1642737036
Deno 1.18 marks the finalization of the Web Cryptography API, and adds, stabilizes, and improves many features.
Deno 1.18 has been tagged and released with the following features and changes:
Error.cause
now displayed in all stack tracesIf you already have Deno installed, you can upgrade to 1.18 by running:
deno upgrade
If you are installing Deno for the first time, you can use one of the methods listed below:
# Using Shell (macOS and Linux):
curl -fsSL https://deno.land/x/install/install.sh | sh
# Using PowerShell (Windows):
iwr https://deno.land/x/install/install.ps1 -useb | iex
# Using Homebrew (macOS):
brew install deno
# Using Scoop (Windows):
scoop install deno
# Using Chocolatey (Windows):
choco install deno
New features and changes
This releases finalizes our 6 month long effort to fully implement the Web Cryptography API. We're done - the entirety of the Web Cryptography API is now implemented in Deno*.
Deno now passes 98.1% of the web platform test suite for the Web Cryptography API. For some comparsion data: Chrome/Edge pass 94.5% of tests, Firefox passes 93.4%, and Safari passes in 99.8% of tests. You can see the current data for yourself on wpt.fyi.
To get here, these APIs were introduced in this release:
crypto.subtle.encrypt
:crypto.subtle.decrypt
:crypto.subtle.wrapKey
:crypto.subtle.unwrapKey
:crypto.subtle.importKey
:crypto.subtle.exportKey
:* With the exception of some very niche features, like P-521 elliptic curve keys.
A huge thanks to Sean Michael Wykes for helping get this over the finish line.
We are continuing to iterate on the configuration file that we first introduced in Deno v1.14. Previously, using a configuration file required you to specify the --config
flag, followed by the path to the config file.
Starting with this release, Deno will automatically discover configuration files with the deno.json
or deno.jsonc
filenames. You can still explicitly pass a config file path with --config
to force a specific file to be used.
Before v1.18:
$ deno run --config ./deno.json ./src/file1.js
$ deno fmt --config ./deno.json
$ deno lint --config ./deno.json
v1.18:
$ deno run ./src/file1.js
$ deno fmt
$ deno lint
For subcommands that don't specify file arguments (eg. deno fmt
) Deno will look for configuration files in the current working directory, walking the directory tree upwards until a config file is found. For subcommands that specify file arguments (e.g. deno run ./src/file1.js
), Deno will look for a sibling configuration file to the given entrypoint, walking the directory tree upwards.
Consider following directory tree:
/dev
/deno
/my-project
/src
/file1.js
/file2.js
If the current working directory is /dev/deno/my-project/
and we run deno run src/file.js
, Deno will try to find configuration file by checking these paths in order:
/dev/deno/my-project/src/deno.json
/dev/deno/my-project/src/deno.jsonc
/dev/deno/my-project/deno.json
/dev/deno/my-project/deno.jsonc
/dev/deno/deno.json
/dev/deno/deno.jsonc
/dev/deno.json
/dev/deno.jsonc
/deno.json
/deno.jsonc
If none of the paths exists, Deno will run without applying any configuration.
Additionally, Deno's LSP will automatically discover the configuration file too; it will look for a configuration file in the same directory as workspace root, walking the directory tree upwards until a config file is found or the root directory is reached.
We plan to iterate on the features of the configuration file further in the coming months and we look forward to your feedback.
Error.cause
now displayed in all stack tracesError.cause
is a relatively new property that allows programs to indicate a cause for errors. Deno has supported this property since v1.13, however the cause was not in all types of stack traces (namely uncaught exceptions). This is now fixed: a chain of causes will be logged for uncaught errors.
Example:
// error_cause.js
function fizz() {
throw new Error("boom!");
}
function bar() {
try {
fizz();
} catch (e) {
throw new Error("fizz() has thrown", { cause: e });
}
}
function foo() {
try {
bar();
} catch (e) {
throw new Error("bar() has thrown", { cause: e });
}
}
foo();
Before v1.18:
$ deno run error_cause.js
error: Uncaught Error: bar() has thrown
throw new Error("bar() has thrown", { cause: e });
^
at foo (file:///test.js:17:15)
at file:///test.js:21:1
v1.18:
error: Uncaught Error: bar() has thrown
throw new Error("bar() has thrown", { cause: e });
^
at foo (file:///test.js:17:15)
at file:///test.js:21:1
Caused by: Uncaught Error: fizz() has thrown
throw new Error("fizz() has thrown", { cause: e });
^
at bar (file:///test.js:9:15)
at foo (file:///test.js:15:9)
at file:///test.js:21:1
Caused by: Uncaught Error: boom!
throw new Error("boom!");
^
at fizz (file:///test.js:2:11)
at bar (file:///test.js:7:9)
at foo (file:///test.js:15:9)
at file:///test.js:21:1
Deno 1.15 introduced a new API for nested test steps in --unstable
. This release stabilizes this API after positive feedback from the community.
This API addition allows users to specify sub-steps for tests defined by Deno.test
. These sub steps get their own sanitizer scopes and are rendered in the test runner with indents. The new API is general enough so it can be wrapped by polyfills to emulate existing test frameworks like mocha or node-tap. The original explainer for this new API explains it in more detail.
Here is an example of a test that uses the new API. It creates a database connection, runs some queries against it in sub tests and then closes the connection.
Deno.test("database test", async (t) => {
const db = await Database.connect("postgres://localhost/test");
await t.step("insert user", async () => {
const users = await db.query(
"INSERT INTO users (name) VALUES ('Deno') RETURNING *",
);
assertEquals(users.length, 1);
assertEquals(users[0].name, "Deno");
});
await t.step("insert book", async () => {
const books = await db.query(
"INSERT INTO books (name) VALUES ('The Deno Manual') RETURNING *",
);
assertEquals(books.length, 1);
assertEquals(books[0].name, "The Deno Manual");
});
db.close();
});
The same test written in Mocha style would look like this:
describe("database test", () => {
let db: Database;
beforeAll(async () => {
db = await Database.connect("postgres://localhost/test");
});
it("insert user", async () => {
const users = await db!.query(
"INSERT INTO users (name) VALUES ('Deno') RETURNING *",
);
assertEquals(users.length, 1);
assertEquals(users[0].name, "Deno");
});
it("insert book", async () => {
const books = await db!.query(
"INSERT INTO books (name) VALUES ('The Deno Manual') RETURNING *",
);
assertEquals(books.length, 1);
assertEquals(books[0].name, "The Deno Manual");
});
afterAll(() => {
db!.close();
});
});
For those more familiar with this style, we have written a simple polyfill for Mocha that builds on top of this new API: https://gist.github.com/lucacasonato/54c03bb267074aaa9b32415dbfb25522.
This release brings another handful of updates to the unstable FFI API.
We're seeing very interesting projects based on the FFI API, showcasing how powerful FFI API can be.
Based on the definition of symbols provided by a dynamic library, TypeScript will now infer types of available methods and raise errors if call sites don't match the expected types.
const dylib = Deno.dlopen(
"dummy_lib.so",
{
method1: { parameters: ["usize", "usize"], result: "void" },
method2: { parameters: ["void"], result: "void" },
method3: { parameters: ["usize"], result: "void" },
} as const,
);
// Correct invocation
dylib.symbols.method1(0, 0);
// error: TS2554 [ERROR]: Expected 2 arguments, but got 1.
dylib.symbols.method1(0);
// Correct invocation
dylib.symbols.method2(void 0);
// TS2345 [ERROR]: Argument of type 'null' is not assignable to parameter of type 'void'.
dylib.symbols.method2(null);
// Correct invocation
dylib.symbols.method3(0);
// TS2345 [ERROR]: Argument of type 'null' is not assignable to parameter of type 'number'.
dylib.symbols.method3(null);
Thank you to @sinclairzx81 for implementing this feature.
When defining symbols available in the dynamic library, you can now add aliases to them. The use case for this feature is two-fold: a) you can rename symbols to keep a consistent style in your code (alias snake_case
to camelCase
); b) provide multiple overloads of the same function, eg. a synchronous version that will block execution until function returns, and a "non-blocking" version that will run the function on a thread pool returning a promise to the result.
use std::{
thread::sleep,
time::Duration
};
#[no_mangle]
pub extern "C" fn print_something() {
println!("something");
}
#[no_mangle]
pub extern "C" fn sleep_blocking(ms: u64) {
let duration = Duration::from_millis(ms);
sleep(duration);
}
const dylib = Deno.dlopen(libPath, {
"printSomething": {
name: "print_something",
parameters: [],
result: "void",
},
"sleep_nonblocking": {
name: "sleep_blocking",
parameters: ["u64"],
result: "void",
nonblocking: true,
},
"sleep_blocking": {
parameters: ["u64"],
result: "void",
},
});
dylib.symbols.printSomething();
let start = performance.now();
dylib.symbols.sleep_blocking(100);
console.assert(performance.now() - start >= 100);
start = performance.now();
dylib.symbols.sleep_blocking().then(() => {
console.assert(performance.now() - start >= 100);
});
Thank you to @DjDeveloperr for implementing this feature.
Deno.UnsafeFnPointer
APIA new Deno.UnsafeFnPointer
function was added that allows to call a function from the dynamic library that is available as a pointer.
#[no_mangle]
pub extern "C" fn add_u32(a: u32, b: u32) -> u32 {
a + b
}
#[no_mangle]
pub extern "C" fn get_add_u32_ptr() -> *const c_void {
add_u32 as *const c_void
}
const dylib = Deno.dlopen(
"dummy_lib.so",
{
get_add_u32_ptr: { parameters: [], result: "pointer" },
} as const,
);
const addU32Ptr = dylib.symbols.get_add_u32_ptr();
const addU32 = new Deno.UnsafeFnPointer(addU32Ptr, {
parameters: ["u32", "u32"],
result: "u32",
});
console.log(addU32.call(123, 456));
Thank you to @DjDeveloperr for implementing this feature.
Users now have the ability to set custom headers on outbound WebSockets. These headers are sent with the WebSocket handshake and can be used by the server to provide additional information about the WebSocket connection. This is a non standard extension and should thus be used with care.
