1644559432
With AI and machine learning making inroads into several domains, including critical ones like healthcare, finance and policy, there has been a growing demand for making these models interpretable to ML practitioners and domain experts. AI suffers from a black-box problem which acts as a big hurdle in gaining public trust and acceptance. https://analyticsindiamag.com/explainable-ais-disagreement-problem/
1656151740
Flutter Console Coverage Test
This small dart tools is used to generate Flutter Coverage Test report to console
Add a line like this to your package's pubspec.yaml (and run an implicit flutter pub get):
dev_dependencies:
test_cov_console: ^0.2.2
flutter pub get
Running "flutter pub get" in coverage... 0.5s
flutter test --coverage
00:02 +1: All tests passed!
flutter pub run test_cov_console
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
print_cov_constants.dart | 0.00 | 0.00 | 0.00 | no unit testing|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
If not given a FILE, "coverage/lcov.info" will be used.
-f, --file=<FILE> The target lcov.info file to be reported
-e, --exclude=<STRING1,STRING2,...> A list of contains string for files without unit testing
to be excluded from report
-l, --line It will print Lines & Uncovered Lines only
Branch & Functions coverage percentage will not be printed
-i, --ignore It will not print any file without unit testing
-m, --multi Report from multiple lcov.info files
-c, --csv Output to CSV file
-o, --output=<CSV-FILE> Full path of output CSV file
If not given, "coverage/test_cov_console.csv" will be used
-t, --total Print only the total coverage
Note: it will ignore all other option (if any), except -m
-p, --pass=<MINIMUM> Print only the whether total coverage is passed MINIMUM value or not
If the value >= MINIMUM, it will print PASSED, otherwise FAILED
Note: it will ignore all other option (if any), except -m
-h, --help Show this help
flutter pub run test_cov_console --file=coverage/lcov.info --exclude=_constants,_mock
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
It support to run for multiple lcov.info files with the followings directory structures:
1. No root module
<root>/<module_a>
<root>/<module_a>/coverage/lcov.info
<root>/<module_a>/lib/src
<root>/<module_b>
<root>/<module_b>/coverage/lcov.info
<root>/<module_b>/lib/src
...
2. With root module
<root>/coverage/lcov.info
<root>/lib/src
<root>/<module_a>
<root>/<module_a>/coverage/lcov.info
<root>/<module_a>/lib/src
<root>/<module_b>
<root>/<module_b>/coverage/lcov.info
<root>/<module_b>/lib/src
...
You must run test_cov_console on <root> dir, and the report would be grouped by module, here is
the sample output for directory structure 'with root module':
flutter pub run test_cov_console --file=coverage/lcov.info --exclude=_constants,_mock --multi
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
---------------------------------------------|---------|---------|---------|-------------------|
File - module_a - |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
---------------------------------------------|---------|---------|---------|-------------------|
File - module_b - |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
flutter pub run test_cov_console -c --output=coverage/test_coverage.csv
#### sample CSV output file:
File,% Branch,% Funcs,% Lines,Uncovered Line #s
lib/,,,,
test_cov_console.dart,0.00,0.00,0.00,no unit testing
lib/src/,,,,
parser.dart,100.00,100.00,97.22,"97"
parser_constants.dart,100.00,100.00,100.00,""
print_cov.dart,100.00,100.00,82.91,"29,49,51,52,171,174,177,180,183,184,185,186,187,188,279,324,325,387,388,389,390,391,392,393,394,395,398"
print_cov_constants.dart,0.00,0.00,0.00,no unit testing
All files with unit testing,100.00,100.00,86.07,""
You can install the package from the command line:
dart pub global activate test_cov_console
The package has the following executables:
$ test_cov_console
Run this command:
With Dart:
$ dart pub add test_cov_console
With Flutter:
$ flutter pub add test_cov_console
This will add a line like this to your package's pubspec.yaml (and run an implicit dart pub get
):
dependencies:
test_cov_console: ^0.2.2
Alternatively, your editor might support dart pub get
or flutter pub get
. Check the docs for your editor to learn more.
Now in your Dart code, you can use:
import 'package:test_cov_console/test_cov_console.dart';
example/lib/main.dart
import 'package:flutter/material.dart';
void main() {
runApp(MyApp());
}
class MyApp extends StatelessWidget {
// This widget is the root of your application.
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Flutter Demo',
theme: ThemeData(
// This is the theme of your application.
//
// Try running your application with "flutter run". You'll see the
// application has a blue toolbar. Then, without quitting the app, try
// changing the primarySwatch below to Colors.green and then invoke
// "hot reload" (press "r" in the console where you ran "flutter run",
// or simply save your changes to "hot reload" in a Flutter IDE).
// Notice that the counter didn't reset back to zero; the application
// is not restarted.
primarySwatch: Colors.blue,
// This makes the visual density adapt to the platform that you run
// the app on. For desktop platforms, the controls will be smaller and
// closer together (more dense) than on mobile platforms.
visualDensity: VisualDensity.adaptivePlatformDensity,
),
home: MyHomePage(title: 'Flutter Demo Home Page'),
);
}
}
class MyHomePage extends StatefulWidget {
MyHomePage({Key? key, required this.title}) : super(key: key);
// This widget is the home page of your application. It is stateful, meaning
// that it has a State object (defined below) that contains fields that affect
// how it looks.
