What is Tokenlon Network Token (LON) | What is LON token

What Is Tokenlon Network Token (LON)?

LON is a utility token that aligns ecosystem stakeholders and incentivize the expansion of the ecosystem.

Who Are the Founders of LON?

Tokenlon is a decentralized exchange and payment settlement protocol based on Ethereum blockchain technology. It currently powers Tokenlon DEX, a decentralized exchange and payment settlement protocol which aims to provide a secure, reliable and seamless trading experience to the masses.

What Makes LON Unique?

LON tokens have the following two main use cases:

Fee discount: Tokenlon currently charges a standard 0.30% fee for most transactions. By holding LON, users can get corresponding fee discounts based on the number of tokens held.

Governance: LON will give the community the right to participate in the governance of Tokenlon. LON holders can improve Tokenlon by initiating Tokenlon Improvement Proposal (TIP) proposals and voting, such as determining the use of the treasury, fee parameters, buyback parameters, supporting assets, product features, etc.

How Many Tokenlon Network Token (LON) Are There in Circulation?

There was around 110 million LON in circulation as of December 2020. The maximum supply is set at 200 million LON.

How Is the Tokenlon Network Token Secured?

The full smart contract code of Tokenlon and the LON token itself can be found verified on-chain. Use for example Etherscan to read the code:

https://etherscan.io/address/0xdc6c91b569c98f9f6f74d90f9beff99fdaf4248b#code

https://etherscan.io/address/0x8d90113a1e286a5ab3e496fbd1853f265e5913c6#code

https://etherscan.io/address/0x11be6f5520fee8e867e20af9c9d2c8a09b909b83#code

https://etherscan.io/address/0x0000000000095413afc295d19edeb1ad7b71c952#code

whyWhy LON?

Competitive rates

Aggregates quotes from multiple liquidity market to offer the best rate

Trusted by many

$4B+ accumulated volume

It just works

Trades rarely fails with a 99.8% success rate

LON maximum supply: 200,000,000

Incentive Plan: 130,000,000

Buyback: Fees charged by the Tokenlon protocol will be used to buyback LON on the open market, and the LON obtained from the buyback will be used for staking rewards and treasury reserves

LON distributionCommunity reward: 130,000,000

Core team: 49,680,000

Stakeholders: 10,320,000

Development fund: 10,000,000

System Architecture

Currently, it’s hard to find the best price as liquidity is fragmented over the whole DEX market. Tokenlon solves this by aggregating multiple liquidity sources, including professional market makers off-chain and automatic market makers (such as Uniswap, Curve) on-chain, automatically selecting the best trading venue for the user.

System Architecture

Economic Mechanisms

Buybacks

The net fees collected by Tokenlon are used to buyback LON on the open market, and transferred to the treasury and staking reward pool.

Staking

LON holders enjoy fee discounts and governance rights by participating in the staking. In return, the stakers receive LON as staking reward.

Mining

As long as the total LON is within the maximum cap, each buyback triggers LON mint, which is used as rewards in the Tokenlon Incentive Plan.

Treasury

LON is held in the treasury pool governed by the community, used to develop and promote the development of the Tokenlon ecosystem.

Governance

Tokenlon’s governance is opened in stages with decision-making power gradually handed over to the community. Participate on Snapshot.

Would you like to earn LON right now! ☞ CLICK HERE

Looking for more information…

☞ Website
☞ Explorer
☞ Whitepaper
☞ Source Code
Message Board
☞ Documentation
☞ Coinmarketcap

Create an Account and Trade Cryptocurrency NOW

Binance
Bittrex
Poloniex

Thank for visiting and reading this article! I’m highly appreciate your actions! Please share if you liked it!

#blockchain #bitcoin #crypto #tokenlon network token #lon

What is GEEK

Buddha Community

What is Tokenlon Network Token (LON) | What is LON token

What is Tokenlon Network Token (LON) | What is LON token

What Is Tokenlon Network Token (LON)?

LON is a utility token that aligns ecosystem stakeholders and incentivize the expansion of the ecosystem.

Who Are the Founders of LON?

Tokenlon is a decentralized exchange and payment settlement protocol based on Ethereum blockchain technology. It currently powers Tokenlon DEX, a decentralized exchange and payment settlement protocol which aims to provide a secure, reliable and seamless trading experience to the masses.

