Using a Team Game for Richer Retrospectives

Games can bring freshness to retrospectives and enable rich discussions about how things are going. Patterns emerging from the discussions provide insight into the team’s strengths and weaknesses. Considerate coaching or facilitation can allow everyone to contribute.

Laurence Wood spoke about playing the richer retrospective game at an online agile lean coffee for World Retrospective Day, organized by Aginext and the Digital Leadership Meetup.

To play the richer retrospectives team game, teams or groups can gather around a table or near a wall, or use breakout rooms using things like Zoom. They take turns reading out a card that has a statement to make them think about how effective they are compared to how they want to be. Wood explained that you will see people chatting and perhaps disagreeing on how well things are really going. Then you will see them reaching a consensus before placing a card and moving onto the next challenge.

Eventually, you can see the patterns emerging in each team as their answers take shape on the wall or table. According to Wood, these patterns can create a valuable portfolio view of strengths that teams can use to provide insight elsewhere and of weaknesses that they can decide if and how to help strengthen.

People in agile spaces are used to the idea that games help us to learn or to explore important topic areas. They do not always suit everyone but considerate coaching or facilitation usually allow everyone to contribute in their chosen way. Senior management and/or people outside of agile are less used to the idea and can be sceptical if games look too trivial. According to Wood, facilitation is important here to ensure that everyone knows why we are using a game. It may sometimes be better to be referred to as an activity or workshop than simply a game.

InfoQ interviewed Laurence Wood about playing games in agile retrospectives.

InfoQ: What kind of statements are on the cards from the richer retrospectives team game?

Laurence Wood: The statements vary widely and range from simple, generic aspects such as “We are a happy team” which could be asked of any team, to agile-specifics such as “We are proud of the burn-up/burn-down on our team wall”. The words have been carefully chosen and refined over a few years’ use.

The idea is that some statements are a good starting point for engaging any team in continual improvement. Perhaps they are considering trying agile for the first time. Other cards are designed to make even the most mature of agile teams really think about improving even more. You progress at the rate you decide fits your way of working.

Instructions are included to facilitate a fast start, but I like to see teams find different ways of using the cards to suit their context. They may eventually add or adjust cards if that is most appropriate.

InfoQ: What should we give attention to when facilitating games?

Wood: I think the key thing is to keep an eye on everyone to see their level of engagement. A game is usually a tool to help us engage people to then think more deeply about a topic or challenge. So we need to change pace or change direction if people are not engaged. Also, it’s good to be brave and let things go in a new and perhaps unexpected direction. These sessions can be the most valuable.

InfoQ: What benefits can playing games bring to agile retrospectives?

Wood: Games can bring freshness to retrospectives that teams tell me can become dull after time. The richer retrospectives team game always creates rich conversations about improvement and people tell me it helps them to think more broadly and more deeply about the specifics of getting better.

Great teams still need to improve or else they can slip backwards, and a game provides an acceptable setting for colleagues to challenge each other more. They can demand more of each other in a game context because the risk of upsetting one another during necessary criticism is greatly reduced.

#agile conferences #gamification #retrospectives #aginext.io london #facilitation #game #culture & methods #news

What is GEEK

Buddha Community

Using a Team Game for Richer Retrospectives
Chloe  Butler

Chloe Butler

1667425440

Pdf2gerb: Perl Script Converts PDF Files to Gerber format

pdf2gerb

Perl script converts PDF files to Gerber format

Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.

The general workflow is as follows:

  1. Design the PCB using your favorite CAD or drawing software.
  2. Print the top and bottom copper and top silk screen layers to a PDF file.
  3. Run Pdf2Gerb on the PDFs to create Gerber and Excellon files.
  4. Use a Gerber viewer to double-check the output against the original PCB design.
  5. Make adjustments as needed.
  6. Submit the files to a PCB manufacturer.

Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).