To use this feature, you need to use the unstable WebSocketStream
API:
const ws = new WebSocketStream("wss://example.com", {
headers: { "X-Custom-Header": "foo" },
});
The headers property in the options bag has the same signature as the headers property in the fetch
function, and Request
/Response
constructors.
WebSocket connections accepted from clients using Deno.upgradeWebSocket
now automatically handle pong messages from clients. Ping messages are now sent automatically when no other messages have been sent for a while to keep the connection alive.
To configure the ping/pong interval, you can use the idleTimeout
option in the Deno.upgradeWebSocket
options bag. The default value is 120
seconds. The feature can be disabled by setting the value to 0
.
import { serve } from "https://deno.land/std@0.121.0/http/server.ts";
serve((req: Request) => {
const { socket, response } = Deno.upgradeWebSocket(req, { idleTimeout: 60 });
handleSocket(socket);
return response;
});
function handleSocket(socket: WebSocket) {
socket.onopen = (e) => {
console.log("WebSocket open");
};
}
This release adds a couple of new features to Deno LSP that are available to all users of VS Code, JetBrains IDEs, and many other editors.
Debugging individual test cases has now been made much simpler through the addition of "Debug" code lens quick action that will be shown above Deno.test
calls. When clicked, the test will be run with the interactive debugger attached to your editor.
Thanks to @jespertheend for contributing this feature.
This release much improves the auto-completions for registies in the LSP. The registry completions now include helpful hovercards for each part of the URL. For deno.land/x packages, the hovercard includes package description, the star count, the last update date, and a link to the package's documentation on doc.deno.land.
If you want to add support for registry completions for your own registry, make sure to read through the documentation.
This version brings an overhaul to deno coverage
subcommand.
We received a feedback from community that generating coverage data is slow and often the data is inaccurate. Generating coverage was slow due to indavertent type checking of source files that were used to perform source mapping; by simplifying the loading pipeline we managed to cut down processing time significantly. Additionally, the deno coverage
subcommand will now warn users if the coverage data and available sources are in an inconsitent state. The second problem of inaccurate data was alleviated by fixing some logic used to merge coverage data collected from multiple files.
Deno uses V8 snapshots to provide fast startup of the runtime and TypeScript compiler. These snapshots are binary blobs. We produce them during build time and later embed them in the deno
executable. To make the executable smaller the snapshots were previously compressed by V8 using zlib
.
After an investigation it became apparent that using this zlib
compression incurs a reather siginificant startup overhead that could be avoided. Starting with v1.18 Deno uses lz4
and zstd
compression for the snapshots. This change caused up to 33% faster startup of JavaScript runtime and up to 10% faster startup of the TypeScript compiler.
For more details, see https://github.com/denoland/deno/pull/13320.
Thank you to @evanwashere for this improvement.
Deno 1.18 ships with version 9.8 of the V8 engine. This release doesn't bring any new JavaScript features, but fixes several bugs that we discovered and reported in the recent months, including crashes in private methods (https://github.com/denoland/deno/issues/12940) and bug in ES module loading (https://github.com/denoland/deno/issues/11258).
Original article source at https://deno.com
#deno #programming #developer
1653475560
msgpack.php
A pure PHP implementation of the MessagePack serialization format.
The recommended way to install the library is through Composer:
composer require rybakit/msgpack
To pack values you can either use an instance of a Packer
:
$packer = new Packer();
$packed = $packer->pack($value);
or call a static method on the MessagePack
class:
$packed = MessagePack::pack($value);
In the examples above, the method pack
automatically packs a value depending on its type. However, not all PHP types can be uniquely translated to MessagePack types. For example, the MessagePack format defines map
and array
types, which are represented by a single array
type in PHP. By default, the packer will pack a PHP array as a MessagePack array if it has sequential numeric keys, starting from 0
and as a MessagePack map otherwise:
$mpArr1 = $packer->pack([1, 2]); // MP array [1, 2]
$mpArr2 = $packer->pack([0 => 1, 1 => 2]); // MP array [1, 2]
$mpMap1 = $packer->pack([0 => 1, 2 => 3]); // MP map {0: 1, 2: 3}
$mpMap2 = $packer->pack([1 => 2, 2 => 3]); // MP map {1: 2, 2: 3}
$mpMap3 = $packer->pack(['a' => 1, 'b' => 2]); // MP map {a: 1, b: 2}
However, sometimes you need to pack a sequential array as a MessagePack map. To do this, use the packMap
method:
$mpMap = $packer->packMap([1, 2]); // {0: 1, 1: 2}
Here is a list of type-specific packing methods:
$packer->packNil(); // MP nil
$packer->packBool(true); // MP bool
$packer->packInt(42); // MP int
$packer->packFloat(M_PI); // MP float (32 or 64)
$packer->packFloat32(M_PI); // MP float 32
$packer->packFloat64(M_PI); // MP float 64
$packer->packStr('foo'); // MP str
$packer->packBin("\x80"); // MP bin
$packer->packArray([1, 2]); // MP array
$packer->packMap(['a' => 1]); // MP map
$packer->packExt(1, "\xaa"); // MP ext
Check the "Custom types" section below on how to pack custom types.
The Packer
object supports a number of bitmask-based options for fine-tuning the packing process (defaults are in bold):
Name | Description |
---|---|
FORCE_STR | Forces PHP strings to be packed as MessagePack UTF-8 strings |
FORCE_BIN | Forces PHP strings to be packed as MessagePack binary data |
DETECT_STR_BIN | Detects MessagePack str/bin type automatically |
FORCE_ARR | Forces PHP arrays to be packed as MessagePack arrays |
FORCE_MAP | Forces PHP arrays to be packed as MessagePack maps |
DETECT_ARR_MAP | Detects MessagePack array/map type automatically |
FORCE_FLOAT32 | Forces PHP floats to be packed as 32-bits MessagePack floats |
FORCE_FLOAT64 | Forces PHP floats to be packed as 64-bits MessagePack floats |
The type detection mode (
DETECT_STR_BIN
/DETECT_ARR_MAP
) adds some overhead which can be noticed when you pack large (16- and 32-bit) arrays or strings. However, if you know the value type in advance (for example, you only work with UTF-8 strings or/and associative arrays), you can eliminate this overhead by forcing the packer to use the appropriate type, which will save it from running the auto-detection routine. Another option is to explicitly specify the value type. The library provides 2 auxiliary classes for this,Map
andBin
. Check the "Custom types" section below for details.
Examples:
// detect str/bin type and pack PHP 64-bit floats (doubles) to MP 32-bit floats
$packer = new Packer(PackOptions::DETECT_STR_BIN | PackOptions::FORCE_FLOAT32);
// these will throw MessagePack\Exception\InvalidOptionException
$packer = new Packer(PackOptions::FORCE_STR | PackOptions::FORCE_BIN);
$packer = new Packer(PackOptions::FORCE_FLOAT32 | PackOptions::FORCE_FLOAT64);
To unpack data you can either use an instance of a BufferUnpacker
:
$unpacker = new BufferUnpacker();
$unpacker->reset($packed);
$value = $unpacker->unpack();
or call a static method on the MessagePack
class:
$value = MessagePack::unpack($packed);
If the packed data is received in chunks (e.g. when reading from a stream), use the tryUnpack
method, which attempts to unpack data and returns an array of unpacked messages (if any) instead of throwing an InsufficientDataException
:
while ($chunk = ...) {
$unpacker->append($chunk);
if ($messages = $unpacker->tryUnpack()) {
return $messages;
}
}
If you want to unpack from a specific position in a buffer, use seek
:
$unpacker->seek(42); // set position equal to 42 bytes
$unpacker->seek(-8); // set position to 8 bytes before the end of the buffer
To skip bytes from the current position, use skip
:
$unpacker->skip(10); // set position to 10 bytes ahead of the current position
To get the number of remaining (unread) bytes in the buffer:
$unreadBytesCount = $unpacker->getRemainingCount();
To check whether the buffer has unread data:
$hasUnreadBytes = $unpacker->hasRemaining();
If needed, you can remove already read data from the buffer by calling:
$releasedBytesCount = $unpacker->release();
With the read
method you can read raw (packed) data:
$packedData = $unpacker->read(2); // read 2 bytes
Besides the above methods BufferUnpacker
provides type-specific unpacking methods, namely:
$unpacker->unpackNil(); // PHP null
$unpacker->unpackBool(); // PHP bool
$unpacker->unpackInt(); // PHP int
$unpacker->unpackFloat(); // PHP float
$unpacker->unpackStr(); // PHP UTF-8 string
$unpacker->unpackBin(); // PHP binary string
$unpacker->unpackArray(); // PHP sequential array
$unpacker->unpackMap(); // PHP associative array
$unpacker->unpackExt(); // PHP MessagePack\Type\Ext object
The BufferUnpacker
object supports a number of bitmask-based options for fine-tuning the unpacking process (defaults are in bold):
Name | Description |
---|---|
BIGINT_AS_STR | Converts overflowed integers to strings [1] |
BIGINT_AS_GMP | Converts overflowed integers to GMP objects [2] |
BIGINT_AS_DEC | Converts overflowed integers to Decimal\Decimal objects [3] |
1. The binary MessagePack format has unsigned 64-bit as its largest integer data type, but PHP does not support such integers, which means that an overflow can occur during unpacking.
2. Make sure the GMP extension is enabled.
3. Make sure the Decimal extension is enabled.
Examples:
$packedUint64 = "\xcf"."\xff\xff\xff\xff"."\xff\xff\xff\xff";
$unpacker = new BufferUnpacker($packedUint64);
var_dump($unpacker->unpack()); // string(20) "18446744073709551615"
$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_GMP);
var_dump($unpacker->unpack()); // object(GMP) {...}
$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_DEC);
var_dump($unpacker->unpack()); // object(Decimal\Decimal) {...}
In addition to the basic types, the library provides functionality to serialize and deserialize arbitrary types. This can be done in several ways, depending on your use case. Let's take a look at them.
If you need to serialize an instance of one of your classes into one of the basic MessagePack types, the best way to do this is to implement the CanBePacked interface in the class. A good example of such a class is the Map
type class that comes with the library. This type is useful when you want to explicitly specify that a given PHP array should be packed as a MessagePack map without triggering an automatic type detection routine:
$packer = new Packer();
$packedMap = $packer->pack(new Map([1, 2, 3]));
$packedArray = $packer->pack([1, 2, 3]);
More type examples can be found in the src/Type directory.