// This class is the configuration for the state. It holds the values (in this
// case the title) provided by the parent (in this case the App widget) and
// used by the build method of the State. Fields in a Widget subclass are
// always marked "final".
final String title;
@override
_MyHomePageState createState() => _MyHomePageState();
}
class _MyHomePageState extends State<MyHomePage> {
int _counter = 0;
void _incrementCounter() {
setState(() {
// This call to setState tells the Flutter framework that something has
// changed in this State, which causes it to rerun the build method below
// so that the display can reflect the updated values. If we changed
// _counter without calling setState(), then the build method would not be
// called again, and so nothing would appear to happen.
_counter++;
});
}
@override
Widget build(BuildContext context) {
// This method is rerun every time setState is called, for instance as done
// by the _incrementCounter method above.
//
// The Flutter framework has been optimized to make rerunning build methods
// fast, so that you can just rebuild anything that needs updating rather
// than having to individually change instances of widgets.
return Scaffold(
appBar: AppBar(
// Here we take the value from the MyHomePage object that was created by
// the App.build method, and use it to set our appbar title.
title: Text(widget.title),
),
body: Center(
// Center is a layout widget. It takes a single child and positions it
// in the middle of the parent.
child: Column(
// Column is also a layout widget. It takes a list of children and
// arranges them vertically. By default, it sizes itself to fit its
// children horizontally, and tries to be as tall as its parent.
//
// Invoke "debug painting" (press "p" in the console, choose the
// "Toggle Debug Paint" action from the Flutter Inspector in Android
// Studio, or the "Toggle Debug Paint" command in Visual Studio Code)
// to see the wireframe for each widget.
//
// Column has various properties to control how it sizes itself and
// how it positions its children. Here we use mainAxisAlignment to
// center the children vertically; the main axis here is the vertical
// axis because Columns are vertical (the cross axis would be
// horizontal).
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[
Text(
'You have pushed the button this many times:',
),
Text(
'$_counter',
style: Theme.of(context).textTheme.headline4,
),
],
),
),
floatingActionButton: FloatingActionButton(
onPressed: _incrementCounter,
tooltip: 'Increment',
child: Icon(Icons.add),
), // This trailing comma makes auto-formatting nicer for build methods.
);
}
}
Author: DigitalKatalis
Source Code: https://github.com/DigitalKatalis/test_cov_console
License: BSD-3-Clause license
1619511840
If you were to ask any organization today, you would learn that they are all becoming reliant on Artificial Intelligence Solutions and using AI to digitally transform in order to bring their organizations into the new age. AI is no longer a new concept, instead, with the technological advancements that are being made in the realm of AI, it has become a much-needed business facet.
AI has become easier to use and implement than ever before, and every business is applying AI solutions to their processes. Organizations have begun to base their digital transformation strategies around AI and the way in which they conduct their business. One of these business processes that AI has helped transform is lead qualifications.
#ai-solutions-development #artificial-intelligence #future-of-artificial-intellige #ai #ai-applications #ai-trends #future-of-ai #ai-revolution
1604178900
As artificial intelligence (AI) models, especially those using deep learning, have gained prominence over the last eight or so years [8], they are now significantly impacting society, ranging from loan decisions to self-driving cars. Inherently though, a majority of these models are opaque, and hence following their recommendations blindly in human critical applications can raise issues such as fairness, safety, reliability, along with many others. This has led to the emergence of a subfield in AI called explainable AI (XAI) [7]. XAI is primarily concerned with understanding or interpreting the decisions made by these opaque or black-box models so that one can appropriate trust, and in some cases, have even better performance through human-machine collaboration [5].
While there are multiple views on what XAI is [12] and how explainability can be formalized [4, 6], it is still unclear as to what XAI truly is and why it is hard to formalize mathematically. The reason for this lack of clarity is that not only must the model and/or data be considered but also the final consumer of the explanation. Most XAI methods [11, 9, 3], given this intermingled view, try to meet all these requirements at the same time. For example, many methods try to identify a sparse set of features that replicate the decision of the model. The sparsity is a proxy for the consumer’s mental model. An important question asks whether we can disentangle the steps that XAI methods are trying to accomplish? This may help us better understand the truly challenging parts as well as the simpler parts of XAI, not to mention it may motivate different types of methods.
We conjecture that the XAI process can be broadly disentangled into two parts, as depicted in Figure 1. The first part is uncovering what is truly happening in the model that we want to understand, while the second part is about conveying that information to the user in a consumable way. The first part is relatively easy to formalize as it mainly deals with analyzing how well a simple proxy model might generalize either locally or globally with respect to (w.r.t.) data that is generated using the black-box model. Rather than having generalization guarantees w.r.t. the underlying distribution, we now want them w.r.t. the (conditional) output distribution of the model. Once we have some way of figuring out what is truly important, a second step is to communicate this information. This second part is much less clear as we do not have an objective way of characterizing an individual’s mind. This part, we believe, is what makes explainability as a whole so challenging to formalize. A mainstay for a lot of XAI research over the last year or so has been to conduct user studies to evaluate new XAI methods.
#overviews #ai #explainability #explainable ai #xai
1598606037
Every week we bring to you the best AI research papers, articles and videos that we have found interesting, cool or simply weird that week.
#ai #this week in ai #ai application #ai news #artificaial inteligance #artificial intelligence #artificial neural networks #deep learning #machine learning #this week in ai
1595398860
Every week we bring to you the best AI research papers, articles and videos that we have found interesting, cool or simply weird that week.Have fun!
#ai #this week in ai #ai application #ai news #artificaial inteligance #artificial intelligence #artificial neural networks #deep learning #machine learning #this week in ai