See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.


pdf2gerb_cfg.pm

#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;

use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)


##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file

use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call

#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software.  \nGerber files MAY CONTAIN ERRORS.  Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG

use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC

use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)

#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1); 

#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
    .010, -.001,  #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
    .031, -.014,  #used for vias
    .041, -.020,  #smallest non-filled plated hole
    .051, -.025,
    .056, -.029,  #useful for IC pins
    .070, -.033,
    .075, -.040,  #heavier leads
#    .090, -.043,  #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
    .100, -.046,
    .115, -.052,
    .130, -.061,
    .140, -.067,
    .150, -.079,
    .175, -.088,
    .190, -.093,
    .200, -.100,
    .220, -.110,
    .160, -.125,  #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
    .090, -.040,  #want a .090 pad option, but use dummy hole size
    .065, -.040, #.065 x .065 rect pad
    .035, -.040, #.035 x .065 rect pad
#traces:
    .001,  #too thin for real traces; use only for board outlines
    .006,  #minimum real trace width; mainly used for text
    .008,  #mainly used for mid-sized text, not traces
    .010,  #minimum recommended trace width for low-current signals
    .012,
    .015,  #moderate low-voltage current
    .020,  #heavier trace for power, ground (even if a lighter one is adequate)
    .025,
    .030,  #heavy-current traces; be careful with these ones!
    .040,
    .050,
    .060,
    .080,
    .100,
    .120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);

#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size:   parsed PDF diameter:      error:
#  .014                .016                +.002
#  .020                .02267              +.00267
#  .025                .026                +.001
#  .029                .03167              +.00267
#  .033                .036                +.003
#  .040                .04267              +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
    HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
    RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
    SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
    RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
    TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
    REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};

#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
    CIRCLE_ADJUST_MINX => 0,
    CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
    CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
    CIRCLE_ADJUST_MAXY => 0,
    SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
    WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
    RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};

#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches

#line join/cap styles:
use constant
{
    CAP_NONE => 0, #butt (none); line is exact length
    CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
    CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
    CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
    
#number of elements in each shape type:
use constant
{
    RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
    LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
    CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
    CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
    rect => RECT_SHAPELEN,
    line => LINE_SHAPELEN,
    curve => CURVE_SHAPELEN,
    circle => CIRCLE_SHAPELEN,
);

#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions

# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?

#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes. 
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes

#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches

# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)

# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time

# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const

use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool

my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time

print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load


#############################################################################################
#junk/experiment:

#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html

#my $caller = "pdf2gerb::";

#sub cfg
#{
#    my $proto = shift;
#    my $class = ref($proto) || $proto;
#    my $settings =
#    {
#        $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
#    };
#    bless($settings, $class);
#    return $settings;
#}

#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;

#print STDERR "read cfg file\n";

#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names

#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }

Download Details:

Author: swannman
Source Code: https://github.com/swannman/pdf2gerb

License: GPL-3.0 license

#perl 

Chet  Lubowitz

Chet Lubowitz

1595429220

How to Install Microsoft Teams on Ubuntu 20.04

Microsoft Teams is a communication platform used for Chat, Calling, Meetings, and Collaboration. Generally, it is used by companies and individuals working on projects. However, Microsoft Teams is available for macOS, Windows, and Linux operating systems available now.

In this tutorial, we will show you how to install Microsoft Teams on Ubuntu 20.04 machine. By default, Microsoft Teams package is not available in the Ubuntu default repository. However we will show you 2 methods to install Teams by downloading the Debian package from their official website, or by adding the Microsoft repository.

Install Microsoft Teams on Ubuntu 20.04

1./ Install Microsoft Teams using Debian installer file

01- First, navigate to teams app downloads page and grab the Debian binary installer. You can simply obtain the URL and pull the binary using wget;

$ VERSION=1.3.00.5153
$ wget https://packages.microsoft.com/repos/ms-teams/pool/main/t/teams/teams_${VERSION}_amd64.deb

#linux #ubuntu #install microsoft teams on ubuntu #install teams ubuntu #microsoft teams #teams #teams download ubuntu #teams install ubuntu #ubuntu install microsoft teams #uninstall teams ubuntu

Lakshya Pareek

Lakshya Pareek

1664775764

How to Create a Successful Gaming App?

How to create a game app is a comprehensive guide, explaining the entire process of creating and publishing games for iOS and Android. Covering all the essential information a budding game developer needs to know.

 

Read More - https://www.brsoftech.com/blog/how-to-create-a-game-app/

 

#game-engine  #game-development  #game  #games  #gaming 

Autumn  Blick

Autumn Blick

1602565700

Game Development with .NET

We’ve launched a new Game Development with .NET section on our site. It’s designed for current .NET developers to explore all the choices available to them when developing games. It’s also designed for new developers trying to learn how to use .NET by making games. We’ve also launched a new game development Learn portal for .NET filled with tutorials, videos, and documentation provided by Microsoft and others in the .NET game development community. Finally, we launched a step-by-step Unity get-started tutorial that will get you started with Unity and writing C## scripts for it in no time. We are excited to show you what .NET has to offer to you when making games. .NET is also part of Microsoft Game Stack, a comprehensive suite of tools and services just for game development.

