Steve Griffith

Steve Griffith

1604932804

Applying Dark Mode in your webpages

https://www.youtube.com/watch?v=hzVjv1a6xzM

#html #css #web-development #css3 #media-queries

What is GEEK

Buddha Community

Applying Dark Mode in your webpages

How To Toggle Dark and Light Mode using jQuery

Hello Guys,

In this tutorial I will show you how to toggle between dark and light mode using jQuery.

As per the current trend of web development in many websites provides to user for reading select theme like dark mode and light mode or day mode and night mode of website and it’s very easy to implement in website.

In this just write some css code and java script for toggle dark mode and light mode website also you can store in local storage for save the state of user select theme like dark mode and light of website.

Read More : How To Toggle Dark and Light Mode using jQuery

https://websolutionstuff.com/post/how-to-toggle-dark-and-light-mode-using-jquery


Read Also : How Generate PDF From HTML View In Laravel

https://websolutionstuff.com/post/how-generate-pdf-from-html-view-in-laravel

#how to toggle dark and light mode using jquery #dark and light mode #toggle between light and dark mode #jquery #day and night mode #dark mode website

How To Create Dark and Light Mode Website using jQuery

Hello Friends,

In this tutorial i will show you How To Create Dark and Light Mode Website using jQuery.

As you can see many website and mobile applications are provide light theme as well as dark theme to user, It is useful for websites which have long content and requires users to focus on the screen for a long time.

Read More : How To Create Dark and Light Mode Website using jQuery

https://websolutionstuff.com/post/how-to-create-dark-and-light-mode-website-using-jquery


Read Also : How To Generate Barcode In Laravel

https://websolutionstuff.com/post/how-to-generate-barcode-in-laravel

#how to create dark and light mode website using jquery #dark and light mode #how to add dark mode and light mode in website #day and night mode #jquery

Edward Jackson

Edward Jackson

1653377002

PySpark Cheat Sheet: Spark in Python

This PySpark cheat sheet with code samples covers the basics like initializing Spark in Python, loading data, sorting, and repartitioning.

Apache Spark is generally known as a fast, general and open-source engine for big data processing, with built-in modules for streaming, SQL, machine learning and graph processing. It allows you to speed analytic applications up to 100 times faster compared to technologies on the market today. You can interface Spark with Python through "PySpark". This is the Spark Python API exposes the Spark programming model to Python. 

Even though working with Spark will remind you in many ways of working with Pandas DataFrames, you'll also see that it can be tough getting familiar with all the functions that you can use to query, transform, inspect, ... your data. What's more, if you've never worked with any other programming language or if you're new to the field, it might be hard to distinguish between RDD operations.

Let's face it, map() and flatMap() are different enough, but it might still come as a challenge to decide which one you really need when you're faced with them in your analysis. Or what about other functions, like reduce() and reduceByKey()

PySpark cheat sheet

Even though the documentation is very elaborate, it never hurts to have a cheat sheet by your side, especially when you're just getting into it.

This PySpark cheat sheet covers the basics, from initializing Spark and loading your data, to retrieving RDD information, sorting, filtering and sampling your data. But that's not all. You'll also see that topics such as repartitioning, iterating, merging, saving your data and stopping the SparkContext are included in the cheat sheet. 

Note that the examples in the document take small data sets to illustrate the effect of specific functions on your data. In real life data analysis, you'll be using Spark to analyze big data.

PySpark is the Spark Python API that exposes the Spark programming model to Python.

Initializing Spark 

SparkContext 

>>> from pyspark import SparkContext
>>> sc = SparkContext(master = 'local[2]')

Inspect SparkContext 

>>> sc.version #Retrieve SparkContext version
>>> sc.pythonVer #Retrieve Python version
>>> sc.master #Master URL to connect to
>>> str(sc.sparkHome) #Path where Spark is installed on worker nodes
>>> str(sc.sparkUser()) #Retrieve name of the Spark User running SparkContext
>>> sc.appName #Return application name
>>> sc.applicationld #Retrieve application ID
>>> sc.defaultParallelism #Return default level of parallelism
>>> sc.defaultMinPartitions #Default minimum number of partitions for RDDs

Configuration 

>>> from pyspark import SparkConf, SparkContext
>>> conf = (SparkConf()
     .setMaster("local")
     .setAppName("My app")
     . set   ("spark. executor.memory",   "lg"))
>>> sc = SparkContext(conf = conf)

Using the Shell 

In the PySpark shell, a special interpreter-aware SparkContext is already created in the variable called sc.