What Makes LON Unique?

LON tokens have the following two main use cases:

Fee discount: Tokenlon currently charges a standard 0.30% fee for most transactions. By holding LON, users can get corresponding fee discounts based on the number of tokens held.

Governance: LON will give the community the right to participate in the governance of Tokenlon. LON holders can improve Tokenlon by initiating Tokenlon Improvement Proposal (TIP) proposals and voting, such as determining the use of the treasury, fee parameters, buyback parameters, supporting assets, product features, etc.

How Many Tokenlon Network Token (LON) Are There in Circulation?

There was around 110 million LON in circulation as of December 2020. The maximum supply is set at 200 million LON.

How Is the Tokenlon Network Token Secured?

The full smart contract code of Tokenlon and the LON token itself can be found verified on-chain. Use for example Etherscan to read the code:

https://etherscan.io/address/0xdc6c91b569c98f9f6f74d90f9beff99fdaf4248b#code

https://etherscan.io/address/0x8d90113a1e286a5ab3e496fbd1853f265e5913c6#code

https://etherscan.io/address/0x11be6f5520fee8e867e20af9c9d2c8a09b909b83#code

https://etherscan.io/address/0x0000000000095413afc295d19edeb1ad7b71c952#code

whyWhy LON?

Competitive rates

Aggregates quotes from multiple liquidity market to offer the best rate

Trusted by many

$4B+ accumulated volume

It just works

Trades rarely fails with a 99.8% success rate

LON maximum supply: 200,000,000

Incentive Plan: 130,000,000

Buyback: Fees charged by the Tokenlon protocol will be used to buyback LON on the open market, and the LON obtained from the buyback will be used for staking rewards and treasury reserves

LON distributionCommunity reward: 130,000,000

Core team: 49,680,000

Stakeholders: 10,320,000

Development fund: 10,000,000

System Architecture

Currently, it’s hard to find the best price as liquidity is fragmented over the whole DEX market. Tokenlon solves this by aggregating multiple liquidity sources, including professional market makers off-chain and automatic market makers (such as Uniswap, Curve) on-chain, automatically selecting the best trading venue for the user.

System Architecture

Economic Mechanisms

Buybacks

The net fees collected by Tokenlon are used to buyback LON on the open market, and transferred to the treasury and staking reward pool.

Staking

LON holders enjoy fee discounts and governance rights by participating in the staking. In return, the stakers receive LON as staking reward.

Mining

As long as the total LON is within the maximum cap, each buyback triggers LON mint, which is used as rewards in the Tokenlon Incentive Plan.

Treasury

LON is held in the treasury pool governed by the community, used to develop and promote the development of the Tokenlon ecosystem.

Governance

Tokenlon’s governance is opened in stages with decision-making power gradually handed over to the community. Participate on Snapshot.

Would you like to earn LON right now! ☞ CLICK HERE

Looking for more information…

☞ Website
☞ Explorer
☞ Whitepaper
☞ Source Code
Message Board
☞ Documentation
☞ Coinmarketcap

Create an Account and Trade Cryptocurrency NOW

Binance
Bittrex
Poloniex

Thank for visiting and reading this article! I’m highly appreciate your actions! Please share if you liked it!

#blockchain #bitcoin #crypto #tokenlon network token #lon

Royce  Reinger

Royce Reinger

1658068560

WordsCounted: A Ruby Natural Language Processor

WordsCounted

We are all in the gutter, but some of us are looking at the stars.

-- Oscar Wilde

WordsCounted is a Ruby NLP (natural language processor). WordsCounted lets you implement powerful tokensation strategies with a very flexible tokeniser class.

Features

  • Out of the box, get the following data from any string or readable file, or URL:
    • Token count and unique token count
    • Token densities, frequencies, and lengths
    • Char count and average chars per token
    • The longest tokens and their lengths
    • The most frequent tokens and their frequencies.
  • A flexible way to exclude tokens from the tokeniser. You can pass a string, regexp, symbol, lambda, or an array of any combination of those types for powerful tokenisation strategies.
  • Pass your own regexp rules to the tokeniser if you prefer. The default regexp filters special characters but keeps hyphens and apostrophes. It also plays nicely with diacritics (UTF and unicode characters): Bayrūt is treated as ["Bayrūt"] and not ["Bayr", "ū", "t"], for example.
  • Opens and reads files. Pass in a file path or a url instead of a string.