As with type objects, type transformers are only responsible for serializing values. They should be used when you need to serialize a value that does not implement the CanBePacked interface. Examples of such values could be instances of built-in or third-party classes that you don't own, or non-objects such as resources.
A transformer class must implement the CanPack interface. To use a transformer, it must first be registered in the packer. Here is an example of how to serialize PHP streams into the MessagePack bin
format type using one of the supplied transformers, StreamTransformer
:
$packer = new Packer(null, [new StreamTransformer()]);
$packedBin = $packer->pack(fopen('/path/to/file', 'r+'));
More type transformer examples can be found in the src/TypeTransformer directory.
In contrast to the cases described above, extensions are intended to handle extension types and are responsible for both serialization and deserialization of values (types).
An extension class must implement the Extension interface. To use an extension, it must first be registered in the packer and the unpacker.
The MessagePack specification divides extension types into two groups: predefined and application-specific. Currently, there is only one predefined type in the specification, Timestamp.
Timestamp
The Timestamp extension type is a predefined type. Support for this type in the library is done through the TimestampExtension
class. This class is responsible for handling Timestamp
objects, which represent the number of seconds and optional adjustment in nanoseconds:
$timestampExtension = new TimestampExtension();
$packer = new Packer();
$packer = $packer->extendWith($timestampExtension);
$unpacker = new BufferUnpacker();
$unpacker = $unpacker->extendWith($timestampExtension);
$packedTimestamp = $packer->pack(Timestamp::now());
$timestamp = $unpacker->reset($packedTimestamp)->unpack();
$seconds = $timestamp->getSeconds();
$nanoseconds = $timestamp->getNanoseconds();
When using the MessagePack
class, the Timestamp extension is already registered:
$packedTimestamp = MessagePack::pack(Timestamp::now());
$timestamp = MessagePack::unpack($packedTimestamp);
Application-specific extensions
In addition, the format can be extended with your own types. For example, to make the built-in PHP DateTime
objects first-class citizens in your code, you can create a corresponding extension, as shown in the example. Please note, that custom extensions have to be registered with a unique extension ID (an integer from 0
to 127
).
More extension examples can be found in the examples/MessagePack directory.
To learn more about how extension types can be useful, check out this article.
If an error occurs during packing/unpacking, a PackingFailedException
or an UnpackingFailedException
will be thrown, respectively. In addition, an InsufficientDataException
can be thrown during unpacking.
An InvalidOptionException
will be thrown in case an invalid option (or a combination of mutually exclusive options) is used.
Run tests as follows:
vendor/bin/phpunit
Also, if you already have Docker installed, you can run the tests in a docker container. First, create a container:
./dockerfile.sh | docker build -t msgpack -
The command above will create a container named msgpack
with PHP 8.1 runtime. You may change the default runtime by defining the PHP_IMAGE
environment variable:
PHP_IMAGE='php:8.0-cli' ./dockerfile.sh | docker build -t msgpack -
See a list of various images here.
Then run the unit tests:
docker run --rm -v $PWD:/msgpack -w /msgpack msgpack
To ensure that the unpacking works correctly with malformed/semi-malformed data, you can use a testing technique called Fuzzing. The library ships with a help file (target) for PHP-Fuzzer and can be used as follows:
php-fuzzer fuzz tests/fuzz_buffer_unpacker.php
To check performance, run:
php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php
Example output
Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000
=============================================
Test/Target Packer BufferUnpacker
---------------------------------------------
nil .................. 0.0030 ........ 0.0139
false ................ 0.0037 ........ 0.0144
true ................. 0.0040 ........ 0.0137
7-bit uint #1 ........ 0.0052 ........ 0.0120
7-bit uint #2 ........ 0.0059 ........ 0.0114
7-bit uint #3 ........ 0.0061 ........ 0.0119
5-bit sint #1 ........ 0.0067 ........ 0.0126
5-bit sint #2 ........ 0.0064 ........ 0.0132
5-bit sint #3 ........ 0.0066 ........ 0.0135
8-bit uint #1 ........ 0.0078 ........ 0.0200
8-bit uint #2 ........ 0.0077 ........ 0.0212
8-bit uint #3 ........ 0.0086 ........ 0.0203
16-bit uint #1 ....... 0.0111 ........ 0.0271
16-bit uint #2 ....... 0.0115 ........ 0.0260
16-bit uint #3 ....... 0.0103 ........ 0.0273
32-bit uint #1 ....... 0.0116 ........ 0.0326
32-bit uint #2 ....... 0.0118 ........ 0.0332
32-bit uint #3 ....... 0.0127 ........ 0.0325
64-bit uint #1 ....... 0.0140 ........ 0.0277
64-bit uint #2 ....... 0.0134 ........ 0.0294
64-bit uint #3 ....... 0.0134 ........ 0.0281
8-bit int #1 ......... 0.0086 ........ 0.0241
8-bit int #2 ......... 0.0089 ........ 0.0225
8-bit int #3 ......... 0.0085 ........ 0.0229
16-bit int #1 ........ 0.0118 ........ 0.0280
16-bit int #2 ........ 0.0121 ........ 0.0270
16-bit int #3 ........ 0.0109 ........ 0.0274
32-bit int #1 ........ 0.0128 ........ 0.0346
32-bit int #2 ........ 0.0118 ........ 0.0339
32-bit int #3 ........ 0.0135 ........ 0.0368
64-bit int #1 ........ 0.0138 ........ 0.0276
64-bit int #2 ........ 0.0132 ........ 0.0286
64-bit int #3 ........ 0.0137 ........ 0.0274
64-bit int #4 ........ 0.0180 ........ 0.0285
64-bit float #1 ...... 0.0134 ........ 0.0284
64-bit float #2 ...... 0.0125 ........ 0.0275
64-bit float #3 ...... 0.0126 ........ 0.0283
fix string #1 ........ 0.0035 ........ 0.0133
fix string #2 ........ 0.0094 ........ 0.0216
fix string #3 ........ 0.0094 ........ 0.0222
fix string #4 ........ 0.0091 ........ 0.0241
8-bit string #1 ...... 0.0122 ........ 0.0301
8-bit string #2 ...... 0.0118 ........ 0.0304
8-bit string #3 ...... 0.0119 ........ 0.0315
16-bit string #1 ..... 0.0150 ........ 0.0388
16-bit string #2 ..... 0.1545 ........ 0.1665
32-bit string ........ 0.1570 ........ 0.1756
wide char string #1 .. 0.0091 ........ 0.0236
wide char string #2 .. 0.0122 ........ 0.0313
8-bit binary #1 ...... 0.0100 ........ 0.0302
8-bit binary #2 ...... 0.0123 ........ 0.0324
8-bit binary #3 ...... 0.0126 ........ 0.0327
16-bit binary ........ 0.0168 ........ 0.0372
32-bit binary ........ 0.1588 ........ 0.1754
fix array #1 ......... 0.0042 ........ 0.0131
fix array #2 ......... 0.0294 ........ 0.0367
fix array #3 ......... 0.0412 ........ 0.0472
16-bit array #1 ...... 0.1378 ........ 0.1596
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.1865 ........ 0.2283
fix map #1 ........... 0.0725 ........ 0.1048
fix map #2 ........... 0.0319 ........ 0.0405
fix map #3 ........... 0.0356 ........ 0.0665
fix map #4 ........... 0.0465 ........ 0.0497
16-bit map #1 ........ 0.2540 ........ 0.3028
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.2372 ........ 0.2710
fixext 1 ............. 0.0283 ........ 0.0358
fixext 2 ............. 0.0291 ........ 0.0371
fixext 4 ............. 0.0302 ........ 0.0355
fixext 8 ............. 0.0288 ........ 0.0384
fixext 16 ............ 0.0293 ........ 0.0359
8-bit ext ............ 0.0302 ........ 0.0439
16-bit ext ........... 0.0334 ........ 0.0499
32-bit ext ........... 0.1845 ........ 0.1888
32-bit timestamp #1 .. 0.0337 ........ 0.0547
32-bit timestamp #2 .. 0.0335 ........ 0.0560
64-bit timestamp #1 .. 0.0371 ........ 0.0575
64-bit timestamp #2 .. 0.0374 ........ 0.0542
64-bit timestamp #3 .. 0.0356 ........ 0.0533
96-bit timestamp #1 .. 0.0362 ........ 0.0699
96-bit timestamp #2 .. 0.0381 ........ 0.0701
96-bit timestamp #3 .. 0.0367 ........ 0.0687
=============================================
Total 2.7618 4.0820
Skipped 4 4
Failed 0 0
Ignored 0 0
With JIT:
php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php
Example output
Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000
=============================================
Test/Target Packer BufferUnpacker
---------------------------------------------
nil .................. 0.0005 ........ 0.0054
false ................ 0.0004 ........ 0.0059
true ................. 0.0004 ........ 0.0059
7-bit uint #1 ........ 0.0010 ........ 0.0047
7-bit uint #2 ........ 0.0010 ........ 0.0046