$ ./bin/spark-shell --master local[2]
$ ./bin/pyspark --master local[s] --py-files code.py

Set which master the context connects to with the --master argument, and add Python .zip..egg or.py files to the

runtime path by passing a comma-separated list to  --py-files.

Loading Data 

Parallelized Collections 

>>> rdd = sc.parallelize([('a',7),('a',2),('b',2)])
>>> rdd2 = sc.parallelize([('a',2),('d',1),('b',1)])
>>> rdd3 = sc.parallelize(range(100))
>>> rdd = sc.parallelize([("a",["x","y","z"]),
               ("b" ["p","r,"])])

External Data 

Read either one text file from HDFS, a local file system or any Hadoop-supported file system URI with textFile(), or read in a directory of text files with wholeTextFiles(). 

>>> textFile = sc.textFile("/my/directory/•.txt")
>>> textFile2 = sc.wholeTextFiles("/my/directory/")

Retrieving RDD Information 

Basic Information 

>>> rdd.getNumPartitions() #List the number of partitions
>>> rdd.count() #Count RDD instances 3
>>> rdd.countByKey() #Count RDD instances by key
defaultdict(<type 'int'>,{'a':2,'b':1})
>>> rdd.countByValue() #Count RDD instances by value
defaultdict(<type 'int'>,{('b',2):1,('a',2):1,('a',7):1})
>>> rdd.collectAsMap() #Return (key,value) pairs as a dictionary
   {'a': 2, 'b': 2}
>>> rdd3.sum() #Sum of RDD elements 4950
>>> sc.parallelize([]).isEmpty() #Check whether RDD is empty
True

Summary 

>>> rdd3.max() #Maximum value of RDD elements 
99
>>> rdd3.min() #Minimum value of RDD elements
0
>>> rdd3.mean() #Mean value of RDD elements 
49.5
>>> rdd3.stdev() #Standard deviation of RDD elements 
28.866070047722118
>>> rdd3.variance() #Compute variance of RDD elements 
833.25
>>> rdd3.histogram(3) #Compute histogram by bins
([0,33,66,99],[33,33,34])
>>> rdd3.stats() #Summary statistics (count, mean, stdev, max & min)

Applying Functions 

#Apply a function to each RFD element
>>> rdd.map(lambda x: x+(x[1],x[0])).collect()
[('a' ,7,7, 'a'),('a' ,2,2, 'a'), ('b' ,2,2, 'b')]
#Apply a function to each RDD element and flatten the result
>>> rdd5 = rdd.flatMap(lambda x: x+(x[1],x[0]))
>>> rdd5.collect()
['a',7 , 7 ,  'a' , 'a' , 2,  2,  'a', 'b', 2 , 2, 'b']
#Apply a flatMap function to each (key,value) pair of rdd4 without changing the keys
>>> rdds.flatMapValues(lambda x: x).collect()
[('a', 'x'), ('a', 'y'), ('a', 'z'),('b', 'p'),('b', 'r')]

Selecting Data

Getting

>>> rdd.collect() #Return a list with all RDD elements 
[('a', 7), ('a', 2), ('b', 2)]
>>> rdd.take(2) #Take first 2 RDD elements 
[('a', 7),  ('a', 2)]
>>> rdd.first() #Take first RDD element
('a', 7)
>>> rdd.top(2) #Take top 2 RDD elements 
[('b', 2), ('a', 7)]

Sampling

>>> rdd3.sample(False, 0.15, 81).collect() #Return sampled subset of rdd3
     [3,4,27,31,40,41,42,43,60,76,79,80,86,97]

Filtering

>>> rdd.filter(lambda x: "a" in x).collect() #Filter the RDD
[('a',7),('a',2)]
>>> rdd5.distinct().collect() #Return distinct RDD values
['a' ,2, 'b',7]
>>> rdd.keys().collect() #Return (key,value) RDD's keys
['a',  'a',  'b']

