त को बिना किसी समस्या के फिट करता है। बड़े वाले को आज़माने के लिए आप Google Colab का भी उपयोग कर सकते हैं।
इस खंड में, हम प्रतिक्रिया उत्पन्न करने के लिए लालची खोज एल्गोरिथ्म का उपयोग करेंगे । यही है, हम चैटबॉट प्रतिक्रिया का चयन करते हैं जिसमें प्रत्येक समय चरण पर चुने जाने की सबसे अधिक संभावना होती है।
आइए लालची खोज का उपयोग करके हमारे AI के साथ चैट करने के लिए कोड बनाएं:
# chatting 5 times with greedy search
for step in range(5):
# take user input
text = input(">> You:")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids = model.generate(
bot_input_ids,
max_length=1000,
pad_token_id=tokenizer.eos_token_id,
)
#print the output
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
print(f"DialoGPT: {output}")
आइए इस कोड के मूल की व्याख्या करें:
input_ids
DialoGPT टोकननाइज़र का उपयोग करने के लिए टेक्स्ट को एन्कोड करते हैं , हम स्ट्रिंग टोकन के अंत को भी जोड़ते हैं और इसे पाइटोरच टेंसर के रूप में वापस करते हैं।input_ids
एक पीढ़ी के लिए सीधे अपने मॉडल को फीड करते हैं। अन्यथा, हम torch.cat()
मेथड की मदद से कॉन्सटेनेशन का उपयोग करके चैट हिस्ट्री को जोड़ देते हैं ।model.generate()
चैटबॉट प्रतिक्रिया उत्पन्न करने के लिए विधि का उपयोग करते हैं ।tokenizer.decode()
और यह सुनिश्चित skip_special_tokens
करने के True
लिए सेट करते हैं कि हमें कोई कष्टप्रद विशेष टोकन जैसे कि <|endoftext|>
. साथ ही, चूंकि मॉडल पूरे अनुक्रम को लौटाता है, हम पिछले चैट इतिहास को छोड़ देते हैं और केवल नए जेनरेट किए गए चैटबॉट उत्तर को प्रिंट करते हैं।नीचे बॉट के साथ एक नमूना चर्चा है:
>> You:How can you be rich so quickly?
DialoGPT: I'm not rich, I'm just a rich man.
>> You:Ok, you don't make sense, how old are you ?
DialoGPT: I'm not a rich man, I'm just a rich man.
>> You:How can you be happy ?
DialoGPT: I'm not happy, I'm just a rich man.
>> You:But they say money buys happiness!
DialoGPT: Money buys happiness, but not happiness itself.
>> You:You don't make sense again!
DialoGPT: I'm not happy, I'm just a rich man.
आप देखते हैं कि मॉडल बहुत सारी प्रतिक्रियाओं को दोहराता है, क्योंकि ये सबसे अधिक संभावना है और यह हर बार इसे चुन रहा है।
डिफ़ॉल्ट रूप से, model.generate()
लालची खोज एल्गोरिथ्म का उपयोग करता है जब कोई अन्य पैरामीटर सेट नहीं किया जाता है, अगले अनुभागों में, हम इस पद्धति में कुछ तर्क जोड़ेंगे कि क्या हम पीढ़ी में सुधार कर सकते हैं।
बीम खोज हमें num_beams
हर समय कदम पर परिकल्पना की सबसे अधिक संभावना रखते हुए उच्च संभावना अनुक्रमों के लापता होने के जोखिम को कम करने की अनुमति देता है और फिर उन अनुक्रमों को लेकर जिनकी समग्र उच्चतम संभावना है, नीचे दिए गए कोड बीम खोज के साथ चैटबॉट प्रतिक्रियाएं उत्पन्न करेंगे:
# chatting 5 times with beam search
for step in range(5):
# take user input
text = input(">> You:")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids = model.generate(
bot_input_ids,
max_length=1000,
num_beams=3,
early_stopping=True,
pad_token_id=tokenizer.eos_token_id
)
#print the output
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
print(f"DialoGPT: {output}")
सेट करते समय num_beams
के लिए 3
में model.generate()
विधि है, तो हम हर बार कदम पर 3 शब्दों का चयन और अनुक्रम के उच्चतम समग्र संभावना खोजने के लिए उन्हें विकसित करने के लिए जा रहे हैं, की स्थापना num_beams
1 के लिए लालची खोज के समान है।
नीचे बीम खोज का उपयोग करके चैटबॉट के साथ एक नमूना चर्चा है:
>> You:How can I be rich?