7-bit uint #3 ........ 0.0010 ........ 0.0046
5-bit sint #1 ........ 0.0025 ........ 0.0046
5-bit sint #2 ........ 0.0023 ........ 0.0046
5-bit sint #3 ........ 0.0024 ........ 0.0045
8-bit uint #1 ........ 0.0043 ........ 0.0081
8-bit uint #2 ........ 0.0043 ........ 0.0079
8-bit uint #3 ........ 0.0041 ........ 0.0080
16-bit uint #1 ....... 0.0064 ........ 0.0095
16-bit uint #2 ....... 0.0064 ........ 0.0091
16-bit uint #3 ....... 0.0064 ........ 0.0094
32-bit uint #1 ....... 0.0085 ........ 0.0114
32-bit uint #2 ....... 0.0077 ........ 0.0122
32-bit uint #3 ....... 0.0077 ........ 0.0120
64-bit uint #1 ....... 0.0085 ........ 0.0159
64-bit uint #2 ....... 0.0086 ........ 0.0157
64-bit uint #3 ....... 0.0086 ........ 0.0158
8-bit int #1 ......... 0.0042 ........ 0.0080
8-bit int #2 ......... 0.0042 ........ 0.0080
8-bit int #3 ......... 0.0042 ........ 0.0081
16-bit int #1 ........ 0.0065 ........ 0.0095
16-bit int #2 ........ 0.0065 ........ 0.0090
16-bit int #3 ........ 0.0056 ........ 0.0085
32-bit int #1 ........ 0.0067 ........ 0.0107
32-bit int #2 ........ 0.0066 ........ 0.0106
32-bit int #3 ........ 0.0063 ........ 0.0104
64-bit int #1 ........ 0.0072 ........ 0.0162
64-bit int #2 ........ 0.0073 ........ 0.0174
64-bit int #3 ........ 0.0072 ........ 0.0164
64-bit int #4 ........ 0.0077 ........ 0.0161
64-bit float #1 ...... 0.0053 ........ 0.0135
64-bit float #2 ...... 0.0053 ........ 0.0135
64-bit float #3 ...... 0.0052 ........ 0.0135
fix string #1 ....... -0.0002 ........ 0.0044
fix string #2 ........ 0.0035 ........ 0.0067
fix string #3 ........ 0.0035 ........ 0.0077
fix string #4 ........ 0.0033 ........ 0.0078
8-bit string #1 ...... 0.0059 ........ 0.0110
8-bit string #2 ...... 0.0063 ........ 0.0121
8-bit string #3 ...... 0.0064 ........ 0.0124
16-bit string #1 ..... 0.0099 ........ 0.0146
16-bit string #2 ..... 0.1522 ........ 0.1474
32-bit string ........ 0.1511 ........ 0.1483
wide char string #1 .. 0.0039 ........ 0.0084
wide char string #2 .. 0.0073 ........ 0.0123
8-bit binary #1 ...... 0.0040 ........ 0.0112
8-bit binary #2 ...... 0.0075 ........ 0.0123
8-bit binary #3 ...... 0.0077 ........ 0.0129
16-bit binary ........ 0.0096 ........ 0.0145
32-bit binary ........ 0.1535 ........ 0.1479
fix array #1 ......... 0.0008 ........ 0.0061
fix array #2 ......... 0.0121 ........ 0.0165
fix array #3 ......... 0.0193 ........ 0.0222
16-bit array #1 ...... 0.0607 ........ 0.0479
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.0749 ........ 0.0824
fix map #1 ........... 0.0329 ........ 0.0431
fix map #2 ........... 0.0161 ........ 0.0189
fix map #3 ........... 0.0205 ........ 0.0262
fix map #4 ........... 0.0252 ........ 0.0205
16-bit map #1 ........ 0.1016 ........ 0.0927
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.1096 ........ 0.1030
fixext 1 ............. 0.0157 ........ 0.0161
fixext 2 ............. 0.0175 ........ 0.0183
fixext 4 ............. 0.0156 ........ 0.0185
fixext 8 ............. 0.0163 ........ 0.0184
fixext 16 ............ 0.0164 ........ 0.0182
8-bit ext ............ 0.0158 ........ 0.0207
16-bit ext ........... 0.0203 ........ 0.0219
32-bit ext ........... 0.1614 ........ 0.1539
32-bit timestamp #1 .. 0.0195 ........ 0.0249
32-bit timestamp #2 .. 0.0188 ........ 0.0260
64-bit timestamp #1 .. 0.0207 ........ 0.0281
64-bit timestamp #2 .. 0.0212 ........ 0.0291
64-bit timestamp #3 .. 0.0207 ........ 0.0295
96-bit timestamp #1 .. 0.0222 ........ 0.0358
96-bit timestamp #2 .. 0.0228 ........ 0.0353
96-bit timestamp #3 .. 0.0210 ........ 0.0319
=============================================
Total 1.6432 1.9674
Skipped 4 4
Failed 0 0
Ignored 0 0
You may change default benchmark settings by defining the following environment variables:
Name | Default |
---|---|
MP_BENCH_TARGETS | pure_p,pure_u , see a list of available targets |
MP_BENCH_ITERATIONS | 100_000 |
MP_BENCH_DURATION | not set |
MP_BENCH_ROUNDS | 3 |
MP_BENCH_TESTS | -@slow , see a list of available tests |
For example:
export MP_BENCH_TARGETS=pure_p
export MP_BENCH_ITERATIONS=1000000
export MP_BENCH_ROUNDS=5
# a comma separated list of test names
export MP_BENCH_TESTS='complex array, complex map'
# or a group name
# export MP_BENCH_TESTS='-@slow' // @pecl_comp
# or a regexp
# export MP_BENCH_TESTS='/complex (array|map)/'
Another example, benchmarking both the library and the PECL extension:
MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php
Example output
Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000
===========================================================================
Test/Target Packer BufferUnpacker msgpack_pack msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0031 ........ 0.0141 ...... 0.0055 ........ 0.0064
false ................ 0.0039 ........ 0.0154 ...... 0.0056 ........ 0.0053
true ................. 0.0038 ........ 0.0139 ...... 0.0056 ........ 0.0044
7-bit uint #1 ........ 0.0061 ........ 0.0110 ...... 0.0059 ........ 0.0046
7-bit uint #2 ........ 0.0065 ........ 0.0119 ...... 0.0042 ........ 0.0029
7-bit uint #3 ........ 0.0054 ........ 0.0117 ...... 0.0045 ........ 0.0025
5-bit sint #1 ........ 0.0047 ........ 0.0103 ...... 0.0038 ........ 0.0022
5-bit sint #2 ........ 0.0048 ........ 0.0117 ...... 0.0038 ........ 0.0022
5-bit sint #3 ........ 0.0046 ........ 0.0102 ...... 0.0038 ........ 0.0023
8-bit uint #1 ........ 0.0063 ........ 0.0174 ...... 0.0039 ........ 0.0031
8-bit uint #2 ........ 0.0063 ........ 0.0167 ...... 0.0040 ........ 0.0029
8-bit uint #3 ........ 0.0063 ........ 0.0168 ...... 0.0039 ........ 0.0030
16-bit uint #1 ....... 0.0092 ........ 0.0222 ...... 0.0049 ........ 0.0030
16-bit uint #2 ....... 0.0096 ........ 0.0227 ...... 0.0042 ........ 0.0046
16-bit uint #3 ....... 0.0123 ........ 0.0274 ...... 0.0059 ........ 0.0051
32-bit uint #1 ....... 0.0136 ........ 0.0331 ...... 0.0060 ........ 0.0048
32-bit uint #2 ....... 0.0130 ........ 0.0336 ...... 0.0070 ........ 0.0048
32-bit uint #3 ....... 0.0127 ........ 0.0329 ...... 0.0051 ........ 0.0048
64-bit uint #1 ....... 0.0126 ........ 0.0268 ...... 0.0055 ........ 0.0049
64-bit uint #2 ....... 0.0135 ........ 0.0281 ...... 0.0052 ........ 0.0046
64-bit uint #3 ....... 0.0131 ........ 0.0274 ...... 0.0069 ........ 0.0044
8-bit int #1 ......... 0.0077 ........ 0.0236 ...... 0.0058 ........ 0.0044
8-bit int #2 ......... 0.0087 ........ 0.0244 ...... 0.0058 ........ 0.0048
8-bit int #3 ......... 0.0084 ........ 0.0241 ...... 0.0055 ........ 0.0049
16-bit int #1 ........ 0.0112 ........ 0.0271 ...... 0.0048 ........ 0.0045
16-bit int #2 ........ 0.0124 ........ 0.0292 ...... 0.0057 ........ 0.0049
16-bit int #3 ........ 0.0118 ........ 0.0270 ...... 0.0058 ........ 0.0050
32-bit int #1 ........ 0.0137 ........ 0.0366 ...... 0.0058 ........ 0.0051
32-bit int #2 ........ 0.0133 ........ 0.0366 ...... 0.0056 ........ 0.0049
32-bit int #3 ........ 0.0129 ........ 0.0350 ...... 0.0052 ........ 0.0048
64-bit int #1 ........ 0.0145 ........ 0.0254 ...... 0.0034 ........ 0.0025
64-bit int #2 ........ 0.0097 ........ 0.0214 ...... 0.0034 ........ 0.0025
64-bit int #3 ........ 0.0096 ........ 0.0287 ...... 0.0059 ........ 0.0050
64-bit int #4 ........ 0.0143 ........ 0.0277 ...... 0.0059 ........ 0.0046
64-bit float #1 ...... 0.0134 ........ 0.0281 ...... 0.0057 ........ 0.0052
64-bit float #2 ...... 0.0141 ........ 0.0281 ...... 0.0057 ........ 0.0050
64-bit float #3 ...... 0.0144 ........ 0.0282 ...... 0.0057 ........ 0.0050
fix string #1 ........ 0.0036 ........ 0.0143 ...... 0.0066 ........ 0.0053
fix string #2 ........ 0.0107 ........ 0.0222 ...... 0.0065 ........ 0.0068
fix string #3 ........ 0.0116 ........ 0.0245 ...... 0.0063 ........ 0.0069
fix string #4 ........ 0.0105 ........ 0.0253 ...... 0.0083 ........ 0.0077
8-bit string #1 ...... 0.0126 ........ 0.0318 ...... 0.0075 ........ 0.0088
8-bit string #2 ...... 0.0121 ........ 0.0295 ...... 0.0076 ........ 0.0086
8-bit string #3 ...... 0.0125 ........ 0.0293 ...... 0.0130 ........ 0.0093
16-bit string #1 ..... 0.0159 ........ 0.0368 ...... 0.0117 ........ 0.0086
16-bit string #2 ..... 0.1547 ........ 0.1686 ...... 0.1516 ........ 0.1373
32-bit string ........ 0.1558 ........ 0.1729 ...... 0.1511 ........ 0.1396
wide char string #1 .. 0.0098 ........ 0.0237 ...... 0.0066 ........ 0.0065
wide char string #2 .. 0.0128 ........ 0.0291 ...... 0.0061 ........ 0.0082
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0040 ........ 0.0129 ...... 0.0120 ........ 0.0058