Installation

Add this line to your application's Gemfile:

gem 'words_counted'

And then execute:

$ bundle

Or install it yourself as:

$ gem install words_counted

Usage

Pass in a string or a file path, and an optional filter and/or regexp.

counter = WordsCounted.count(
  "We are all in the gutter, but some of us are looking at the stars."
)

# Using a file
counter = WordsCounted.from_file("path/or/url/to/my/file.txt")

.count and .from_file are convenience methods that take an input, tokenise it, and return an instance of WordsCounted::Counter initialized with the tokens. The WordsCounted::Tokeniser and WordsCounted::Counter classes can be used alone, however.

API

WordsCounted

WordsCounted.count(input, options = {})

Tokenises input and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.count("Hello Beirut!")

Accepts two options: exclude and regexp. See Excluding tokens from the analyser and Passing in a custom regexp respectively.

WordsCounted.from_file(path, options = {})

Reads and tokenises a file, and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.from_file("hello_beirut.txt")

Accepts the same options as .count.

Tokeniser

The tokeniser allows you to tokenise text in a variety of ways. You can pass in your own rules for tokenisation, and apply a powerful filter with any combination of rules as long as they can boil down into a lambda.

Out of the box the tokeniser includes only alpha chars. Hyphenated tokens and tokens with apostrophes are considered a single token.

#tokenise([pattern: TOKEN_REGEXP, exclude: nil])

tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise

# With `exclude`
tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise(exclude: "hello")

# With `pattern`
tokeniser = WordsCounted::Tokeniser.new("I <3 Beirut!").tokenise(pattern: /[a-z]/i)

See Excluding tokens from the analyser and Passing in a custom regexp for more information.

Counter

The WordsCounted::Counter class allows you to collect various statistics from an array of tokens.

#token_count

Returns the token count of a given string.

counter.token_count #=> 15

#token_frequency

Returns a sorted (unstable) two-dimensional array where each element is a token and its frequency. The array is sorted by frequency in descending order.

counter.token_frequency

[
  ["the", 2],
  ["are", 2],
  ["we",  1],
  # ...
  ["all", 1]
]

#most_frequent_tokens

Returns a hash where each key-value pair is a token and its frequency.

counter.most_frequent_tokens

{ "are" => 2, "the" => 2 }

#token_lengths

Returns a sorted (unstable) two-dimentional array where each element contains a token and its length. The array is sorted by length in descending order.

counter.token_lengths

[
  ["looking", 7],
  ["gutter",  6],
  ["stars",   5],
  # ...
  ["in",      2]
]

#longest_tokens

Returns a hash where each key-value pair is a token and its length.

counter.longest_tokens

{ "looking" => 7 }

#token_density([ precision: 2 ])

Returns a sorted (unstable) two-dimentional array where each element contains a token and its density as a float, rounded to a precision of two. The array is sorted by density in descending order. It accepts a precision argument, which must be a float.

counter.token_density

[
  ["are",     0.13],
  ["the",     0.13],
  ["but",     0.07 ],
  # ...
  ["we",      0.07 ]
]

#char_count

Returns the char count of tokens.

counter.char_count #=> 76

#average_chars_per_token([ precision: 2 ])

Returns the average char count per token rounded to two decimal places. Accepts a precision argument which defaults to two. Precision must be a float.

counter.average_chars_per_token #=> 4

#uniq_token_count

Returns the number of unique tokens.

counter.uniq_token_count #=> 13

Excluding tokens from the tokeniser

You can exclude anything you want from the input by passing the exclude option. The exclude option accepts a variety of filters and is extremely flexible.