DialoGPT: You can't.
>> You:Why not?
DialoGPT: Because you can't.
>> You:Then how am I supposed to live well?
DialoGPT: You can't.
>> You:So basically, you want me to be a poor guy?
DialoGPT: No, I want you to be a rich guy.
>> You:Ok how to be rich, then?
DialoGPT: I don't know.
पिछले अनुभागों में, हमने उच्चतम संभाव्यता अनुक्रम उत्पन्न करने के लिए बीम और लालची खोज का उपयोग किया था। अब यह मशीनी अनुवाद या टेक्स्ट सारांश जैसे कार्यों के लिए बहुत अच्छा है जहां आउटपुट अनुमानित है। हालाँकि, चैटबॉट्स की तरह ओपन-एंडेड पीढ़ी के लिए यह सबसे अच्छा विकल्प नहीं है।
एक बेहतर पीढ़ी के लिए, हमें कुछ यादृच्छिकता पेश करने की आवश्यकता है जहां हम संभावनाओं के आधार पर उम्मीदवार अनुक्रमों की एक विस्तृत श्रृंखला से नमूना लेते हैं:
# chatting 5 times with sampling
for step in range(5):
# take user input
text = input(">> You:")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids = model.generate(
bot_input_ids,
max_length=1000,
do_sample=True,
top_k=0,
pad_token_id=tokenizer.eos_token_id
)
#print the output
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
print(f"DialoGPT: {output}")
इस बार, हमने नमूनाकरण के लिए सेट do_sample
किया True
है, और हम यह इंगित करने के top_k
लिए सेट हैं 0
कि हम सभी संभावित संभावनाओं का चयन कर रहे हैं, हम बाद में top_k
पैरामीटर पर चर्चा करेंगे ।
यहाँ इन मापदंडों के साथ बातचीत है:
>> You:Hello, how can I be rich?
DialoGPT: You can't
>> You:Really? then how others get rich?
DialoGPT: They work as money artists
>> You:How to be a money artist?
DialoGPT: I don't know, I don't have enough knowledge on artists
>> You:Alright, thank you!
DialoGPT: No problem, if you need tips pm me.
>> You:Great, you're my savior!
DialoGPT: Thank you for helping a stranger out like me!
स्पष्ट रूप से कुछ सुधार हैं। हालांकि, कम संभावनाओं वाले अनुक्रमों की एक विस्तृत सूची पर नमूना लेने से यादृच्छिक पीढ़ी हो सकती है (जैसा कि आप अंतिम वाक्य में देखते हैं)।
इसे और बेहतर बनाने के लिए, हम यह कर सकते हैं:
temperature
, जिससे हमें कम संभावना वाले शब्दों को चुनने की संभावना कम करने में मदद मिलती है और उच्च संभावना वाले शब्दों को चुनने की संभावना बढ़ जाती है।# chatting 5 times with Top K sampling & tweaking temperature
for step in range(5):
# take user input
text = input(">> You:")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids = model.generate(
bot_input_ids,
max_length=1000,
do_sample=True,
top_k=100,
temperature=0.75,
pad_token_id=tokenizer.eos_token_id
)
#print the output
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
print(f"DialoGPT: {output}")
अब, हम संभाव्यता द्वारा अवरोही क्रम में शीर्ष शब्दों से नमूना लेने के लिए सेट top_k
करते हैं । हम उच्च संभावना वाले शब्दों को चुनने का एक उच्च मौका देने के लिए (डिफ़ॉल्ट है ) पर भी सेट करते हैं , तापमान को लालची खोज के समान ही सेट करते हैं, इसे अनंत पर सेट करना पूरी तरह से यादृच्छिक के समान है।100100temperature0.751.00.0
यहाँ इन मापदंडों के साथ एक चर्चा है:
>> You:How can I get rich?