A picture of a game controller

.NET for game developers

.NET is cross-platform. With .NET you can target over 25+ different platforms with a single code base. You can make games for, but not limited to, Windows, macOS, Linux, Android, iOS, Xbox, PlayStation, Nintendo, and mixed reality devices.

C## is the most popular programming language in game development. The wider .NET community is also big. There is no lack of expertise and support you can find from individuals and user groups, locally or online.

.NET does not just cover building your game. You can also use it to build your game’s website with ASP.NET, your mobile app using Xamarin, and even do remote rendering with Microsoft Azure. Your skills will transfer across the entire game development pipeline.

logos of some gaming platforms supported by .NET

Available game engines

The first step to developing games in .NET is to choose a game engine. You can think of engines as the frameworks and tools you use for developing your game. There are many game engines that use .NET and they differ widely. Some of the engines are commercial and some are completely royalty free and open source. I am excited to see some of them planning to adopt .NET 5 soon. Just choose the engine that better works for you and your game. Would you like to read a blog post to help you learn about .NET game engines, and which one would be best for you?

#.net #.net core #azure #c# #game development #azure #cryengine #game developers #game development #game development with .net #game engines #games #monogame #playfab #stride #unity #visual studio #waveengine

Using a Team Game for Richer Retrospectives

Games can bring freshness to retrospectives and enable rich discussions about how things are going. Patterns emerging from the discussions provide insight into the team’s strengths and weaknesses. Considerate coaching or facilitation can allow everyone to contribute.

Laurence Wood spoke about playing the richer retrospective game at an online agile lean coffee for World Retrospective Day, organized by Aginext and the Digital Leadership Meetup.

To play the richer retrospectives team game, teams or groups can gather around a table or near a wall, or use breakout rooms using things like Zoom. They take turns reading out a card that has a statement to make them think about how effective they are compared to how they want to be. Wood explained that you will see people chatting and perhaps disagreeing on how well things are really going. Then you will see them reaching a consensus before placing a card and moving onto the next challenge.

Eventually, you can see the patterns emerging in each team as their answers take shape on the wall or table. According to Wood, these patterns can create a valuable portfolio view of strengths that teams can use to provide insight elsewhere and of weaknesses that they can decide if and how to help strengthen.

People in agile spaces are used to the idea that games help us to learn or to explore important topic areas. They do not always suit everyone but considerate coaching or facilitation usually allow everyone to contribute in their chosen way. Senior management and/or people outside of agile are less used to the idea and can be sceptical if games look too trivial. According to Wood, facilitation is important here to ensure that everyone knows why we are using a game. It may sometimes be better to be referred to as an activity or workshop than simply a game.

InfoQ interviewed Laurence Wood about playing games in agile retrospectives.

InfoQ: What kind of statements are on the cards from the richer retrospectives team game?

Laurence Wood: The statements vary widely and range from simple, generic aspects such as “We are a happy team” which could be asked of any team, to agile-specifics such as “We are proud of the burn-up/burn-down on our team wall”. The words have been carefully chosen and refined over a few years’ use.

The idea is that some statements are a good starting point for engaging any team in continual improvement. Perhaps they are considering trying agile for the first time. Other cards are designed to make even the most mature of agile teams really think about improving even more. You progress at the rate you decide fits your way of working.

Instructions are included to facilitate a fast start, but I like to see teams find different ways of using the cards to suit their context. They may eventually add or adjust cards if that is most appropriate.

InfoQ: What should we give attention to when facilitating games?

Wood: I think the key thing is to keep an eye on everyone to see their level of engagement. A game is usually a tool to help us engage people to then think more deeply about a topic or challenge. So we need to change pace or change direction if people are not engaged. Also, it’s good to be brave and let things go in a new and perhaps unexpected direction. These sessions can be the most valuable.

InfoQ: What benefits can playing games bring to agile retrospectives?

Wood: Games can bring freshness to retrospectives that teams tell me can become dull after time. The richer retrospectives team game always creates rich conversations about improvement and people tell me it helps them to think more broadly and more deeply about the specifics of getting better.

Great teams still need to improve or else they can slip backwards, and a game provides an acceptable setting for colleagues to challenge each other more. They can demand more of each other in a game context because the risk of upsetting one another during necessary criticism is greatly reduced.

#agile conferences #gamification #retrospectives #aginext.io london #facilitation #game #culture & methods #news