  1. A space-delimited string. The filter will normalise the string.
  2. A regular expression.
  3. A lambda.
  4. A symbol that names a predicate method. For example :odd?.
  5. An array of any combination of the above.
tokeniser =
  WordsCounted::Tokeniser.new(
    "Magnificent! That was magnificent, Trevor."
  )

# Using a string
tokeniser.tokenise(exclude: "was magnificent")
# => ["that", "trevor"]

# Using a regular expression
tokeniser.tokenise(exclude: /trevor/)
# => ["magnificent", "that", "was", "magnificent"]

# Using a lambda
tokeniser.tokenise(exclude: ->(t) { t.length < 4 })
# => ["magnificent", "that", "magnificent", "trevor"]

# Using symbol
tokeniser = WordsCounted::Tokeniser.new("Hello! محمد")
tokeniser.tokenise(exclude: :ascii_only?)
# => ["محمد"]

# Using an array
tokeniser = WordsCounted::Tokeniser.new(
  "Hello! اسماءنا هي محمد، كارولينا، سامي، وداني"
)
tokeniser.tokenise(
  exclude: [:ascii_only?, /محمد/, ->(t) { t.length > 6}, "و"]
)
# => ["هي", "سامي", "وداني"]

Passing in a custom regexp

The default regexp accounts for letters, hyphenated tokens, and apostrophes. This means twenty-one is treated as one token. So is Mohamad's.

/[\p{Alpha}\-']+/

You can pass your own criteria as a Ruby regular expression to split your string as desired.

For example, if you wanted to include numbers, you can override the regular expression:

counter = WordsCounted.count("Numbers 1, 2, and 3", pattern: /[\p{Alnum}\-']+/)
counter.tokens
#=> ["numbers", "1", "2", "and", "3"]

Opening and reading files

Use the from_file method to open files. from_file accepts the same options as .count. The file path can be a URL.

counter = WordsCounted.from_file("url/or/path/to/file.text")

Gotchas

A hyphen used in leu of an em or en dash will form part of the token. This affects the tokeniser algorithm.

counter = WordsCounted.count("How do you do?-you are well, I see.")
counter.token_frequency

[
  ["do",   2],
  ["how",  1],
  ["you",  1],
  ["-you", 1], # WTF, mate!
  ["are",  1],
  # ...
]

In this example -you and you are separate tokens. Also, the tokeniser does not include numbers by default. Remember that you can pass your own regular expression if the default behaviour does not fit your needs.

A note on case sensitivity

The program will normalise (downcase) all incoming strings for consistency and filters.

Roadmap

Ability to open URLs

def self.from_url
  # open url and send string here after removing html
end

Are you using WordsCounted to do something interesting? Please tell me about it.

Gem Version 

RubyDoc documentation.

Demo

Visit this website for one example of what you can do with WordsCounted.


Contributors

See contributors.

Contributing

  1. Fork it
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Add some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create new Pull Request

Author: Abitdodgy
Source Code: https://github.com/abitdodgy/words_counted 
License: MIT license

#ruby #nlp 

Words Counted: A Ruby Natural Language Processor.

WordsCounted

We are all in the gutter, but some of us are looking at the stars.

-- Oscar Wilde

WordsCounted is a Ruby NLP (natural language processor). WordsCounted lets you implement powerful tokensation strategies with a very flexible tokeniser class.

Are you using WordsCounted to do something interesting? Please tell me about it.

 

Demo

Visit this website for one example of what you can do with WordsCounted.

Features

  • Out of the box, get the following data from any string or readable file, or URL:
    • Token count and unique token count
    • Token densities, frequencies, and lengths
    • Char count and average chars per token
    • The longest tokens and their lengths
    • The most frequent tokens and their frequencies.
  • A flexible way to exclude tokens from the tokeniser. You can pass a string, regexp, symbol, lambda, or an array of any combination of those types for powerful tokenisation strategies.
  • Pass your own regexp rules to the tokeniser if you prefer. The default regexp filters special characters but keeps hyphens and apostrophes. It also plays nicely with diacritics (UTF and unicode characters): Bayrūt is treated as ["Bayrūt"] and not ["Bayr", "ū", "t"], for example.
  • Opens and reads files. Pass in a file path or a url instead of a string.

Installation

Add this line to your application's Gemfile:

gem 'words_counted'

And then execute:

$ bundle

Or install it yourself as:

$ gem install words_counted

Usage

Pass in a string or a file path, and an optional filter and/or regexp.

counter = WordsCounted.count(
  "We are all in the gutter, but some of us are looking at the stars."
)

# Using a file
counter = WordsCounted.from_file("path/or/url/to/my/file.txt")

.count and .from_file are convenience methods that take an input, tokenise it, and return an instance of WordsCounted::Counter initialized with the tokens. The WordsCounted::Tokeniser and WordsCounted::Counter classes can be used alone, however.

