Exploring Microservices in Docker and Azure

Exploring Microservices in Docker and Microsoft Azure. Join leading experts to investigate the benefits and challenges of microservices.

Learn from real-life examples and demos, and get lots of practical guidance, as you compare microservices to containers, with a look at Azure (.NET and PHP) and Docker (Node.js), and then bring them all together with an API layer. Whether you're building a site from scratch or fine-tuning an existing one, this course is sure to offer insight as you consider solution design and implementation.


1 - Cloud, Continuous Delivery, and Microservices
Get the historical perspective on microservices, outline a logical architecture, and review deployment scenarios for solutions, given the demand by users for up-to-date apps and the move to SaaS.

2 - Docker: Containers and Microservices
Review the difference between containers and microservices. See how microservice architecture can help you take advantage of container technologies and services like app services and service fabric.

3 - Microservice Architecture for .NET
See a demo of microservice discoverability and composition, plus the ability to dynamically find services at run time and compose them into a user experience; get an overview of Azure API management.

4 - Microservices and Internet of Things: Pharma Trial Demo
Get an overview of how IoT is implemented on Azure, using a microservice architecture covering event hub and stream analytics, and walk through a complete end-to-end solution.

#microservices #docker #azure

What is GEEK

Buddha Community

Exploring Microservices in Docker and Azure

Exploring Microservices in Docker and Azure

Exploring Microservices in Docker and Microsoft Azure. Join leading experts to investigate the benefits and challenges of microservices.

Learn from real-life examples and demos, and get lots of practical guidance, as you compare microservices to containers, with a look at Azure (.NET and PHP) and Docker (Node.js), and then bring them all together with an API layer. Whether you're building a site from scratch or fine-tuning an existing one, this course is sure to offer insight as you consider solution design and implementation.


1 - Cloud, Continuous Delivery, and Microservices
Get the historical perspective on microservices, outline a logical architecture, and review deployment scenarios for solutions, given the demand by users for up-to-date apps and the move to SaaS.

2 - Docker: Containers and Microservices
Review the difference between containers and microservices. See how microservice architecture can help you take advantage of container technologies and services like app services and service fabric.

3 - Microservice Architecture for .NET
See a demo of microservice discoverability and composition, plus the ability to dynamically find services at run time and compose them into a user experience; get an overview of Azure API management.

4 - Microservices and Internet of Things: Pharma Trial Demo
Get an overview of how IoT is implemented on Azure, using a microservice architecture covering event hub and stream analytics, and walk through a complete end-to-end solution.

#microservices #docker #azure

Iliana  Welch

Iliana Welch

1595249460

Docker Explained: Docker Architecture | Docker Registries

Following the second video about Docker basics, in this video, I explain Docker architecture and explain the different building blocks of the docker engine; docker client, API, Docker Daemon. I also explain what a docker registry is and I finish the video with a demo explaining and illustrating how to use Docker hub

In this video lesson you will learn:

  • What is Docker Host
  • What is Docker Engine
  • Learn about Docker Architecture
  • Learn about Docker client and Docker Daemon
  • Docker Hub and Registries
  • Simple demo to understand using images from registries

#docker #docker hub #docker host #docker engine #docker architecture #api

Eric  Bukenya

Eric Bukenya

1624713540

Learn NoSQL in Azure: Diving Deeper into Azure Cosmos DB

This article is a part of the series – Learn NoSQL in Azure where we explore Azure Cosmos DB as a part of the non-relational database system used widely for a variety of applications. Azure Cosmos DB is a part of Microsoft’s serverless databases on Azure which is highly scalable and distributed across all locations that run on Azure. It is offered as a platform as a service (PAAS) from Azure and you can develop databases that have a very high throughput and very low latency. Using Azure Cosmos DB, customers can replicate their data across multiple locations across the globe and also across multiple locations within the same region. This makes Cosmos DB a highly available database service with almost 99.999% availability for reads and writes for multi-region modes and almost 99.99% availability for single-region modes.

In this article, we will focus more on how Azure Cosmos DB works behind the scenes and how can you get started with it using the Azure Portal. We will also explore how Cosmos DB is priced and understand the pricing model in detail.

How Azure Cosmos DB works

As already mentioned, Azure Cosmos DB is a multi-modal NoSQL database service that is geographically distributed across multiple Azure locations. This helps customers to deploy the databases across multiple locations around the globe. This is beneficial as it helps to reduce the read latency when the users use the application.

As you can see in the figure above, Azure Cosmos DB is distributed across the globe. Let’s suppose you have a web application that is hosted in India. In that case, the NoSQL database in India will be considered as the master database for writes and all the other databases can be considered as a read replicas. Whenever new data is generated, it is written to the database in India first and then it is synchronized with the other databases.