fix array #2 ......... 0.0279 ........ 0.0390 ...... 0.0143 ........ 0.0165
fix array #3 ......... 0.0415 ........ 0.0463 ...... 0.0162 ........ 0.0187
16-bit array #1 ...... 0.1349 ........ 0.1628 ...... 0.0334 ........ 0.0341
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0345 ........ 0.0391 ...... 0.0143 ........ 0.0168
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0459 ........ 0.0473 ...... 0.0151 ........ 0.0163
16-bit map #1 ........ 0.2518 ........ 0.2962 ...... 0.0400 ........ 0.0490
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.2380 ........ 0.2682 ...... 0.0545 ........ 0.0579
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total 1.5625 2.3866 0.7735 0.7243
Skipped 4 4 4 4
Failed 0 0 24 17
Ignored 24 24 0 7
With JIT:
MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php
Example output
Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000
===========================================================================
Test/Target Packer BufferUnpacker msgpack_pack msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0001 ........ 0.0052 ...... 0.0053 ........ 0.0042
false ................ 0.0007 ........ 0.0060 ...... 0.0057 ........ 0.0043
true ................. 0.0008 ........ 0.0060 ...... 0.0056 ........ 0.0041
7-bit uint #1 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0041
7-bit uint #2 ........ 0.0021 ........ 0.0043 ...... 0.0062 ........ 0.0041
7-bit uint #3 ........ 0.0022 ........ 0.0044 ...... 0.0061 ........ 0.0040
5-bit sint #1 ........ 0.0030 ........ 0.0048 ...... 0.0062 ........ 0.0040
5-bit sint #2 ........ 0.0032 ........ 0.0046 ...... 0.0062 ........ 0.0040
5-bit sint #3 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0040
8-bit uint #1 ........ 0.0054 ........ 0.0079 ...... 0.0062 ........ 0.0050
8-bit uint #2 ........ 0.0051 ........ 0.0079 ...... 0.0064 ........ 0.0044
8-bit uint #3 ........ 0.0051 ........ 0.0082 ...... 0.0062 ........ 0.0044
16-bit uint #1 ....... 0.0077 ........ 0.0094 ...... 0.0065 ........ 0.0045
16-bit uint #2 ....... 0.0077 ........ 0.0094 ...... 0.0063 ........ 0.0045
16-bit uint #3 ....... 0.0077 ........ 0.0095 ...... 0.0064 ........ 0.0047
32-bit uint #1 ....... 0.0088 ........ 0.0119 ...... 0.0063 ........ 0.0043
32-bit uint #2 ....... 0.0089 ........ 0.0117 ...... 0.0062 ........ 0.0039
32-bit uint #3 ....... 0.0089 ........ 0.0118 ...... 0.0063 ........ 0.0044
64-bit uint #1 ....... 0.0097 ........ 0.0155 ...... 0.0063 ........ 0.0045
64-bit uint #2 ....... 0.0095 ........ 0.0153 ...... 0.0061 ........ 0.0045
64-bit uint #3 ....... 0.0096 ........ 0.0156 ...... 0.0063 ........ 0.0047
8-bit int #1 ......... 0.0053 ........ 0.0083 ...... 0.0062 ........ 0.0044
8-bit int #2 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0044
8-bit int #3 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0043
16-bit int #1 ........ 0.0089 ........ 0.0097 ...... 0.0069 ........ 0.0046
16-bit int #2 ........ 0.0075 ........ 0.0093 ...... 0.0063 ........ 0.0043
16-bit int #3 ........ 0.0075 ........ 0.0094 ...... 0.0062 ........ 0.0046
32-bit int #1 ........ 0.0086 ........ 0.0122 ...... 0.0063 ........ 0.0044
32-bit int #2 ........ 0.0087 ........ 0.0120 ...... 0.0066 ........ 0.0046
32-bit int #3 ........ 0.0086 ........ 0.0121 ...... 0.0060 ........ 0.0044
64-bit int #1 ........ 0.0096 ........ 0.0149 ...... 0.0060 ........ 0.0045
64-bit int #2 ........ 0.0096 ........ 0.0157 ...... 0.0062 ........ 0.0044
64-bit int #3 ........ 0.0096 ........ 0.0160 ...... 0.0063 ........ 0.0046
64-bit int #4 ........ 0.0097 ........ 0.0157 ...... 0.0061 ........ 0.0044
64-bit float #1 ...... 0.0079 ........ 0.0153 ...... 0.0056 ........ 0.0044
64-bit float #2 ...... 0.0079 ........ 0.0152 ...... 0.0057 ........ 0.0045
64-bit float #3 ...... 0.0079 ........ 0.0155 ...... 0.0057 ........ 0.0044
fix string #1 ........ 0.0010 ........ 0.0045 ...... 0.0071 ........ 0.0044
fix string #2 ........ 0.0048 ........ 0.0075 ...... 0.0070 ........ 0.0060
fix string #3 ........ 0.0048 ........ 0.0086 ...... 0.0068 ........ 0.0060
fix string #4 ........ 0.0050 ........ 0.0088 ...... 0.0070 ........ 0.0059
8-bit string #1 ...... 0.0081 ........ 0.0129 ...... 0.0069 ........ 0.0062
8-bit string #2 ...... 0.0086 ........ 0.0128 ...... 0.0069 ........ 0.0065
8-bit string #3 ...... 0.0086 ........ 0.0126 ...... 0.0115 ........ 0.0065
16-bit string #1 ..... 0.0105 ........ 0.0137 ...... 0.0128 ........ 0.0068
16-bit string #2 ..... 0.1510 ........ 0.1486 ...... 0.1526 ........ 0.1391
32-bit string ........ 0.1517 ........ 0.1475 ...... 0.1504 ........ 0.1370
wide char string #1 .. 0.0044 ........ 0.0085 ...... 0.0067 ........ 0.0057
wide char string #2 .. 0.0081 ........ 0.0125 ...... 0.0069 ........ 0.0063
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0014 ........ 0.0059 ...... 0.0132 ........ 0.0055
fix array #2 ......... 0.0146 ........ 0.0156 ...... 0.0155 ........ 0.0148
fix array #3 ......... 0.0211 ........ 0.0229 ...... 0.0179 ........ 0.0180
16-bit array #1 ...... 0.0673 ........ 0.0498 ...... 0.0343 ........ 0.0388
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0148 ........ 0.0180 ...... 0.0156 ........ 0.0179
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0252 ........ 0.0201 ...... 0.0214 ........ 0.0167
16-bit map #1 ........ 0.1027 ........ 0.0836 ...... 0.0388 ........ 0.0510
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.1104 ........ 0.1010 ...... 0.0556 ........ 0.0602
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total 0.9642 1.0909 0.8224 0.7213
Skipped 4 4 4 4
Failed 0 0 24 17
Ignored 24 24 0 7
Note that the msgpack extension (v2.1.2) doesn't support ext, bin and UTF-8 str types.
The library is released under the MIT License. See the bundled LICENSE file for details.
Author: rybakit
Source Code: https://github.com/rybakit/msgpack.php
License: MIT License
1648641360
A symbolic natural language parsing library for Rust, inspired by HDPSG.
This is a library for parsing natural or constructed languages into syntax trees and feature structures. There's no machine learning or probabilistic models, everything is hand-crafted and deterministic.
You can find out more about the motivations of this project in this blog post.
I'm using this to parse a constructed language for my upcoming xenolinguistics game, Themengi.
Using a simple 80-line grammar, introduced in the tutorial below, we can parse a simple subset of English, checking reflexive pronoun binding, case, and number agreement.
$ cargo run --bin cli examples/reflexives.fgr
> she likes himself
Parsed 0 trees
> her likes herself
Parsed 0 trees
> she like herself
Parsed 0 trees
> she likes herself
Parsed 1 tree
(0..3: S
(0..1: N (0..1: she))
(1..2: TV (1..2: likes))
(2..3: N (2..3: herself)))
[
child-2: [
case: acc
pron: ref
needs_pron: #0 she
num: sg
child-0: [ word: herself ]
]
child-1: [
tense: nonpast
child-0: [ word: likes ]
num: #1 sg
]
child-0: [
child-0: [ word: she ]
case: nom
pron: #0
num: #1
]
]
Low resource language? Low problem! No need to train on gigabytes of text, just write a grammar using your brain. Let's hypothesize that in American Sign Language, topicalized nouns (expressed with raised eyebrows) must appear first in the sentence. We can write a small grammar (18 lines), and plug in some sentences:
$ cargo run --bin cli examples/asl-wordorder.fgr -n
> boy sit
Parsed 1 tree
(0..2: S
(0..1: NP ((0..1: N (0..1: boy))))
(1..2: IV (1..2: sit)))
> boy throw ball
Parsed 1 tree
(0..3: S
(0..1: NP ((0..1: N (0..1: boy))))
(1..2: TV (1..2: throw))
(2..3: NP ((2..3: N (2..3: ball)))))
> ball nm-raised-eyebrows boy throw
Parsed 1 tree
(0..4: S
(0..2: NP
(0..1: N (0..1: ball))
(1..2: Topic (1..2: nm-raised-eyebrows)))
(2..3: NP ((2..3: N (2..3: boy))))
(3..4: TV (3..4: throw)))
> boy throw ball nm-raised-eyebrows
Parsed 0 trees
As an example, let's say we want to build a parser for English reflexive pronouns (himself, herself, themselves, themself, itself). We'll also support number ("He likes X" v.s. "They like X") and simple embedded clauses ("He said that they like X").
Grammar files are written in a custom language, similar to BNF, called Feature GRammar (.fgr). There's a VSCode syntax highlighting extension for these files available as fgr-syntax
.
We'll start by defining our lexicon. The lexicon is the set of terminal symbols (symbols in the actual input) that the grammar will match. Terminal symbols must start with a lowercase letter, and non-terminal symbols must start with an uppercase letter.