DialoGPT: I'd also like to know this.
>> You:So you don't know it?
DialoGPT: I know it, but it doesn't matter.
>> You:Really? money matters, man!
DialoGPT: Well, money is money and I gotta get my money.
>> You:Yeah how to get them?
DialoGPT: Well, that's a question. I'd like to know more, just for curiosity's sake, to know what other people have said about how I should get rich.
>> You:Some robots like you told me you have to buy gold, silver or stocks.
DialoGPT: I think my wallet is empty.
जैसा कि आप देख सकते हैं, यह अब बहुत बेहतर है, बेझिझक ट्विक करें temperature
और top_k
पैरामीटर देखें और देखें कि क्या यह इसमें सुधार कर सकता है।
न्यूक्लियस सैंपलिंग या टॉप-पी सैंपलिंग उन सबसे छोटे संभव शब्दों में से चुनता है जिनकी संचयी संभावना p
हमारे द्वारा निर्धारित पैरामीटर से अधिक होती है ।
टॉप-पी सैंपलिंग का उपयोग करते हुए एक उदाहरण नीचे दिया गया है:
# chatting 5 times with nucleus sampling & tweaking temperature
for step in range(5):
# take user input
text = input(">> You:")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids = model.generate(
bot_input_ids,
max_length=1000,
do_sample=True,
top_p=0.95,
top_k=0,
temperature=0.75,
pad_token_id=tokenizer.eos_token_id
)
#print the output
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
print(f"DialoGPT: {output}")
हमने टॉप-के सैंपलिंग को अक्षम top_k
करने के 0
लिए सेट किया है, लेकिन आप दोनों विधियों का उपयोग कर सकते हैं जो बेहतर काम करती हैं। यहाँ एक चैट है:
>> You:How can I be rich fast?
DialoGPT: Inflation and free money
>> You:lol, but that takes time, I need fast money.
DialoGPT: Your post makes no sense. You just need a lot of money to be rich fast
>> You:Ok how to get a lot of money?
DialoGPT: Buy gold and then trade it for money.
>> You:Hmm, I got your point, thanks.
DialoGPT: No problem. You have to have money to buy gold, but its only good for trading it.
>> You:Yeah, I understand, thank you so much.
DialoGPT: Ok, let me know if you need help
अब चैटबॉट कई मामलों में स्पष्ट रूप से समझ में आता है।
अब एक से अधिक चैटबॉट प्रतिक्रिया उत्पन्न करने के लिए कुछ कोड जोड़ते हैं, और फिर हम चुनते हैं कि अगले इनपुट में किस प्रतिक्रिया को शामिल करना है:
# chatting 5 times with nucleus & top-k sampling & tweaking temperature & multiple
# sentences
for step in range(5):
# take user input
text = input(">> You:")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids_list = model.generate(
bot_input_ids,
max_length=1000,
do_sample=True,
top_p=0.95,
top_k=50,
temperature=0.75,
num_return_sequences=5,
pad_token_id=tokenizer.eos_token_id
)
#print the outputs
for i in range(len(chat_history_ids_list)):
output = tokenizer.decode(chat_history_ids_list[i][bot_input_ids.shape[-1]:], skip_special_tokens=True)
print(f"DialoGPT {i}: {output}")
choice_index = int(input("Choose the response you want for the next input: "))
chat_history_ids = torch.unsqueeze(chat_history_ids_list[choice_index], dim=0)
मैंने एक बार में 5 वाक्यों को वापस num_return_sequences
करने के 5
लिए निर्धारित किया है, हमें एक को चुनना होगा जिसे अगले अनुक्रम में शामिल किया जाएगा। यहां बताया गया है कि यह कैसे चला गया:
>> You:Hello, friend.
DialoGPT 0: Hey there!
DialoGPT 1: I am your friend, and I am also your friend.
DialoGPT 2: Hello. :
DialoGPT 3: Hiya! How are you?
DialoGPT 4: Hello. I like your username.
