Hello World Scala in the Cloud With Spring

In this tutorial, we are going to look at Scala using Spring MVC and MongoDB.

The first step is a Maven project and adds the following content to your Maven POM file. The easiest way to bootstrap a Spring Boot Maven project is by using Spring Initializer.

The next step is to set the Scala dependency in the pom.xml:

 <dependencies>

        ...
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>2.13.3</version>
        </dependency>
    </dependencies>
     <build>
        <finalName>spring-scala-mongodb</finalName>
        <plugins>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>4.4.0</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>

If you want to run MongoDB locally, a good option might be Docker, which you can run with the command below:

docker run -d --name mongodb-instance -p 27017:27017 mongo

In this project, we’ll create a sample that will handle a user in its respective client. The first step is to create the entity class, in this sample, a User class.

import org.springframework.data.annotation.Id
import org.springframework.data.mongodb.core.mapping.Document
import scala.annotation.meta.field
import scala.beans.BeanProperty
@Document class User
(@(Id@field) @BeanProperty var id: String,
 @BeanProperty var name: String,
 @BeanProperty var country: String) {
  def this() = this(null, null, null)
}

The repository interface makes the integration between the Scala application and the MongoDB instance easy:

import org.springframework.data.repository.CrudRepository
import org.springframework.stereotype.Repository
@Repository trait UserRepository extends CrudRepository[User, String]

#java #spring #scala #cloud (add topic) #platform.sh #cloud

What is GEEK

Buddha Community

Hello World Scala in the Cloud With Spring

Enhance Amazon Aurora Read/Write Capability with ShardingSphere-JDBC

1. Introduction

Amazon Aurora is a relational database management system (RDBMS) developed by AWS(Amazon Web Services). Aurora gives you the performance and availability of commercial-grade databases with full MySQL and PostgreSQL compatibility. In terms of high performance, Aurora MySQL and Aurora PostgreSQL have shown an increase in throughput of up to 5X over stock MySQL and 3X over stock PostgreSQL respectively on similar hardware. In terms of scalability, Aurora achieves enhancements and innovations in storage and computing, horizontal and vertical functions.

Aurora supports up to 128TB of storage capacity and supports dynamic scaling of storage layer in units of 10GB. In terms of computing, Aurora supports scalable configurations for multiple read replicas. Each region can have an additional 15 Aurora replicas. In addition, Aurora provides multi-primary architecture to support four read/write nodes. Its Serverless architecture allows vertical scaling and reduces typical latency to under a second, while the Global Database enables a single database cluster to span multiple AWS Regions in low latency.

Aurora already provides great scalability with the growth of user data volume. Can it handle more data and support more concurrent access? You may consider using sharding to support the configuration of multiple underlying Aurora clusters. To this end, a series of blogs, including this one, provides you with a reference in choosing between Proxy and JDBC for sharding.

1.1 Why sharding is needed

AWS Aurora offers a single relational database. Primary-secondary, multi-primary, and global database, and other forms of hosting architecture can satisfy various architectural scenarios above. However, Aurora doesn’t provide direct support for sharding scenarios, and sharding has a variety of forms, such as vertical and horizontal forms. If we want to further increase data capacity, some problems have to be solved, such as cross-node database Join, associated query, distributed transactions, SQL sorting, page turning, function calculation, database global primary key, capacity planning, and secondary capacity expansion after sharding.

1.2 Sharding methods

It is generally accepted that when the capacity of a MySQL table is less than 10 million, the time spent on queries is optimal because at this time the height of its BTREE index is between 3 and 5. Data sharding can reduce the amount of data in a single table and distribute the read and write loads to different data nodes at the same time. Data sharding can be divided into vertical sharding and horizontal sharding.

1. Advantages of vertical sharding

  • Address the coupling of business system and make clearer.
  • Implement hierarchical management, maintenance, monitoring, and expansion to data of different businesses, like micro-service governance.
  • In high concurrency scenarios, vertical sharding removes the bottleneck of IO, database connections, and hardware resources on a single machine to some extent.