// pronouns
N -> he
N -> him
N -> himself
N -> she
N -> her
N -> herself
N -> they
N -> them
N -> themselves
N -> themself
// names, lowercase as they are terminals
N -> mary
N -> sue
N -> takeshi
N -> robert
// complementizer
Comp -> that
// verbs -- intransitive, transitive, and clausal
IV -> falls
IV -> fall
IV -> fell
TV -> likes
TV -> like
TV -> liked
CV -> says
CV -> say
CV -> said
Next, we can add our sentence rules (they must be added at the top, as the first rule in the file is assumed to be the top-level rule):
// sentence rules
S -> N IV
S -> N TV N
S -> N CV Comp S
// ... previous lexicon ...
Assuming this file is saved as examples/no-features.fgr
(which it is :wink:), we can test this file with the built-in CLI:
$ cargo run --bin cli examples/no-features.fgr
> he falls
Parsed 1 tree
(0..2: S
(0..1: N (0..1: he))
(1..2: IV (1..2: falls)))
[
child-1: [ child-0: [ word: falls ] ]
child-0: [ child-0: [ word: he ] ]
]
> he falls her
Parsed 0 trees
> he likes her
Parsed 1 tree
(0..3: S
(0..1: N (0..1: he))
(1..2: TV (1..2: likes))
(2..3: N (2..3: her)))
[
child-2: [ child-0: [ word: her ] ]
child-1: [ child-0: [ word: likes ] ]
child-0: [ child-0: [ word: he ] ]
]
> he likes
Parsed 0 trees
> he said that he likes her
Parsed 1 tree
(0..6: S
(0..1: N (0..1: he))
(1..2: CV (1..2: said))
(2..3: Comp (2..3: that))
(3..6: S
(3..4: N (3..4: he))
(4..5: TV (4..5: likes))
(5..6: N (5..6: her))))
[
child-0: [ child-0: [ word: he ] ]
child-2: [ child-0: [ word: that ] ]
child-1: [ child-0: [ word: said ] ]
child-3: [
child-2: [ child-0: [ word: her ] ]
child-1: [ child-0: [ word: likes ] ]
child-0: [ child-0: [ word: he ] ]
]
]
> he said that he
Parsed 0 trees
This grammar already parses some correct sentences, and blocks some trivially incorrect ones. However, it doesn't care about number, case, or reflexives right now:
> she likes himself // unbound reflexive pronoun
Parsed 1 tree
(0..3: S
(0..1: N (0..1: she))
(1..2: TV (1..2: likes))
(2..3: N (2..3: himself)))
[
child-0: [ child-0: [ word: she ] ]
child-2: [ child-0: [ word: himself ] ]
child-1: [ child-0: [ word: likes ] ]
]
> him like her // incorrect case on the subject pronoun, should be nominative
// (he) instead of accusative (him)
Parsed 1 tree
(0..3: S
(0..1: N (0..1: him))
(1..2: TV (1..2: like))
(2..3: N (2..3: her)))
[
child-0: [ child-0: [ word: him ] ]
child-1: [ child-0: [ word: like ] ]
child-2: [ child-0: [ word: her ] ]
]
> he like her // incorrect verb number agreement
Parsed 1 tree
(0..3: S
(0..1: N (0..1: he))
(1..2: TV (1..2: like))
(2..3: N (2..3: her)))
[
child-2: [ child-0: [ word: her ] ]
child-1: [ child-0: [ word: like ] ]
child-0: [ child-0: [ word: he ] ]
]
To fix this, we need to add features to our lexicon, and restrict the sentence rules based on features.
Features are added with square brackets, and are key: value pairs separated by commas. **top**
is a special feature value, which basically means "unspecified" -- we'll come back to it later. Features that are unspecified are also assumed to have a **top**
value, but sometimes explicitly stating top is more clear.
/// Pronouns
// The added features are:
// * num: sg or pl, whether this noun wants a singular verb (likes) or
// a plural verb (like). note this is grammatical number, so for example
// singular they takes plural agreement ("they like X", not *"they likes X")
// * case: nom or acc, whether this noun is nominative or accusative case.
// nominative case goes in the subject, and accusative in the object.
// e.g., "he fell" and "she likes him", not *"him fell" and *"her likes he"
// * pron: he, she, they, or ref -- what type of pronoun this is
// * needs_pron: whether this is a reflexive that needs to bind to another
// pronoun.
N[ num: sg, case: nom, pron: he ] -> he
N[ num: sg, case: acc, pron: he ] -> him
N[ num: sg, case: acc, pron: ref, needs_pron: he ] -> himself
N[ num: sg, case: nom, pron: she ] -> she
N[ num: sg, case: acc, pron: she ] -> her
N[ num: sg, case: acc, pron: ref, needs_pron: she] -> herself
N[ num: pl, case: nom, pron: they ] -> they
N[ num: pl, case: acc, pron: they ] -> them
N[ num: pl, case: acc, pron: ref, needs_pron: they ] -> themselves
N[ num: sg, case: acc, pron: ref, needs_pron: they ] -> themself
// Names
// The added features are:
// * num: sg, as people are singular ("mary likes her" / *"mary like her")
// * case: **top**, as names can be both subjects and objects
// ("mary likes her" / "she likes mary")
// * pron: whichever pronoun the person uses for reflexive agreement
// mary pron: she => mary likes herself
// sue pron: they => sue likes themself
// takeshi pron: he => takeshi likes himself
N[ num: sg, case: **top**, pron: she ] -> mary
N[ num: sg, case: **top**, pron: they ] -> sue
N[ num: sg, case: **top**, pron: he ] -> takeshi
N[ num: sg, case: **top**, pron: he ] -> robert
// Complementizer doesn't need features
Comp -> that
// Verbs -- intransitive, transitive, and clausal
// The added features are:
// * num: sg, pl, or **top** -- to match the noun numbers.
// **top** will match either sg or pl, as past-tense verbs in English
// don't agree in number: "he fell" and "they fell" are both fine
// * tense: past or nonpast -- this won't be used for agreement, but will be
// copied into the final feature structure, and the client code could do
// something with it
IV[ num: sg, tense: nonpast ] -> falls
IV[ num: pl, tense: nonpast ] -> fall
IV[ num: **top**, tense: past ] -> fell
TV[ num: sg, tense: nonpast ] -> likes
TV[ num: pl, tense: nonpast ] -> like
TV[ num: **top**, tense: past ] -> liked
CV[ num: sg, tense: nonpast ] -> says
CV[ num: pl, tense: nonpast ] -> say
CV[ num: **top**, tense: past ] -> said
Now that our lexicon is updated with features, we can update our sentence rules to constrain parsing based on those features. This uses two new features, tags and unification. Tags allow features to be associated between nodes in a rule, and unification controls how those features are compatible. The rules for unification are:
If unification fails anywhere, the parse is aborted and the tree is discarded. This allows the programmer to discard trees if features don't match.
// Sentence rules
// Intransitive verb:
// * Subject must be nominative case
// * Subject and verb must agree in number (copied through #1)
S -> N[ case: nom, num: #1 ] IV[ num: #1 ]
// Transitive verb:
// * Subject must be nominative case
// * Subject and verb must agree in number (copied through #2)
// * If there's a reflexive in the object position, make sure its `needs_pron`
// feature matches the subject's `pron` feature. If the object isn't a
// reflexive, then its `needs_pron` feature will implicitly be `**top**`, so
// will unify with anything.
S -> N[ case: nom, pron: #1, num: #2 ] TV[ num: #2 ] N[ case: acc, needs_pron: #1 ]
// Clausal verb:
// * Subject must be nominative case
// * Subject and verb must agree in number (copied through #1)
// * Reflexives can't cross clause boundaries (*"He said that she likes himself"),
// so we can ignore reflexives and delegate to inner clause rule
S -> N[ case: nom, num: #1 ] CV[ num: #1 ] Comp S
Now that we have this augmented grammar (available as examples/reflexives.fgr
), we can try it out and see that it rejects illicit sentences that were previously accepted, while still accepting valid ones:
> he fell
Parsed 1 tree
(0..2: S
(0..1: N (0..1: he))
(1..2: IV (1..2: fell)))
[
child-1: [
child-0: [ word: fell ]
num: #0 sg
tense: past
]
child-0: [
pron: he
case: nom
num: #0
child-0: [ word: he ]
]
]
> he like him
Parsed 0 trees
> he likes himself
Parsed 1 tree
(0..3: S
(0..1: N (0..1: he))
(1..2: TV (1..2: likes))
(2..3: N (2..3: himself)))
[
child-1: [
num: #0 sg
child-0: [ word: likes ]
tense: nonpast
]
child-2: [
needs_pron: #1 he
num: sg
child-0: [ word: himself ]
pron: ref
case: acc
]
child-0: [
child-0: [ word: he ]
pron: #1
num: #0
case: nom
]
]
> he likes herself
Parsed 0 trees
> mary likes herself
Parsed 1 tree
(0..3: S
(0..1: N (0..1: mary))
(1..2: TV (1..2: likes))
(2..3: N (2..3: herself)))
[
child-0: [
pron: #0 she
num: #1 sg
case: nom
child-0: [ word: mary ]
]
child-1: [
tense: nonpast
child-0: [ word: likes ]
num: #1
]
child-2: [
child-0: [ word: herself ]
num: sg
pron: ref
case: acc
needs_pron: #0
]
]
> mary likes themself
Parsed 0 trees
> sue likes themself
Parsed 1 tree
(0..3: S
(0..1: N (0..1: sue))
(1..2: TV (1..2: likes))
(2..3: N (2..3: themself)))
[
child-0: [
pron: #0 they
child-0: [ word: sue ]
case: nom
num: #1 sg
]
child-1: [
tense: nonpast
num: #1
child-0: [ word: likes ]
]
child-2: [
needs_pron: #0
case: acc
pron: ref
child-0: [ word: themself ]
num: sg
]
]
> sue likes himself
Parsed 0 trees
If this is interesting to you and you want to learn more, you can check out my blog series, the excellent textbook Syntactic Theory: A Formal Introduction (2nd ed.), and the DELPH-IN project, whose work on the LKB inspired this simplified version.
I need to write this section in more detail, but if you're comfortable with Rust, I suggest looking through the codebase. It's not perfect, it started as one of my first Rust projects (after migrating through F# -> TypeScript -> C in search of the right performance/ergonomics tradeoff), and it could use more tests, but overall it's not too bad.