Consistency Levels

While maintaining data over multiple regions, the most common challenge is the latency as when the data is made available to the other databases. For example, when data is written to the database in India, users from India will be able to see that data sooner than users from the US. This is due to the latency in synchronization between the two regions. In order to overcome this, there are a few modes that customers can choose from and define how often or how soon they want their data to be made available in the other regions. Azure Cosmos DB offers five levels of consistency which are as follows:

  • Strong
  • Bounded staleness
  • Session
  • Consistent prefix
  • Eventual

In most common NoSQL databases, there are only two levels – Strong and EventualStrong being the most consistent level while Eventual is the least. However, as we move from Strong to Eventual, consistency decreases but availability and throughput increase. This is a trade-off that customers need to decide based on the criticality of their applications. If you want to read in more detail about the consistency levels, the official guide from Microsoft is the easiest to understand. You can refer to it here.

Azure Cosmos DB Pricing Model

Now that we have some idea about working with the NoSQL database – Azure Cosmos DB on Azure, let us try to understand how the database is priced. In order to work with any cloud-based services, it is essential that you have a sound knowledge of how the services are charged, otherwise, you might end up paying something much higher than your expectations.

If you browse to the pricing page of Azure Cosmos DB, you can see that there are two modes in which the database services are billed.

  • Database Operations – Whenever you execute or run queries against your NoSQL database, there are some resources being used. Azure terms these usages in terms of Request Units or RU. The amount of RU consumed per second is aggregated and billed
  • Consumed Storage – As you start storing data in your database, it will take up some space in order to store that data. This storage is billed per the standard SSD-based storage across any Azure locations globally

Let’s learn about this in more detail.

#azure #azure cosmos db #nosql #azure #nosql in azure #azure cosmos db

Nat  Kutch

Nat Kutch

1595494260

NET Core app using Docker, Azure DevOps, Azure Container Registry

This is a guide on how to use Azure DevOps to build and then publish a docker image as an Azure App Service, using Azure Container Registry.

Prerequisites

This guide assumes basic knowledge in Docker and more specifically how to create a Dockerfile. This docker cheat sheet provides a ready Dockerfile with explanations, plus an easy way to create your own Dockerfile from within Visual Studio. The guide also requires an account on Azure and Azure DevOps. The code is hosted in Azure DevOps, but almost any -accessible from Azure DevOps- version control system will do.

In the process that follows, we setup three things mainly; An Azure Container Registry to hold the Docker Image, an Azure DevOps Pipeline to build and push the image to the registry, and and Azure App Service that will continuously pull the image from the registry.

Steps to setup Azure Container Registry

In order to setup an Azure Container Registry, you will of course need to visit portal.azure.com first. After signing in, follow the next three steps to setup and configure Azure Container Registry correctly:

Step 1

Use the convenient search bar on top to search for “Container Registry“. Once the results are in, click on the left side on the “Container Registry” result, as shown here:

Azure Container Registry - Search

Step 2

Once you clicked on the correct result, the “Create Container Registry” form will appear and a few selections have to be made. The minimum changes required here, are to select the Subscription and Resource group you wish (you can also create a new recourse), and to write the Registry name you prefer. Change the Location and SKU if needed and click Create once done.

Azure Container Registry - Create

The Registry name is part of the Login Server for your Azure Container Registry. In this example it will be registryaspnetcoredockerdemo.azurecr.io.

Step 3

Enable the Admin user for this Container Registry. Although the admin account is designed for a single user to access the registry, mainly for testing purposes, in order to be able to use the current registry from an App Service and select image source and Continuous Deployment, the Admin user must be enabled. Find this resource and go to Access Keys to enable the Admin user, as shown below:

Azure Container Registry - Enable Admin User

Read more information about the Admin Account in Microsoft Docs

#azure #docker #azure app service #azure devops #devops

Ruthie  Bugala

Ruthie Bugala

1620435660

How to set up Azure Data Sync between Azure SQL databases and on-premises SQL Server

In this article, you learn how to set up Azure Data Sync services. In addition, you will also learn how to create and set up a data sync group between Azure SQL database and on-premises SQL Server.

In this article, you will see:

  • Overview of Azure SQL Data Sync feature
  • Discuss key components
  • Comparison between Azure SQL Data sync with the other Azure Data option
  • Setup Azure SQL Data Sync
  • More…

Azure Data Sync

Azure Data Sync —a synchronization service set up on an Azure SQL Database. This service synchronizes the data across multiple SQL databases. You can set up bi-directional data synchronization where data ingest and egest process happens between the SQL databases—It can be between Azure SQL database and on-premises and/or within the cloud Azure SQL database. At this moment, the only limitation is that it will not support Azure SQL Managed Instance.

#azure #sql azure #azure sql #azure data sync #azure sql #sql server