JWT Fundamentals for Beginners

JWT Fundamentals for Beginners

In this article, the fundamentals of what JSON Web Tokens (JWT) are, and why they are used will be explained.

In this article, the fundamentals of what JSON Web Tokens (JWT) are, and why they are used will be explained.

JSON Web Tokens (JWT) are an important piece in ensuring trust and security in your application. **JWT **allow claims, such as user data, to be represented in a secure manner.

To explain how JWT work, let’s begin with an abstract definition.

Simply put, a JWT is just a string with the following format:

header.payload.signature

It should be noted that a double quoted string is actually considered a valid JSON object.

To show how and why **JWT **are actually used, we will use a simple 3 entity example (see the below diagram). The entities in this example are the user, the application server, and the authentication server. The authentication server will provide the **JWT **to the user. With the JWT, the user can then safely communicate with the application.

How an application uses **JWT **to verify the authenticity of a user.

In this example, the user first signs into the authentication server using the authentication server’s login system (e.g. username and password, Facebook login, Google login, etc). The authentication server then creates the JWT and sends it to the user. When the user makes API calls to the application, the user passes the **JWT **along with the API call. In this setup, the application server would be configured to verify that the incoming JWT are created by the authentication server (the verification process will be explained in more detail later). So, when the user makes **API **calls with the attached JWT, the application can use the **JWT **to verify that the **API **call is coming from an authenticated user.

Now, the JWT itself, and how it’s constructed and verified, will be examined in more depth.

Step 1. Create the HEADER

The header component of the JWT contains information about how the JWT signature should be computed. The header is a JSON object in the following format:

{
    "typ": "JWT",
    "alg": "HS256"
}

In this JSON, the value of the “typ” key specifies that the object is a JWT, and the value of the “alg” key specifies which hashing algorithm is being used to create the JWT signature component. In our example, we’re using the HMAC-SHA256 algorithm, a hashing algorithm that uses a secret key, to compute the signature (discussed in more detail in step 3).

Step 2. Create the PAYLOAD

The payload component of the JWT is the data that‘s stored inside the JWT (this data is also referred to as the “claims” of the JWT). In our example, the authentication server creates a JWT with the user information stored inside of it, specifically the user ID.

{
    "userId": "b08f86af-35da-48f2-8fab-cef3904660bd"
}

The data inside the payload is referred to as the “claims” of the token.

In our example, we are only putting one claim into the payload. You can put as many claims as you like. There are several different standard claims for the **JWT **payload, such as “iss” the issuer, “sub” the subject, and “exp” the expiration time. These fields can be useful when creating JWT, but they are optional. See the wikipedia page on JWT for a more detailed list of **JWT **standard fields.

Keep in mind that the size of the data will affect the overall size of the JWT, this generally isn’t an issue but having excessively large JWT may negatively affect performance and cause latency.

Step 3. Create the SIGNATURE

The signature is computed using the following pseudo code:

// signature algorithm
data = base64urlEncode( header ) + “.” + base64urlEncode( payload )
hashedData = hash( data, secret )
signature = base64urlEncode( hashedData )

What this algorithm does is base64url encodes the header and the payload created in steps 1 and 2. The algorithm then joins the resulting encoded strings together with a period (.) in between them. In our pseudo code, this joined string is assigned to data. The data string is hashed with the secret key using the hashing algorithm specified in the JWT header. The resulting hashed data is assigned to hashedData. This hashed data is then base64url encoded to produce the JWT signature.

In our example, both the header, and the payload are base64url encoded as:

// header
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9
// payload
eyJ1c2VySWQiOiJiMDhmODZhZi0zNWRhLTQ4ZjItOGZhYi1jZWYzOTA0NjYwYmQifQ

Then, applying the specified signature algorithm with the secret key on the period-joined encoded header and encoded payload, we get the hashed data needed for the signature. In our case, this means applying the HS256 algorithm, with the secret key set as the string “secret”, on the data string to get the hashedData string*.* After, through base64url encoding the hashedData string we get the following JWT signature:

// signature
-xN_h82PHVTCMA9vdoHrcZxH-x5mb11y1537t3rGzcM

Step 4. Put All Three JWT Components Together

Now that we have created all three components, we can create the JWT. Remembering the header.payload.signature structure of the JWT, we simply need to combine the components, with periods (.) separating them. We use the base64url encoded versions of the header and of the payload, and the signature we arrived at in step 3.