Choose the response you want for the next input: 3
>> You:Fine, thanks, what about you?
DialoGPT 0: Good. Not much to do.
DialoGPT 1: Not much, you?
DialoGPT 2: Fine, thanks.
DialoGPT 3: I'm okay, thank you for asking.
DialoGPT 4: I'm fine too.
Choose the response you want for the next input: 2
>> You:Can you tell me how can I get rich quickly?
DialoGPT 0: Yes, I can!
DialoGPT 1: Yes, just look up how to get rich on Google.
DialoGPT 2: Just keep doing your thing. You'll get rich.
DialoGPT 3: No, I can't.
DialoGPT 4: no, i have no money
Choose the response you want for the next input: 1
>> You:Yeah, but I thought you have an answer...
DialoGPT 0: I'm getting married in the morning.
DialoGPT 1: How do you get rich?
DialoGPT 2: I think there are many good answers, but I could send you one, if you want.
DialoGPT 3: I will, thanks!
DialoGPT 4: I thought you have an answer.
Choose the response you want for the next input: 2
>> You:Yes, please send me.
DialoGPT 0: You can send me link.
DialoGPT 1: I am very interested
DialoGPT 2: I sent you a PM
DialoGPT 3: I'll send you a PM
DialoGPT 4: I am always interested in new ideas.
Choose the response you want for the next input: 2
और आप वहां जाएं, मुझे आशा है कि इस ट्यूटोरियल ने आपको DialoGPT और इसी तरह के मॉडल पर टेक्स्ट जेनरेट करने में मदद की। टेक्स्ट जेनरेट करने के तरीके के बारे में अधिक जानकारी के लिए, मैं आपको ट्रांसफॉर्मर्स गाइड के साथ टेक्स्ट जेनरेट करने का तरीका पढ़ने की अत्यधिक सलाह देता हूं ।
यह देखने के लिए कि क्या आप बॉट को बेहतर प्रदर्शन कर सकते हैं, मैं आपको मापदंडों को बदलना छोड़ दूँगा।
साथ ही, आप इसे टेक्स्ट-टू-स्पीच और स्पीच-टू-टेक्स्ट ट्यूटोरियल्स के साथ जोड़कर एक वर्चुअल असिस्टेंट जैसे एलेक्सा , सिरी , कोरटाना आदि बना सकते हैं।
#python #chatbot #ai
1646796864
Trong bài viết này, bạn sẽ học cách sử dụng phương pháp danh sách của Python sort()
.
Bạn cũng sẽ tìm hiểu một cách khác để thực hiện sắp xếp trong Python bằng cách sử dụng sorted()
hàm để bạn có thể thấy nó khác với nó như thế nào sort()
.
Cuối cùng, bạn sẽ biết những điều cơ bản về sắp xếp danh sách bằng Python và biết cách tùy chỉnh việc sắp xếp để phù hợp với nhu cầu của bạn.
sort()
- Tổng quan về cú phápPhương pháp sort()
này là một trong những cách bạn có thể sắp xếp danh sách trong Python.
Khi sử dụng sort()
, bạn sắp xếp một danh sách tại chỗ . Điều này có nghĩa là danh sách ban đầu được sửa đổi trực tiếp. Cụ thể, thứ tự ban đầu của các phần tử bị thay đổi.
Cú pháp chung cho phương thức sort()
này trông giống như sau:
list_name.sort(reverse=..., key=... )
Hãy chia nhỏ nó:
list_name
là tên của danh sách bạn đang làm việc.sort()
là một trong những phương pháp danh sách của Python để sắp xếp và thay đổi danh sách. Nó sắp xếp các phần tử danh sách theo thứ tự tăng dần hoặc giảm dần .sort()
chấp nhận hai tham số tùy chọn .reverse
là tham số tùy chọn đầu tiên. Nó chỉ định liệu danh sách sẽ được sắp xếp theo thứ tự tăng dần hay giảm dần. Nó nhận một giá trị Boolean, nghĩa là giá trị đó là True hoặc False. Giá trị mặc định là False , nghĩa là danh sách được sắp xếp theo thứ tự tăng dần. Đặt nó thành True sẽ sắp xếp danh sách ngược lại, theo thứ tự giảm dần.key
là tham số tùy chọn thứ hai. Nó có một hàm hoặc phương pháp được sử dụng để chỉ định bất kỳ tiêu chí sắp xếp chi tiết nào mà bạn có thể có.Phương sort()
thức trả về None
, có nghĩa là không có giá trị trả về vì nó chỉ sửa đổi danh sách ban đầu. Nó không trả về một danh sách mới.