API

WordsCounted

WordsCounted.count(input, options = {})

Tokenises input and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.count("Hello Beirut!")

Accepts two options: exclude and regexp. See Excluding tokens from the analyser and Passing in a custom regexp respectively.

WordsCounted.from_file(path, options = {})

Reads and tokenises a file, and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.from_file("hello_beirut.txt")

Accepts the same options as .count.

Tokeniser

The tokeniser allows you to tokenise text in a variety of ways. You can pass in your own rules for tokenisation, and apply a powerful filter with any combination of rules as long as they can boil down into a lambda.

Out of the box the tokeniser includes only alpha chars. Hyphenated tokens and tokens with apostrophes are considered a single token.

#tokenise([pattern: TOKEN_REGEXP, exclude: nil])

tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise

# With `exclude`
tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise(exclude: "hello")

# With `pattern`
tokeniser = WordsCounted::Tokeniser.new("I <3 Beirut!").tokenise(pattern: /[a-z]/i)

See Excluding tokens from the analyser and Passing in a custom regexp for more information.

Counter

The WordsCounted::Counter class allows you to collect various statistics from an array of tokens.

#token_count

Returns the token count of a given string.

counter.token_count #=> 15

#token_frequency

Returns a sorted (unstable) two-dimensional array where each element is a token and its frequency. The array is sorted by frequency in descending order.

counter.token_frequency

[
  ["the", 2],
  ["are", 2],
  ["we",  1],
  # ...
  ["all", 1]
]

#most_frequent_tokens

Returns a hash where each key-value pair is a token and its frequency.

counter.most_frequent_tokens

{ "are" => 2, "the" => 2 }

#token_lengths

Returns a sorted (unstable) two-dimentional array where each element contains a token and its length. The array is sorted by length in descending order.

counter.token_lengths

[
  ["looking", 7],
  ["gutter",  6],
  ["stars",   5],
  # ...
  ["in",      2]
]

#longest_tokens

Returns a hash where each key-value pair is a token and its length.

counter.longest_tokens

{ "looking" => 7 }

#token_density([ precision: 2 ])

Returns a sorted (unstable) two-dimentional array where each element contains a token and its density as a float, rounded to a precision of two. The array is sorted by density in descending order. It accepts a precision argument, which must be a float.

counter.token_density

[
  ["are",     0.13],
  ["the",     0.13],
  ["but",     0.07 ],
  # ...
  ["we",      0.07 ]
]

#char_count

Returns the char count of tokens.

counter.char_count #=> 76

#average_chars_per_token([ precision: 2 ])

Returns the average char count per token rounded to two decimal places. Accepts a precision argument which defaults to two. Precision must be a float.

counter.average_chars_per_token #=> 4

#uniq_token_count

Returns the number of unique tokens.

counter.uniq_token_count #=> 13

Excluding tokens from the tokeniser

You can exclude anything you want from the input by passing the exclude option. The exclude option accepts a variety of filters and is extremely flexible.

  1. A space-delimited string. The filter will normalise the string.
  2. A regular expression.
  3. A lambda.
  4. A symbol that names a predicate method. For example :odd?.
  5. An array of any combination of the above.
tokeniser =
  WordsCounted::Tokeniser.new(
    "Magnificent! That was magnificent, Trevor."
  )

# Using a string
tokeniser.tokenise(exclude: "was magnificent")
# => ["that", "trevor"]

# Using a regular expression
tokeniser.tokenise(exclude: /trevor/)
# => ["magnificent", "that", "was", "magnificent"]

# Using a lambda
tokeniser.tokenise(exclude: ->(t) { t.length < 4 })
# => ["magnificent", "that", "magnificent", "trevor"]

# Using symbol
tokeniser = WordsCounted::Tokeniser.new("Hello! محمد")
tokeniser.tokenise(exclude: :ascii_only?)
# => ["محمد"]

# Using an array
tokeniser = WordsCounted::Tokeniser.new(
  "Hello! اسماءنا هي محمد، كارولينا، سامي، وداني"
)
tokeniser.tokenise(
  exclude: [:ascii_only?, /محمد/, ->(t) { t.length > 6}, "و"]
)
# => ["هي", "سامي", "وداني"]

Passing in a custom regexp

The default regexp accounts for letters, hyphenated tokens, and apostrophes. This means twenty-one is treated as one token. So is Mohamad's.