2. Disadvantages of vertical sharding

  • After splitting the library, Join can only be implemented by interface aggregation, which will increase the complexity of development.
  • After splitting the library, it is complex to process distributed transactions.
  • There is a large amount of data on a single table and horizontal sharding is required.

3. Advantages of horizontal sharding

  • There is no such performance bottleneck as a large amount of data on a single database and high concurrency, and it increases system stability and load capacity.
  • The business modules do not need to be split due to minor modification on the application client.

4. Disadvantages of horizontal sharding

  • Transaction consistency across shards is hard to be guaranteed;
  • The performance of associated query in cross-library Join is poor.
  • It’s difficult to scale the data many times and maintenance is a big workload.

Based on the analysis above, and the available studis on popular sharding middleware, we selected ShardingSphere, an open source product, combined with Amazon Aurora to introduce how the combination of these two products meets various forms of sharding and how to solve the problems brought by sharding.

ShardingSphere is an open source ecosystem including a set of distributed database middleware solutions, including 3 independent products, Sharding-JDBC, Sharding-Proxy & Sharding-Sidecar.

2. ShardingSphere introduction:

The characteristics of Sharding-JDBC are:

  1. With the client end connecting directly to the database, it provides service in the form of jar and requires no extra deployment and dependence.
  2. It can be considered as an enhanced JDBC driver, which is fully compatible with JDBC and all kinds of ORM frameworks.
  3. Applicable in any ORM framework based on JDBC, such as JPA, Hibernate, Mybatis, Spring JDBC Template or direct use of JDBC.
  4. Support any third-party database connection pool, such as DBCP, C3P0, BoneCP, Druid, HikariCP;
  5. Support any kind of JDBC standard database: MySQL, Oracle, SQLServer, PostgreSQL and any databases accessible to JDBC.
  6. Sharding-JDBC adopts decentralized architecture, applicable to high-performance light-weight OLTP application developed with Java

Hybrid Structure Integrating Sharding-JDBC and Applications

Sharding-JDBC’s core concepts

Data node: The smallest unit of a data slice, consisting of a data source name and a data table, such as ds_0.product_order_0.

Actual table: The physical table that really exists in the horizontal sharding database, such as product order tables: product_order_0, product_order_1, and product_order_2.

Logic table: The logical name of the horizontal sharding databases (tables) with the same schema. For instance, the logic table of the order product_order_0, product_order_1, and product_order_2 is product_order.

Binding table: It refers to the primary table and the joiner table with the same sharding rules. For example, product_order table and product_order_item are sharded by order_id, so they are binding tables with each other. Cartesian product correlation will not appear in the multi-tables correlating query, so the query efficiency will increase greatly.

Broadcast table: It refers to tables that exist in all sharding database sources. The schema and data must consist in each database. It can be applied to the small data volume that needs to correlate with big data tables to query, dictionary table and configuration table for example.

3. Testing ShardingSphere-JDBC

3.1 Example project

Download the example project code locally. In order to ensure the stability of the test code, we choose shardingsphere-example-4.0.0 version.

git clone https://github.com/apache/shardingsphere-example.git

Project description:

shardingsphere-example
  ├── example-core
  │   ├── config-utility
  │   ├── example-api
  │   ├── example-raw-jdbc
  │   ├── example-spring-jpa #spring+jpa integration-based entity,repository
  │   └── example-spring-mybatis
  ├── sharding-jdbc-example
  │   ├── sharding-example
  │   │   ├── sharding-raw-jdbc-example
  │   │   ├── sharding-spring-boot-jpa-example #integration-based sharding-jdbc functions
  │   │   ├── sharding-spring-boot-mybatis-example
  │   │   ├── sharding-spring-namespace-jpa-example
  │   │   └── sharding-spring-namespace-mybatis-example
  │   ├── orchestration-example
  │   │   ├── orchestration-raw-jdbc-example
  │   │   ├── orchestration-spring-boot-example #integration-based sharding-jdbc governance function
  │   │   └── orchestration-spring-namespace-example
  │   ├── transaction-example
  │   │   ├── transaction-2pc-xa-example #sharding-jdbc sample of two-phase commit for a distributed transaction
  │   │   └──transaction-base-seata-example #sharding-jdbc distributed transaction seata sample
  │   ├── other-feature-example
  │   │   ├── hint-example
  │   │   └── encrypt-example
  ├── sharding-proxy-example
  │   └── sharding-proxy-boot-mybatis-example
  └── src/resources
        └── manual_schema.sql  