sort()
Như đã đề cập trước đó, theo mặc định, sort()
sắp xếp các mục trong danh sách theo thứ tự tăng dần.
Thứ tự tăng dần (hoặc tăng dần) có nghĩa là các mặt hàng được sắp xếp từ giá trị thấp nhất đến cao nhất.
Giá trị thấp nhất ở bên trái và giá trị cao nhất ở bên phải.
Cú pháp chung để thực hiện việc này sẽ giống như sau:
list_name.sort()
Hãy xem ví dụ sau đây cho thấy cách sắp xếp danh sách các số nguyên:
# a list of numbers
my_numbers = [10, 8, 3, 22, 33, 7, 11, 100, 54]
#sort list in-place in ascending order
my_numbers.sort()
#print modified list
print(my_numbers)
#output
#[3, 7, 8, 10, 11, 22, 33, 54, 100]
Trong ví dụ trên, các số được sắp xếp từ nhỏ nhất đến lớn nhất.
Bạn cũng có thể đạt được điều tương tự khi làm việc với danh sách các chuỗi:
# a list of strings
programming_languages = ["Python", "Swift","Java", "C++", "Go", "Rust"]
#sort list in-place in alphabetical order
programming_languages.sort()
#print modified list
print(programming_languages)
#output
#['C++', 'Go', 'Java', 'Python', 'Rust', 'Swift']
Trong trường hợp này, mỗi chuỗi có trong danh sách được sắp xếp theo thứ tự không tuân theo.
Như bạn đã thấy trong cả hai ví dụ, danh sách ban đầu đã được thay đổi trực tiếp.
sort()
Thứ tự giảm dần (hoặc giảm dần) ngược lại với thứ tự tăng dần - các phần tử được sắp xếp từ giá trị cao nhất đến thấp nhất.
Để sắp xếp các mục trong danh sách theo thứ tự giảm dần, bạn cần sử dụng reverse
tham số tùy chọn với phương thức sort()
và đặt giá trị của nó thành True
.
Cú pháp chung để thực hiện việc này sẽ giống như sau:
list_name.sort(reverse=True)
Hãy sử dụng lại cùng một ví dụ từ phần trước, nhưng lần này làm cho nó để các số được sắp xếp theo thứ tự ngược lại:
# a list of numbers
my_numbers = [10, 8, 3, 22, 33, 7, 11, 100, 54]
#sort list in-place in descending order
my_numbers.sort(reverse=True)
#print modified list
print(my_numbers)
#output
#[100, 54, 33, 22, 11, 10, 8, 7, 3]
Bây giờ tất cả các số được sắp xếp ngược lại, với giá trị lớn nhất ở bên tay trái và giá trị nhỏ nhất ở bên phải.
Bạn cũng có thể đạt được điều tương tự khi làm việc với danh sách các chuỗi.
# a list of strings
programming_languages = ["Python", "Swift","Java", "C++", "Go", "Rust"]
#sort list in-place in reverse alphabetical order
programming_languages.sort(reverse=True)
#print modified list
print(programming_languages)
#output
#['Swift', 'Rust', 'Python', 'Java', 'Go', 'C++']
Các mục danh sách hiện được sắp xếp theo thứ tự bảng chữ cái ngược lại.
key
tham số với phương thức sort()
Bạn có thể sử dụng key
tham số để thực hiện các thao tác sắp xếp tùy chỉnh hơn.
Giá trị được gán cho key
tham số cần phải là thứ có thể gọi được.
Callable là thứ có thể được gọi, có nghĩa là nó có thể được gọi và tham chiếu.