Basically, the processing pipeline is:
Grammar
structGrammar
is defined in rules.rs
.Grammar
is Grammar::parse_from_file
, which is mostly a hand-written recusive descent parser in parse_grammar.rs
. Yes, I recognize the irony here.Grammar::parse
, which does everything for you, or Grammar::parse_chart
, which just does the chart)earley.rs
forest.rs
, using an algorithm I found in a very useful blog series I forget the URL for, because the algorithms in the academic literature for this are... weird.The most interesting thing you can do via code and not via the CLI is probably getting at the raw feature DAG, as that would let you do things like pronoun coreference. The DAG code is in featurestructure.rs
, and should be fairly approachable -- there's a lot of Rust ceremony around Rc<RefCell<...>>
because using an arena allocation crate seemed too harlike overkill, but that is somewhat mitigated by the NodeRef
type alias. Hit me up at https://vgel.me/contact if you need help with anything here!
Download Details:
Author: vgel
Source Code: https://github.com/vgel/treebender
License: MIT License
1667488080
A full Python implementation of the ROUGE metric, producing same results as in the official perl implementation.
Important remarks
<3e-5
for ROUGE-L as well as ROUGE-W and <4e-5
for ROUGE-N.-b 665
.In case of doubts, please see all the implemented tests to compare outputs between the official ROUGE-1.5.5 and this script.
Package is uploaded on PyPI <https://pypi.org/project/py-rouge>
_.
You can install it with pip:
pip install py-rouge
or do it manually:
git clone https://github.com/Diego999/py-rouge
cd py-rouge
python setup.py install
Issues/Pull Requests/Feedbacks
Don't hesitate to contact for any feedback or create issues/pull requests (especially if you want to rewrite the stemmer implemented in ROUGE-1.5.5 in python ;)).
Example
import rouge
def prepare_results(m, p, r, f):
return '\t{}:\t{}: {:5.2f}\t{}: {:5.2f}\t{}: {:5.2f}'.format(m, 'P', 100.0 * p, 'R', 100.0 * r, 'F1', 100.0 * f)
for aggregator in ['Avg', 'Best', 'Individual']:
print('Evaluation with {}'.format(aggregator))
apply_avg = aggregator == 'Avg'
apply_best = aggregator == 'Best'
evaluator = rouge.Rouge(metrics=['rouge-n', 'rouge-l', 'rouge-w'],
max_n=4,
limit_length=True,
length_limit=100,
length_limit_type='words',
apply_avg=apply_avg,
apply_best=apply_best,
alpha=0.5, # Default F1_score
weight_factor=1.2,
stemming=True)
hypothesis_1 = "King Norodom Sihanouk has declined requests to chair a summit of Cambodia 's top political leaders , saying the meeting would not bring any progress in deadlocked negotiations to form a government .\nGovernment and opposition parties have asked King Norodom Sihanouk to host a summit meeting after a series of post-election negotiations between the two opposition groups and Hun Sen 's party to form a new government failed .\nHun Sen 's ruling party narrowly won a majority in elections in July , but the opposition _ claiming widespread intimidation and fraud _ has denied Hun Sen the two-thirds vote in parliament required to approve the next government .\n"
references_1 = ["Prospects were dim for resolution of the political crisis in Cambodia in October 1998.\nPrime Minister Hun Sen insisted that talks take place in Cambodia while opposition leaders Ranariddh and Sam Rainsy, fearing arrest at home, wanted them abroad.\nKing Sihanouk declined to chair talks in either place.\nA U.S. House resolution criticized Hun Sen's regime while the opposition tried to cut off his access to loans.\nBut in November the King announced a coalition government with Hun Sen heading the executive and Ranariddh leading the parliament.\nLeft out, Sam Rainsy sought the King's assurance of Hun Sen's promise of safety and freedom for all politicians.",
"Cambodian prime minister Hun Sen rejects demands of 2 opposition parties for talks in Beijing after failing to win a 2/3 majority in recent elections.\nSihanouk refuses to host talks in Beijing.\nOpposition parties ask the Asian Development Bank to stop loans to Hun Sen's government.\nCCP defends Hun Sen to the US Senate.\nFUNCINPEC refuses to share the presidency.\nHun Sen and Ranariddh eventually form a coalition at summit convened by Sihanouk.\nHun Sen remains prime minister, Ranariddh is president of the national assembly, and a new senate will be formed.\nOpposition leader Rainsy left out.\nHe seeks strong assurance of safety should he return to Cambodia.\n",
]
hypothesis_2 = "China 's government said Thursday that two prominent dissidents arrested this week are suspected of endangering national security _ the clearest sign yet Chinese leaders plan to quash a would-be opposition party .\nOne leader of a suppressed new political party will be tried on Dec. 17 on a charge of colluding with foreign enemies of China '' to incite the subversion of state power , '' according to court documents given to his wife on Monday .\nWith attorneys locked up , harassed or plain scared , two prominent dissidents will defend themselves against charges of subversion Thursday in China 's highest-profile dissident trials in two years .\n"
references_2 = "Hurricane Mitch, category 5 hurricane, brought widespread death and destruction to Central American.\nEspecially hard hit was Honduras where an estimated 6,076 people lost their lives.\nThe hurricane, which lingered off the coast of Honduras for 3 days before moving off, flooded large areas, destroying crops and property.\nThe U.S. and European Union were joined by Pope John Paul II in a call for money and workers to help the stricken area.\nPresident Clinton sent Tipper Gore, wife of Vice President Gore to the area to deliver much needed supplies to the area, demonstrating U.S. commitment to the recovery of the region.\n"
all_hypothesis = [hypothesis_1, hypothesis_2]
all_references = [references_1, references_2]
scores = evaluator.get_scores(all_hypothesis, all_references)
for metric, results in sorted(scores.items(), key=lambda x: x[0]):
if not apply_avg and not apply_best: # value is a type of list as we evaluate each summary vs each reference
for hypothesis_id, results_per_ref in enumerate(results):
nb_references = len(results_per_ref['p'])
for reference_id in range(nb_references):
print('\tHypothesis #{} & Reference #{}: '.format(hypothesis_id, reference_id))
print('\t' + prepare_results(metric,results_per_ref['p'][reference_id], results_per_ref['r'][reference_id], results_per_ref['f'][reference_id]))
print()
else:
print(prepare_results(metric, results['p'], results['r'], results['f']))
print()
It produces the following output:
Evaluation with Avg
rouge-1: P: 28.62 R: 26.46 F1: 27.49
rouge-2: P: 4.21 R: 3.92 F1: 4.06
rouge-3: P: 0.80 R: 0.74 F1: 0.77
rouge-4: P: 0.00 R: 0.00 F1: 0.00
rouge-l: P: 30.52 R: 28.57 F1: 29.51
rouge-w: P: 15.85 R: 8.28 F1: 10.87
Evaluation with Best
rouge-1: P: 30.44 R: 28.36 F1: 29.37
rouge-2: P: 4.74 R: 4.46 F1: 4.59
rouge-3: P: 1.06 R: 0.98 F1: 1.02
rouge-4: P: 0.00 R: 0.00 F1: 0.00
rouge-l: P: 31.54 R: 29.71 F1: 30.60
rouge-w: P: 16.42 R: 8.82 F1: 11.47
Evaluation with Individual
Hypothesis #0 & Reference #0:
rouge-1: P: 38.54 R: 35.58 F1: 37.00
Hypothesis #0 & Reference #1:
rouge-1: P: 45.83 R: 43.14 F1: 44.44
Hypothesis #1 & Reference #0:
rouge-1: P: 15.05 R: 13.59 F1: 14.29
Hypothesis #0 & Reference #0:
rouge-2: P: 7.37 R: 6.80 F1: 7.07
Hypothesis #0 & Reference #1:
rouge-2: P: 9.47 R: 8.91 F1: 9.18
Hypothesis #1 & Reference #0:
rouge-2: P: 0.00 R: 0.00 F1: 0.00
Hypothesis #0 & Reference #0:
rouge-3: P: 2.13 R: 1.96 F1: 2.04
Hypothesis #0 & Reference #1:
rouge-3: P: 1.06 R: 1.00 F1: 1.03
Hypothesis #1 & Reference #0:
rouge-3: P: 0.00 R: 0.00 F1: 0.00
Hypothesis #0 & Reference #0:
rouge-4: P: 0.00 R: 0.00 F1: 0.00
Hypothesis #0 & Reference #1:
rouge-4: P: 0.00 R: 0.00 F1: 0.00
Hypothesis #1 & Reference #0:
rouge-4: P: 0.00 R: 0.00 F1: 0.00
Hypothesis #0 & Reference #0:
rouge-l: P: 42.11 R: 39.39 F1: 40.70
Hypothesis #0 & Reference #1:
rouge-l: P: 46.19 R: 43.92 F1: 45.03
Hypothesis #1 & Reference #0:
rouge-l: P: 16.88 R: 15.50 F1: 16.16
Hypothesis #0 & Reference #0:
rouge-w: P: 22.27 R: 11.49 F1: 15.16
Hypothesis #0 & Reference #1:
rouge-w: P: 24.56 R: 13.60 F1: 17.51
Hypothesis #1 & Reference #0:
rouge-w: P: 8.29 R: 4.04 F1: 5.43
Author: Diego999
Source Code: https://github.com/Diego999/py-rouge
License: Apache-2.0 license
1656856140
d3-context-menu
This is a plugin for d3.js that allows you to easy use context-menus in your visualizations. It's 100% d3 based and done in the "d3 way", so you don't need to worry about including additional frameworks.
bower install d3-context-menu
// Define your menu
var menu = [
{
title: 'Item #1',
action: function(d) {
console.log('Item #1 clicked!');
console.log('The data for this circle is: ' + d);
},
disabled: false // optional, defaults to false
},
{
title: 'Item #2',
action: function(d) {
console.log('You have clicked the second item!');
console.log('The data for this circle is: ' + d);
}
}
]
var data = [1, 2, 3];
var g = d3.select('body').append('svg')
.attr('width', 200)
.attr('height', 400)
.append('g');
g.selectAll('circles')
.data(data)
.enter()
.append('circle')
.attr('r', 30)
.attr('fill', 'steelblue')
.attr('cx', function(d) {
return 100;
})
.attr('cy', function(d) {
return d * 100;
})
.on('contextmenu', d3.contextMenu(menu)); // attach menu to element
});
Menus can have Headers and Dividers. To specify a header simply don't define an "action" property. To specify a divider, simply add a "divider: true" property to the menu item, and it'll be considered a divider. Example menu definition:
var menu = [
{
title: 'Header',
},
{
title: 'Normal item',
action: function() {}
},
{
divider: true
},
{
title: 'Last item',
action: function() {}
}
];
Menus can have Nested Menu. To specify a nested menu, simply add "children" property. Children has item of array.
var menu = [
{
title: 'Parent',
children: [
{
title: 'Child',
children: [
{
// header
title: 'Grand-Child1'
},
{
// normal
title: 'Grand-Child2',
action: function() {}
},
{
// divider
divider: true
},
{
// disable
title: 'Grand-Child3',
action: function() {}
}
]
}
]
},
];
See the index.htm file in the example folder to see this in action.