// JWT Token
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VySWQiOiJiMDhmODZhZi0zNWRhLTQ4ZjItOGZhYi1jZWYzOTA0NjYwYmQifQ.-xN_h82PHVTCMA9vdoHrcZxH-x5mb11y1537t3rGzcM

You can try creating your own JWT through your browser at jwt.io.

Going back to our example, the authentication server can now send this JWT to the user.

How does JWT protect our data?

It is important to understand that the purpose of using JWT is NOT to hide or obscure data in any way. The reason why JWT are used is to prove that the sent data was actually created by an authentic source.

As demonstrated in the previous steps, the data inside a JWT is encoded and signed, not encrypted. The purpose of encoding data is to transform the data’s structure. Signing data allows the data receiver to verify the authenticity of the source of the data. So encoding and signing data does NOT secure the data. On the other hand, the main purpose of encryption is to secure the data and to prevent unauthorized access.

Since JWT are signed and encoded only, and since JWT are not encrypted, JWT do not guarantee any security for sensitive data.## Step 5. Verifying the JWT

In our simple 3 entity example, we are using a **JWT **that is signed by the **HS256 **algorithm where only the authentication server and the application server know the secret key. The application server receives the secret key from the authentication server when the application sets up its authentication process. Since the application knows the secret key, when the user makes a JWT-attached API call to the application, the application can perform the same signature algorithm as in Step 3 on the JWT. The application can then verify that the signature obtained from it’s own hashing operation matches the signature on the JWT itself (i.e. it matches the JWT signature created by the authentication server). If the signatures match, then that means the JWT is valid which indicates that the API call is coming from an authentic source. Otherwise, if the signatures don’t match, then it means that the received JWT is invalid, which may be an indicator of a potential attack on the application. So by verifying the JWT, the application adds a layer of trust between itself and the user.

In Conclusion

We went over what JWT are, how they are created and validated, and how they can be used to ensure trust between an application and its users. This is a starting point for understanding the fundamentals of JWT and why they are useful. JWT are just one piece of the puzzle in ensuring trust and security in your application.

It should be noted that the JWT authentication setup described in this article is using a symmetric key algorithm (HS256). You can also set up your JWT authentication in a similar way except using an asymmetric algorithm (such as RS256) where the authentication server has a secret key, and the application server has a public key.

JavaScript Tutorial: if-else Statement in JavaScript

JavaScript Tutorial: if-else Statement in JavaScript

This JavaScript tutorial is a step by step guide on JavaScript If Else Statements. Learn how to use If Else in javascript and also JavaScript If Else Statements. if-else Statement in JavaScript. JavaScript's conditional statements: if; if-else; nested-if; if-else-if. These statements allow you to control the flow of your program's execution based upon conditions known only during run time.

Decision Making in programming is similar to decision making in real life. In programming also we face some situations where we want a certain block of code to be executed when some condition is fulfilled.
A programming language uses control statements to control the flow of execution of the program based on certain conditions. These are used to cause the flow of execution to advance and branch based on changes to the state of a program.

JavaScript’s conditional statements:

  • if
  • if-else
  • nested-if
  • if-else-if

These statements allow you to control the flow of your program’s execution based upon conditions known only during run time.

  • if: if statement is the most simple decision making statement. It is used to decide whether a certain statement or block of statements will be executed or not i.e if a certain condition is true then a block of statement is executed otherwise not.
    Syntax:
if(condition) 
{
   // Statements to execute if
   // condition is true
}

Here, condition after evaluation will be either true or false. if statement accepts boolean values – if the value is true then it will execute the block of statements under it.
If we do not provide the curly braces ‘{‘ and ‘}’ after if( condition ) then by default if statement will consider the immediate one statement to be inside its block. For example,

if(condition)
   statement1;
   statement2;

// Here if the condition is true, if block 
// will consider only statement1 to be inside 
// its block.

