How Neural Networks Hallucinate Missing Pixels for Image Inpainting

How Neural Networks Hallucinate Missing Pixels for Image Inpainting

How Neural Networks Hallucinate Missing Pixels for Image Inpainting. In this blog, we will discuss how this phenomenon of hallucination in neural networks can be utilized to perform the task of image inpainting.

When a human sees an object, certain neurons in our brain’s visual cortex light up with activity, but when we take hallucinogenic drugs, these drugs overwhelm our serotonin receptors and lead to the distorted visual perception of colours and shapes. Similarly, deep neural networks that are modelled on structures in our brain, stores data in huge tables of numeric coefficients, which defy direct human comprehension. But when these neural network’s activation is overstimulated (virtual drugs), we get phenomenons like neural dreams and neural hallucinations. Dreams are the mental conjectures that are produced by our brain when the perceptual apparatus shuts down, whereas hallucinations are produced when this perceptual apparatus becomes hyperactive. In this blog, we will discuss how this phenomenon of hallucination in neural networks can be utilized to perform the task of image inpainting.

Image and Video Inpainting

Image inpainting is the art of synthesizing alternative contents for the reconstruction of missing or deteriorated parts of an image such that the modification is semantically correct and visually realistic. Image inpainting has received significant attention from the computer vision and image processing community throughout the past years and led to key advances in the research and application field. Traditionally, inpainting is achieved either using examplar-based approaches that reconstruct one missing pixel/patch of a plausible hypothesis at a time, while maintaining the neighbourhood consistency, or diffusion-based approaches that propagate local semantic structures into the missing parts. However, irrespective of the employed method, the core challenge of image inpainting is to maintain a global semantic structure and generate realistic texture details for the unknown regions. The traditional approaches fail to achieve this global semantic structure and realistic textures when the size of the missing regions is large or high irregular. Therefore a component that can provide a plausible hallucination for the missing pixels is needed to tackle such inpainting problems. To design these hallucinative components, researchers generally choose deep neural networks to provide high-order models of natural images. There are a plethora of use cases that use image inpainting to retouch undesired regions, remove distracting objects or to complete occluded regions in images. It can also be extensively applied to tasks including video un-cropping, re-targeting, re-composition, rotation, and stitching.

deep-learning artificial-intelligence data-science machine-learning

Bootstrap 5 Complete Course with Examples

Bootstrap 5 Tutorial - Bootstrap 5 Crash Course for Beginners

Nest.JS Tutorial for Beginners

Hello Vue 3: A First Look at Vue 3 and the Composition API

Building a simple Applications with Vue 3

Deno Crash Course: Explore Deno and Create a full REST API with Deno

How to Build a Real-time Chat App with Deno and WebSockets

Convert HTML to Markdown Online

HTML entity encoder decoder Online

Most popular Data Science and Machine Learning courses — July 2020

Most popular Data Science and Machine Learning courses — August 2020. This list was last updated in August 2020 — and will be updated regularly so as to keep it relevant

Artificial Intelligence vs. Machine Learning vs. Deep Learning

Simple explanations of Artificial Intelligence, Machine Learning, and Deep Learning and how they’re all different

Artificial Intelligence, Machine Learning, Deep Learning 

Artificial Intelligence (AI) will and is currently taking over an important role in our lives — not necessarily through intelligent robots.

Data Augmentation in Deep Learning | Data Science | Machine Learning

Data Augmentation is a technique in Deep Learning which helps in adding value to our base dataset by adding the gathered information from various sources to improve the quality of data of an organisation.

Difference between Machine Learning, Data Science, AI, Deep Learning, and Statistics

In this article, I clarify the various roles of the data scientist, and how data science compares and overlaps with related fields such as machine learning, deep learning, AI, statistics, IoT, operations research, and applied mathematics.