Một số ví dụ về các đối tượng có thể gọi là các phương thức và hàm.
Phương thức hoặc hàm được gán cho key
này sẽ được áp dụng cho tất cả các phần tử trong danh sách trước khi bất kỳ quá trình sắp xếp nào xảy ra và sẽ chỉ định logic cho tiêu chí sắp xếp.
Giả sử bạn muốn sắp xếp danh sách các chuỗi dựa trên độ dài của chúng.
Đối với điều đó, bạn chỉ định len()
hàm tích hợp cho key
tham số.
Hàm len()
sẽ đếm độ dài của từng phần tử được lưu trong danh sách bằng cách đếm các ký tự có trong phần tử đó.
programming_languages = ["Python", "Swift","Java", "C++", "Go", "Rust"]
programming_languages.sort(key=len)
print(programming_languages)
#output
#['Go', 'C++', 'Java', 'Rust', 'Swift', 'Python']
Trong ví dụ trên, các chuỗi được sắp xếp theo thứ tự tăng dần mặc định, nhưng lần này việc sắp xếp xảy ra dựa trên độ dài của chúng.
Chuỗi ngắn nhất ở bên trái và dài nhất ở bên phải.
Các key
và reverse
tham số cũng có thể được kết hợp.
Ví dụ: bạn có thể sắp xếp các mục trong danh sách dựa trên độ dài của chúng nhưng theo thứ tự giảm dần.
programming_languages = ["Python", "Swift","Java", "C++", "Go", "Rust"]
programming_languages.sort(key=len, reverse=True)
print(programming_languages)
#output
#['Python', 'Swift', 'Java', 'Rust', 'C++', 'Go']
Trong ví dụ trên, các chuỗi đi từ dài nhất đến ngắn nhất.
Một điều cần lưu ý nữa là bạn có thể tạo một chức năng sắp xếp tùy chỉnh của riêng mình, để tạo các tiêu chí sắp xếp rõ ràng hơn.
Ví dụ: bạn có thể tạo một hàm cụ thể và sau đó sắp xếp danh sách theo giá trị trả về của hàm đó.
Giả sử bạn có một danh sách các từ điển với các ngôn ngữ lập trình và năm mà mỗi ngôn ngữ lập trình được tạo ra.
programming_languages = [{'language':'Python','year':1991},
{'language':'Swift','year':2014},
{'language':'Java', 'year':1995},
{'language':'C++','year':1985},
{'language':'Go','year':2007},
{'language':'Rust','year':2010},
]
Bạn có thể xác định một hàm tùy chỉnh nhận giá trị của một khóa cụ thể từ từ điển.
💡 Hãy nhớ rằng khóa từ điển và key
tham số sort()
chấp nhận là hai thứ khác nhau!
Cụ thể, hàm sẽ lấy và trả về giá trị của year
khóa trong danh sách từ điển, chỉ định năm mà mọi ngôn ngữ trong từ điển được tạo.
Giá trị trả về sau đó sẽ được áp dụng làm tiêu chí sắp xếp cho danh sách.
programming_languages = [{'language':'Python','year':1991},
{'language':'Swift','year':2014},
{'language':'Java', 'year':1995},
{'language':'C++','year':1985},
{'language':'Go','year':2007},
{'language':'Rust','year':2010},
]
def get_year(element):
return element['year']
Sau đó, bạn có thể sắp xếp theo giá trị trả về của hàm bạn đã tạo trước đó bằng cách gán nó cho key
tham số và sắp xếp theo thứ tự thời gian tăng dần mặc định:
programming_languages = [{'language':'Python','year':1991},
{'language':'Swift','year':2014},
{'language':'Java', 'year':1995},
{'language':'C++','year':1985},
{'language':'Go','year':2007},
{'language':'Rust','year':2010},
]
def get_year(element):
return element['year']
programming_languages.sort(key=get_year)
print(programming_languages)
Đầu ra:
[{'language': 'C++', 'year': 1985}, {'language': 'Python', 'year': 1991}, {'language': 'Java', 'year': 1995}, {'language': 'Go', 'year': 2007}, {'language': 'Rust', 'year': 2010}, {'language': 'Swift', 'year': 2014}]
Nếu bạn muốn sắp xếp từ ngôn ngữ được tạo gần đây nhất đến ngôn ngữ cũ nhất hoặc theo thứ tự giảm dần, thì bạn sử dụng reverse=True
tham số:
programming_languages = [{'language':'Python','year':1991},
{'language':'Swift','year':2014},
{'language':'Java', 'year':1995},
{'language':'C++','year':1985},
{'language':'Go','year':2007},
{'language':'Rust','year':2010},
]
def get_year(element):
return element['year']
programming_languages.sort(key=get_year, reverse=True)
print(programming_languages)
Đầu ra:
[{'language': 'Swift', 'year': 2014}, {'language': 'Rust', 'year': 2010}, {'language': 'Go', 'year': 2007}, {'language': 'Java', 'year': 1995}, {'language': 'Python', 'year': 1991}, {'language': 'C++', 'year': 1985}]
Để đạt được kết quả chính xác, bạn có thể tạo một hàm lambda.