Iterating 

>>> def g (x): print(x)
>>> rdd.foreach(g) #Apply a function to all RDD elements
('a', 7)
('b', 2)
('a', 2)

Reshaping Data 

Reducing

>>> rdd.reduceByKey(lambda x,y : x+y).collect() #Merge the rdd values for each key
[('a',9),('b',2)]
>>> rdd.reduce(lambda a, b: a+ b) #Merge the rdd values
('a', 7, 'a' , 2 , 'b' , 2)

 

Grouping by

>>> rdd3.groupBy(lambda x: x % 2) #Return RDD of grouped values
          .mapValues(list)
          .collect()
>>> rdd.groupByKey() #Group rdd by key
          .mapValues(list)
          .collect() 
[('a',[7,2]),('b',[2])]

Aggregating

>> seqOp = (lambda x,y: (x[0]+y,x[1]+1))
>>> combOp = (lambda x,y:(x[0]+y[0],x[1]+y[1]))
#Aggregate RDD elements of each partition and then the results
>>> rdd3.aggregate((0,0),seqOp,combOp) 
(4950,100)
#Aggregate values of each RDD key
>>> rdd.aggregateByKey((0,0),seqop,combop).collect() 
     [('a',(9,2)), ('b',(2,1))]
#Aggregate the elements of each partition, and then the results
>>> rdd3.fold(0,add)
     4950
#Merge the values for each key
>>> rdd.foldByKey(0, add).collect()
[('a' ,9), ('b' ,2)]
#Create tuples of RDD elements by applying a function
>>> rdd3.keyBy(lambda x: x+x).collect()

Mathematical Operations 

>>>> rdd.subtract(rdd2).collect() #Return each rdd value not contained in rdd2
[('b' ,2), ('a' ,7)]
#Return each (key,value) pair of rdd2 with no matching key in rdd
>>> rdd2.subtractByKey(rdd).collect()
[('d', 1)1
>>>rdd.cartesian(rdd2).collect() #Return the Cartesian product of rdd and rdd2

Sort 

>>> rdd2.sortBy(lambda x: x[1]).collect() #Sort RDD by given function
[('d',1),('b',1),('a',2)]
>>> rdd2.sortByKey().collect() #Sort (key, value) ROD by key
[('a' ,2), ('b' ,1), ('d' ,1)]

Repartitioning 

>>> rdd.repartition(4) #New RDD with 4 partitions
>>> rdd.coalesce(1) #Decrease the number of partitions in the RDD to 1

Saving 

>>> rdd.saveAsTextFile("rdd.txt")
>>> rdd.saveAsHadoopFile("hdfs:// namenodehost/parent/child",
               'org.apache.hadoop.mapred.TextOutputFormat')

Stopping SparkContext 

>>> sc.stop()

Execution 

$ ./bin/spark-submit examples/src/main/python/pi.py

Have this Cheat Sheet at your fingertips

Original article source at https://www.datacamp.com

#pyspark #cheatsheet #spark #python

Dark Mode using CSS Variables

Are you stuck with (LESS/SASS) pre-processor based color variables and looking around for solutions to implement dark mode?

You came to the right place!

Are you looking for an elegant way to implement a dark mode in your new project?

You came to the right place!

Are you looking for a way to** listen to the operating system theme** preference and switch your app’s theme accordingly?

You came to the right place!

Image for post

A complete guide for elegantly implementing and switching between light and dark themes for web apps.

Contents

  • Demo
  • Pre-processor independence
  • Designing color variables in CSS
  • Setting up light and dark themes
  • Listen to the Operating System theme

#css-variables #dark-mode #dark-theme #css

Byneet Dev

Byneet Dev

1623649382

Flutter Tutorial Light and Dark Mode with Provider

The Dark Mode feature or dark mode is now a trend in various applications. Many applications on Android and iOS now support the Dark Mode feature to help users become more comfortable with the dark interface.

In this tutorial, explains how you can create applications that support dark and light themes easily and quickly.

Subscribe : https://www.youtube.com/channel/UCxJInPa5SMldFHfJreSJ73Q

#dark #mode #flutter #ui #theme #tutorial