/[\p{Alpha}\-']+/

You can pass your own criteria as a Ruby regular expression to split your string as desired.

For example, if you wanted to include numbers, you can override the regular expression:

counter = WordsCounted.count("Numbers 1, 2, and 3", pattern: /[\p{Alnum}\-']+/)
counter.tokens
#=> ["numbers", "1", "2", "and", "3"]

Opening and reading files

Use the from_file method to open files. from_file accepts the same options as .count. The file path can be a URL.

counter = WordsCounted.from_file("url/or/path/to/file.text")

Gotchas

A hyphen used in leu of an em or en dash will form part of the token. This affects the tokeniser algorithm.

counter = WordsCounted.count("How do you do?-you are well, I see.")
counter.token_frequency

[
  ["do",   2],
  ["how",  1],
  ["you",  1],
  ["-you", 1], # WTF, mate!
  ["are",  1],
  # ...
]

In this example -you and you are separate tokens. Also, the tokeniser does not include numbers by default. Remember that you can pass your own regular expression if the default behaviour does not fit your needs.

A note on case sensitivity

The program will normalise (downcase) all incoming strings for consistency and filters.

Roadmap

Ability to open URLs

def self.from_url
  # open url and send string here after removing html
end

Contributors

See contributors.

Contributing

  1. Fork it
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Add some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create new Pull Request

Author: abitdodgy
Source code: https://github.com/abitdodgy/words_counted
License: MIT license

#ruby  #ruby-on-rails 

Lisa joly

Lisa joly

1624658400

PAID NETWORK Review, Is it worth Investing in? Token Sale Coming Soon !!

Hey guys, in this video I review PAID NETWORK. This is a DeFi project that aims to solve complex legal process using decentralised protocols and DeFi products for 2021.

PAID Network is an ecosystem DAPP that leverages blockchain technology to deliver DeFi powered SMART Agreements to make business exponentially more efficient. We allow users to create their own policy, to ensure they Get PAID.

📺 The video in this post was made by Crypto expat
The origin of the article: https://www.youtube.com/watch?v=ZIU5javfL90
🔺 DISCLAIMER: The article is for information sharing. The content of this video is solely the opinions of the speaker who is not a licensed financial advisor or registered investment advisor. Not investment advice or legal advice.
Cryptocurrency trading is VERY risky. Make sure you understand these risks and that you are responsible for what you do with your money
🔥 If you’re a beginner. I believe the article below will be useful to you ☞ What You Should Know Before Investing in Cryptocurrency - For Beginner
⭐ ⭐ ⭐The project is of interest to the community. Join to Get free ‘GEEK coin’ (GEEKCASH coin)!
☞ **-----CLICK HERE-----**⭐ ⭐ ⭐
Thanks for visiting and watching! Please don’t forget to leave a like, comment and share!

#bitcoin #blockchain #paid network #paid network review #token sale #paid network review, is it worth investing in? token sale coming soon !!

aaron silva

aaron silva

1622197808

SafeMoon Clone | Create A DeFi Token Like SafeMoon | DeFi token like SafeMoon

SafeMoon is a decentralized finance (DeFi) token. This token consists of RFI tokenomics and auto-liquidity generating protocol. A DeFi token like SafeMoon has reached the mainstream standards under the Binance Smart Chain. Its success and popularity have been immense, thus, making the majority of the business firms adopt this style of cryptocurrency as an alternative.

A DeFi token like SafeMoon is almost similar to the other crypto-token, but the only difference being that it charges a 10% transaction fee from the users who sell their tokens, in which 5% of the fee is distributed to the remaining SafeMoon owners. This feature rewards the owners for holding onto their tokens.

Read More @ https://bit.ly/3oFbJoJ

#create a defi token like safemoon #defi token like safemoon #safemoon token #safemoon token clone #defi token