Thay vì sử dụng hàm tùy chỉnh thông thường mà bạn đã xác định bằng def
từ khóa, bạn có thể:
def
hàm. Các hàm lambda còn được gọi là các hàm ẩn danh .programming_languages = [{'language':'Python','year':1991},
{'language':'Swift','year':2014},
{'language':'Java', 'year':1995},
{'language':'C++','year':1985},
{'language':'Go','year':2007},
{'language':'Rust','year':2010},
]
programming_languages.sort(key=lambda element: element['year'])
print(programming_languages)
Hàm lambda được chỉ định với dòng key=lambda element: element['year']
sắp xếp các ngôn ngữ lập trình này từ cũ nhất đến mới nhất.
sort()
và sorted()
Phương sort()
thức hoạt động theo cách tương tự như sorted()
hàm.
Cú pháp chung của sorted()
hàm trông như sau:
sorted(list_name,reverse=...,key=...)
Hãy chia nhỏ nó:
sorted()
là một hàm tích hợp chấp nhận một có thể lặp lại. Sau đó, nó sắp xếp nó theo thứ tự tăng dần hoặc giảm dần.sorted()
chấp nhận ba tham số. Một tham số là bắt buộc và hai tham số còn lại là tùy chọn.list_name
là tham số bắt buộc . Trong trường hợp này, tham số là danh sách, nhưng sorted()
chấp nhận bất kỳ đối tượng có thể lặp lại nào khác.sorted()
cũng chấp nhận các tham số tùy chọn reverse
và key
, đó là các tham số tùy chọn tương tự mà phương thức sort()
chấp nhận.Sự khác biệt chính giữa sort()
và sorted()
là sorted()
hàm nhận một danh sách và trả về một bản sao được sắp xếp mới của nó.
Bản sao mới chứa các phần tử của danh sách ban đầu theo thứ tự được sắp xếp.
Các phần tử trong danh sách ban đầu không bị ảnh hưởng và không thay đổi.
Vì vậy, để tóm tắt sự khác biệt:
sort()
thức không có giá trị trả về và trực tiếp sửa đổi danh sách ban đầu, thay đổi thứ tự của các phần tử chứa trong nó.sorted()
hàm có giá trị trả về, là một bản sao đã được sắp xếp của danh sách ban đầu. Bản sao đó chứa các mục danh sách của danh sách ban đầu theo thứ tự được sắp xếp. Cuối cùng, danh sách ban đầu vẫn còn nguyên vẹn.Hãy xem ví dụ sau để xem nó hoạt động như thế nào:
#original list of numbers
my_numbers = [10, 8, 3, 22, 33, 7, 11, 100, 54]
#sort original list in default ascending order
my_numbers_sorted = sorted(my_numbers)
#print original list
print(my_numbers)
#print the copy of the original list that was created
print(my_numbers_sorted)
#output
#[10, 8, 3, 22, 33, 7, 11, 100, 54]
#[3, 7, 8, 10, 11, 22, 33, 54, 100]
Vì không có đối số bổ sung nào được cung cấp sorted()
, nó đã sắp xếp bản sao của danh sách ban đầu theo thứ tự tăng dần mặc định, từ giá trị nhỏ nhất đến giá trị lớn nhất.