Flow chart:

Example:

<script type = "text/javaScript"> 

// JavaScript program to illustrate If statement 

var i = 10; 

if (i > 15) 
document.write("10 is less than 15"); 

// This statement will be executed 
// as if considers one statement by default 
document.write("I am Not in if"); 

< /script> 

Output:

I am Not in if
  • if-else: The if statement alone tells us that if a condition is true it will execute a block of statements and if the condition is false it won’t. But what if we want to do something else if the condition is false. Here comes the else statement. We can use the else statement with if statement to execute a block of code when the condition is false.
    Syntax:
if (condition)
{
    // Executes this block if
    // condition is true
}
else
{
    // Executes this block if
    // condition is false
}


Example:

<script type = "text/javaScript"> 

// JavaScript program to illustrate If-else statement 

var i = 10; 

if (i < 15) 
document.write("10 is less than 15"); 
else
document.write("I am Not in if"); 

< /script> 

Output:

i is smaller than 15
  • nested-if A nested if is an if statement that is the target of another if or else. Nested if statements means an if statement inside an if statement. Yes, JavaScript allows us to nest if statements within if statements. i.e, we can place an if statement inside another if statement.
    Syntax:
if (condition1) 
{
   // Executes when condition1 is true
   if (condition2) 
   {
      // Executes when condition2 is true
   }
}

Example:

<script type = "text/javaScript"> 

// JavaScript program to illustrate nested-if statement 

var i = 10; 

if (i == 10) { 

// First if statement 
if (i < 15) 
	document.write("i is smaller than 15"); 

// Nested - if statement 
// Will only be executed if statement above 
// it is true 
if (i < 12) 
	document.write("i is smaller than 12 too"); 
else
	document.write("i is greater than 15"); 
} 
< /script> 

Output:

i is smaller than 15
i is smaller than 12 too
  • if-else-if ladder Here, a user can decide among multiple options.The if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the ladder is bypassed. If none of the conditions is true, then the final else statement will be executed.
if (condition)
    statement;
else if (condition)
    statement;
.
.
else
    statement;


Example:

<script type = "text/javaScript"> 
// JavaScript program to illustrate nested-if statement 

var i = 20; 

if (i == 10) 
document.wrte("i is 10"); 
else if (i == 15) 
document.wrte("i is 15"); 
else if (i == 20) 
document.wrte("i is 20"); 
else
document.wrte("i is not present"); 
< /script> 

Output:

i is 20

How to Retrieve full Profile of LinkedIn User using Javascript

How to Retrieve full Profile of LinkedIn User using Javascript

I am trying to retrieve the full profile (especially job history and educational qualifications) of a linkedin user via the Javascript (Fetch LinkedIn Data Using JavaScript)

Here we are fetching LinkedIn data like Username, Email and other fields using JavaScript SDK.

Here we have 2 workarounds.

  1. Configuration of linkedIn developer api
  2. Javascript Code to fetch records

Configuration of linkedIn developer api

In order to fetch records, first we need to create developer api in linkedin which will act as token/identity while fetching data from other linkedin accounts.

So to create api, navigate to https://linkedin.com/developer/apps and click on 'Create Application'.

After navigating, fill in details like name, description and other required fields and then submit.

As we submit, it will create Client ID and Client Secret shown below, which we will be using in our code while communicating to fetch records from other LinkedIn account.

Note: We need to provide localhost Url here under Oauth 2.0. I am using my localhost, but you can probably use other production URLs under Oauth 2.0 where your app is configured. It will make your api  consider the Url as trusted which fetching records.

Javascript Code to fetch records

For getting user details like first name, last name,User image can be written as,

<script type="text/javascript" src="https://platform.linkedin.com/in.js">  
    api_key: XXXXXXX //Client ID  
    onLoad: OnLinkedInFrameworkLoad //Method that will be called on page load  
    authorize: true  
</script>  
<script type="text/javascript">  
    function OnLinkedInFrameworkLoad() {  
        IN.Event.on(IN, "auth", OnLinkedInAuth);  
    }  
  
    function OnLinkedInAuth() {  
        IN.API.Profile("me").result(ShowProfileData);  
    }  
  
    function ShowProfileData(profiles) {  
        var member = profiles.values[0];  
        var id = member.id;  
        var firstName = member.firstName;  
        var lastName = member.lastName;  
        var photo = member.pictureUrl;  
        var headline = member.headline;  
        //use information captured above  
        var stringToBind = "<p>First Name: " + firstName + " <p/><p> Last Name: " + lastName + "<p/><p>User ID: " + id + " and Head Line Provided: " + headline + "<p/>"  
        document.getElementById('profiles').innerHTML = stringToBind;  
    }  
</script>    

Kindly note we need to include 'https://platform.linkedin.com/in.js' as src under script type as it will act on this Javascript SDK provided by Linkedin.