You can pass in a callback that will be executed before the context menu appears. This can be useful if you need something to close tooltips or perform some other task before the menu appears:
...
.on('contextmenu', d3.contextMenu(menu, function() {
console.log('Quick! Before the menu appears!');
})); // attach menu to element
You can pass in a callback that will be executed after the context menu appears using the onClose option:
...
.on('contextmenu', d3.contextMenu(menu, {
onOpen: function() {
console.log('Quick! Before the menu appears!');
},
onClose: function() {
console.log('Menu has been closed.');
}
})); // attach menu to element
You can use information from your context in menu names, simply specify a function for title which returns a string:
var menu = [
{
title: function(d) {
return 'Delete circle '+d.circleName;
},
action: function(d) {
// delete it
}
},
{
title: function(d) {
return 'Item 2';
},
action: function(d) {
// do nothing interesting
}
}
];
// Menu shown is:
[Delete Circle MyCircle]
[Item 2]
You can also have different lists of menu items for different nodes if menu
is a function:
var menu = function(data) {
if (data.x > 100) {
return [{
title: 'Item #1',
action: function(d) {
console.log('Item #1 clicked!');
console.log('The data for this circle is: ' + d);
}
}];
} else {
return [{
title: 'Item #1',
action: function(d) {
console.log('Item #1 clicked!');
console.log('The data for this circle is: ' + d);
}
}, {
title: 'Item #2',
action: function(d) {
console.log('Item #2 clicked!');
console.log('The data for this circle is: ' + d);
}
}];
}
};
// Menu shown for nodes with x < 100 contains 1 item, while other nodes have 2 menu items
The following example shows how to add a right click menu to a tree diagram:
http://plnkr.co/edit/bDBe0xGX1mCLzqYGOqOS?p=info
Default position can be overwritten by providing a position
option (either object or function returning an object):
...
.on('contextmenu', d3.contextMenu(menu, {
onOpen: function() {
...
},
onClose: function() {
...
},
position: {
top: 100,
left: 200
}
})); // attach menu to element
or
...
.on('contextmenu', d3.contextMenu(menu, {
onOpen: function() {
...
},
onClose: function() {
...
},
position: function(d) {
var elm = this;
var bounds = elm.getBoundingClientRect();
// eg. align bottom-left
return {
top: bounds.top + bounds.height,
left: bounds.left
}
}
})); // attach menu to element
d3.contextMenu(menu, {
...
theme: 'my-awesome-theme'
});
or
d3.contextMenu(menu, {
...
theme: function () {
if (foo) {
return 'my-foo-theme';
}
else {
return 'my-awesome-theme';
}
}
});
d3.contextMenu('close');
The following example shows how to add a right click menu to a tree diagram:
http://plnkr.co/edit/bDBe0xGX1mCLzqYGOqOS?p=info
Depending on the D3 library version used the callback functions can provide an additional argument:
var menu = [
{
title: 'Item #1',
action: function(d, event) {
console.log('Item #1 clicked!');
console.log('The data for this circle is: ' + d);
console.log('The event is: ' + event);
}
}
]
var menu = [
{
title: 'Item #1',
action: function(d, index) {
console.log('Item #1 clicked!');
console.log('The data for this circle is: ' + d);
console.log('The index is: ' + index);
}
}
]
index
parameter of callbacks are undefined when using D3 6.x or above. See the index.htm file in the example folder to see how to get the proper index
value in that case.d3-context-menu-theme
)theme
configuration option (as string or function returning string)data
and index
, and this
argument refers to the DOM element the context menu is related to)position
, menu
) have the same signature and this
object as onClose
/onOpen
mousedown
outside of the menu, instead of click
outside (to mimic behaviour of the native context menu)disabled
and divider
can now be functions as well and have the same signature and this
object as explained aboved3.contextMenu('close');
<body>
click event is never removedonClose
callback was called when menu was closed as a result of clicking outsideIt's written to be very light weight and customizable. You can see it in action here:
http://plnkr.co/edit/hAx36JQhb0RsvVn7TomS?p=info
Author: Patorjk
Source Code: https://github.com/patorjk/d3-context-menu
License: MIT license
1642390128
파이썬 무료 강의 (활용편6 - 이미지 처리)입니다.
OpenCV 를 이용한 다양한 이미지 처리 기법과 재미있는 프로젝트를 진행합니다.
누구나 볼 수 있도록 쉽고 재미있게 제작하였습니다. ^^
[소개]
(0:00:00) 0.Intro
(0:00:31) 1.소개
(0:02:18) 2.활용편 6 이미지 처리 소개
[OpenCV 전반전]
(0:04:36) 3.환경설정
(0:08:41) 4.이미지 출력
(0:21:51) 5.동영상 출력 #1 파일
(0:29:58) 6.동영상 출력 #2 카메라
(0:34:23) 7.도형 그리기 #1 빈 스케치북
(0:39:49) 8.도형 그리기 #2 영역 색칠
(0:42:26) 9.도형 그리기 #3 직선
(0:51:23) 10.도형 그리기 #4 원
(0:55:09) 11.도형 그리기 #5 사각형
(0:58:32) 12.도형 그리기 #6 다각형
(1:09:23) 13.텍스트 #1 기본
(1:17:45) 14.텍스트 #2 한글 우회
(1:24:14) 15.파일 저장 #1 이미지
(1:29:27) 16.파일 저장 #2 동영상
(1:39:29) 17.크기 조정
(1:50:16) 18.이미지 자르기
(1:57:03) 19.이미지 대칭
(2:01:46) 20.이미지 회전
(2:06:07) 21.이미지 변형 - 흑백
(2:11:25) 22.이미지 변형 - 흐림
(2:18:03) 23.이미지 변형 - 원근 #1
(2:27:45) 24.이미지 변형 - 원근 #2
[반자동 문서 스캐너 프로젝트]
(2:32:50) 25.미니 프로젝트 1 - #1 마우스 이벤트 등록
(2:42:06) 26.미니 프로젝트 1 - #2 기본 코드 완성
(2:49:54) 27.미니 프로젝트 1 - #3 지점 선 긋기
(2:55:24) 28.미니 프로젝트 1 - #4 실시간 선 긋기
[OpenCV 후반전]
(3:01:52) 29.이미지 변형 - 이진화 #1 Trackbar
(3:14:37) 30.이미지 변형 - 이진화 #2 임계값
(3:20:26) 31.이미지 변형 - 이진화 #3 Adaptive Threshold
(3:28:34) 32.이미지 변형 - 이진화 #4 오츠 알고리즘
(3:32:22) 33.이미지 변환 - 팽창
(3:41:10) 34.이미지 변환 - 침식
(3:45:56) 35.이미지 변환 - 열림 & 닫힘
(3:54:10) 36.이미지 검출 - 경계선
(4:05:08) 37.이미지 검출 - 윤곽선 #1 기본
(4:15:26) 38.이미지 검출 - 윤곽선 #2 찾기 모드
(4:20:46) 39.이미지 검출 - 윤곽선 #3 면적
[카드 검출 & 분류기 프로젝트]
(4:27:42) 40.미니프로젝트 2
[퀴즈]
(4:31:57) 41.퀴즈
[얼굴인식 프로젝트]
(4:41:25) 42.환경설정 및 기본 코드 정리
(4:54:48) 43.눈과 코 인식하여 도형 그리기
(5:10:42) 44.그림판 이미지 씌우기
(5:20:52) 45.캐릭터 이미지 씌우기
(5:33:10) 46.보충설명
(5:40:53) 47.마치며 (학습 참고 자료)
(5:42:18) 48.Outro
[학습자료]
수업에 필요한 이미지, 동영상 자료 링크입니다.
고양이 이미지 : https://pixabay.com/images/id-2083492/
크기 : 640 x 390
파일명 : img.jpg
고양이 동영상 : https://www.pexels.com/video/7515833/
크기 : SD (360 x 640)
파일명 : video.mp4
신문 이미지 : https://pixabay.com/images/id-350376/
크기 : 1280 x 853
파일명 : newspaper.jpg
카드 이미지 1 : https://pixabay.com/images/id-682332/
크기 : 1280 x 1019
파일명 : poker.jpg
책 이미지 : https://www.pexels.com/photo/1029807/
크기 : Small (640 x 853)
파일명 : book.jpg
눈사람 이미지 : https://pixabay.com/images/id-1300089/
크기 : 1280 x 904
파일명 : snowman.png
카드 이미지 2 : https://pixabay.com/images/id-161404/
크기 : 640 x 408
파일명 : card.png
퀴즈용 동영상 : https://www.pexels.com/video/3121459/
크기 : HD (1280 x 720)
파일명 : city.mp4
프로젝트용 동영상 : https://www.pexels.com/video/3256542/
크기 : Full HD (1920 x 1080)
파일명 : face_video.mp4
프로젝트용 캐릭터 이미지 : https://www.freepik.com/free-vector/cute-animal-masks-video-chat-application-effect-filters-set_6380101.htm
파일명 : right_eye.png (100 x 100), left_eye.png (100 x 100), nose.png (300 x 100)
무료 이미지 편집 도구 : https://pixlr.com/kr/
(Pixlr E -Advanced Editor)
#python #opencv