Và khi in danh sách ban đầu, bạn thấy rằng nó vẫn được giữ nguyên và các mục có thứ tự ban đầu.
Như bạn đã thấy trong ví dụ trên, bản sao của danh sách đã được gán cho một biến mới my_numbers_sorted
,.
Một cái gì đó như vậy không thể được thực hiện với sort()
.
Hãy xem ví dụ sau để xem điều gì sẽ xảy ra nếu điều đó được thực hiện với phương thức sort()
.
my_numbers = [10, 8, 3, 22, 33, 7, 11, 100, 54]
my_numbers_sorted = my_numbers.sort()
print(my_numbers)
print(my_numbers_sorted)
#output
#[3, 7, 8, 10, 11, 22, 33, 54, 100]
#None
Bạn thấy rằng giá trị trả về của sort()
là None
.
Cuối cùng, một điều khác cần lưu ý là các reverse
và key
tham số mà sorted()
hàm chấp nhận hoạt động giống hệt như cách chúng thực hiện với phương thức sort()
bạn đã thấy trong các phần trước.
sort()
vàsorted()
Dưới đây là một số điều bạn có thể muốn xem xét khi quyết định có nên sử dụng sort()
vs. sorted()
Trước tiên, hãy xem xét loại dữ liệu bạn đang làm việc:
sort()
phương pháp này vì sort()
chỉ được gọi trong danh sách.sorted()
. Hàm sorted()
chấp nhận và sắp xếp mọi thứ có thể lặp lại (như từ điển, bộ giá trị và bộ) chứ không chỉ danh sách.Tiếp theo, một điều khác cần xem xét là liệu bạn có giữ được thứ tự ban đầu của danh sách mà bạn đang làm việc hay không:
sort()
, danh sách ban đầu sẽ bị thay đổi và mất thứ tự ban đầu. Bạn sẽ không thể truy xuất vị trí ban đầu của các phần tử danh sách. Sử dụng sort()
khi bạn chắc chắn muốn thay đổi danh sách đang làm việc và chắc chắn rằng bạn không muốn giữ lại thứ tự đã có.sorted()
nó hữu ích khi bạn muốn tạo một danh sách mới nhưng bạn vẫn muốn giữ lại danh sách bạn đang làm việc. Hàm sorted()
sẽ tạo một danh sách được sắp xếp mới với các phần tử danh sách được sắp xếp theo thứ tự mong muốn.Cuối cùng, một điều khác mà bạn có thể muốn xem xét khi làm việc với các tập dữ liệu lớn hơn, đó là hiệu quả về thời gian và bộ nhớ:
sort()
pháp này chiếm dụng và tiêu tốn ít bộ nhớ hơn vì nó chỉ sắp xếp danh sách tại chỗ và không tạo ra danh sách mới không cần thiết mà bạn không cần. Vì lý do tương tự, nó cũng nhanh hơn một chút vì nó không tạo ra một bản sao. Điều này có thể hữu ích khi bạn đang làm việc với danh sách lớn hơn chứa nhiều phần tử hơn.Và bạn có nó rồi đấy! Bây giờ bạn đã biết cách sắp xếp một danh sách trong Python bằng sort()
phương pháp này.
Bạn cũng đã xem xét sự khác biệt chính giữa sắp xếp danh sách bằng cách sử dụng sort()
và sorted()
.
Tôi hy vọng bạn thấy bài viết này hữu ích.
Để tìm hiểu thêm về ngôn ngữ lập trình Python, hãy xem Chứng chỉ Máy tính Khoa học với Python của freeCodeCamp .
Bạn sẽ bắt đầu từ những điều cơ bản và học theo cách tương tác và thân thiện với người mới bắt đầu. Bạn cũng sẽ xây dựng năm dự án vào cuối để áp dụng vào thực tế và giúp củng cố những gì bạn đã học được.
Nguồn: https://www.freecodecamp.org/news/python-sort-how-to-sort-a-list-in-python/