In the same way we can also fetch records of any organization with the companyid as keyword.

<head>  
    <script type="text/javascript" src="https://platform.linkedin.com/in.js">  
        api_key: XXXXXXX ////Client ID  
        onLoad: onLinkedInLoad  
        authorize: true  
    </script>  
</head>  
  
<body>  
    <div id="displayUpdates"></div>  
    <script type="text/javascript">  
        function onLinkedInLoad() {  
            IN.Event.on(IN, "auth", onLinkedInAuth);  
            console.log("On auth");  
        }  
  
        function onLinkedInAuth() {  
            var cpnyID = XXXXX; //the Company ID for which we want updates  
            IN.API.Raw("/companies/" + cpnyID + "/updates?event-type=status-update&start=0&count=10&format=json").result(displayCompanyUpdates);  
            console.log("After auth");  
        }  
  
        function displayCompanyUpdates(result) {  
            var div = document.getElementById("displayUpdates");  
            var el = "<ul>";  
            var resValues = result.values;  
            for (var i in resValues) {  
                var share = resValues[i].updateContent.companyStatusUpdate.share;  
                var isContent = share.content;  
                var isTitled = isContent,  
                    isLinked = isContent,  
                    isDescription = isContent,  
                    isThumbnail = isContent,  
                    isComment = isContent;  
                if (isTitled) {  
                    var title = isContent.title;  
                } else {  
                    var title = "News headline";  
                }  
                var comment = share.comment;  
                if (isLinked) {  
                    var link = isContent.shortenedUrl;  
                } else {  
                    var link = "#";  
                }  
                if (isDescription) {  
                    var description = isContent.description;  
                } else {  
                    var description = "No description";  
                }  
                /* 
                if (isThumbnailz) { 
                var thumbnailUrl = isContent.thumbnailUrl; 
                } else { 
                var thumbnailUrl = "http://placehold.it/60x60"; 
                } 
                */  
                if (share) {  
                    var content = "<a target='_blank' href=" + link + ">" + comment + "</a><br>";  
                    //el += "<li><img src='" + thumbnailUrl + "' alt=''>" + content + "</li>";  
                    el += "<li><div>" + content + "</div></li>";  
                }  
                console.log(share);  
            }  
            el += "</ul>";  
            document.getElementById("displayUpdates").innerHTML = el;  
        }  
    </script>  
</body>  

We can get multiple metadata while fetching records for any any organization. We can get company updates as shown below.

Conclusion

We can also fetch any company specific data like company job updates/post, total likes, comments, and number of views along with a lot of metadata we can fetch which I have shown below.

Thank you for reading !

7 Best Javascript Iframe Libraries

7 Best Javascript Iframe Libraries

Iframes let you build user experiences into embeddable ‘cross-domain components’, which let users interact with other sites without being redirected. I have compiled 7 best Javascript iframe libraries.

Iframes let you build user experiences into embeddable ‘cross-domain components’, which let users interact with other sites without being redirected. I have compiled 7 best Javascript iframe libraries.

1. Zoid

A cross-domain component toolkit, supporting:

  • Render an iframe or popup on a different domain, and pass down props, including objects and functions
  • Call callbacks natively from the child window without worrying about post-messaging or cross-domain restrictions
  • Create and expose components to share functionality from your site to others!
  • Render your component directly as a React, Vue or Angular component!
    It's 'data-down, actions up' style components, but 100% cross-domain using iframes and popups!

Download


2. Postmate

Postmate is a promise-based API built on postMessage. It allows a parent page to speak with a child iFrame across origins with minimal effort.

Download


3. Iframe Resizer

Keep same and cross domain iFrames sized to their content with support for window/content resizing, in page links, nesting and multiple iFrames

Demo

Download


4. Iframely

Embed proxy. Supports over 1800 domains via custom parsers, oEmbed, Twitter Cards and Open Graph

Demo

Download


5. React Frame component

This component allows you to encapsulate your entire React application or per component in an iFrame.

Demo

Download


6. Seamless.js

A seamless iframe makes it so that visitors are unable to distinguish between content within the iframe and content beside the iframe. Seamless.js is a JavaScript library (with no dependencies) that makes working with iframes easy by doing all the seamless stuff for you automatically.

Demo

Download


7. Porthole

A proxy to safely communicate to cross-domain iframes in javascript

Demo

Download


Thank for read!