Configuration file description:

application-master-slave.properties #read/write splitting profile
application-sharding-databases-tables.properties #sharding profile
application-sharding-databases.properties       #library split profile only
application-sharding-master-slave.properties    #sharding and read/write splitting profile
application-sharding-tables.properties          #table split profile
application.properties                         #spring boot profile

Code logic description:

The following is the entry class of the Spring Boot application below. Execute it to run the project.

The execution logic of demo is as follows:

3.2 Verifying read/write splitting

As business grows, the write and read requests can be split to different database nodes to effectively promote the processing capability of the entire database cluster. Aurora uses a reader/writer endpoint to meet users' requirements to write and read with strong consistency, and a read-only endpoint to meet the requirements to read without strong consistency. Aurora's read and write latency is within single-digit milliseconds, much lower than MySQL's binlog-based logical replication, so there's a lot of loads that can be directed to a read-only endpoint.

Through the one primary and multiple secondary configuration, query requests can be evenly distributed to multiple data replicas, which further improves the processing capability of the system. Read/write splitting can improve the throughput and availability of system, but it can also lead to data inconsistency. Aurora provides a primary/secondary architecture in a fully managed form, but applications on the upper-layer still need to manage multiple data sources when interacting with Aurora, routing SQL requests to different nodes based on the read/write type of SQL statements and certain routing policies.

ShardingSphere-JDBC provides read/write splitting features and it is integrated with application programs so that the complex configuration between application programs and database clusters can be separated from application programs. Developers can manage the Shard through configuration files and combine it with ORM frameworks such as Spring JPA and Mybatis to completely separate the duplicated logic from the code, which greatly improves the ability to maintain code and reduces the coupling between code and database.

3.2.1 Setting up the database environment

Create a set of Aurora MySQL read/write splitting clusters. The model is db.r5.2xlarge. Each set of clusters has one write node and two read nodes.

3.2.2 Configuring Sharding-JDBC

application.properties spring boot Master profile description:

You need to replace the green ones with your own environment configuration.

# Jpa automatically creates and drops data tables based on entities
spring.jpa.properties.hibernate.hbm2ddl.auto=create-drop
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MySQL5Dialect
spring.jpa.properties.hibernate.show_sql=true

#spring.profiles.active=sharding-databases
#spring.profiles.active=sharding-tables
#spring.profiles.active=sharding-databases-tables
#Activate master-slave configuration item so that sharding-jdbc can use master-slave profile
spring.profiles.active=master-slave
#spring.profiles.active=sharding-master-slave

application-master-slave.properties sharding-jdbc profile description:

spring.shardingsphere.datasource.names=ds_master,ds_slave_0,ds_slave_1
# data souce-master
spring.shardingsphere.datasource.ds_master.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_master.password=Your master DB password
spring.shardingsphere.datasource.ds_master.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_master.jdbc-url=Your primary DB data sourceurl spring.shardingsphere.datasource.ds_master.username=Your primary DB username
# data source-slave
spring.shardingsphere.datasource.ds_slave_0.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_slave_0.password= Your slave DB password
spring.shardingsphere.datasource.ds_slave_0.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_slave_0.jdbc-url=Your slave DB data source url
spring.shardingsphere.datasource.ds_slave_0.username= Your slave DB username
# data source-slave
spring.shardingsphere.datasource.ds_slave_1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_slave_1.password= Your slave DB password
spring.shardingsphere.datasource.ds_slave_1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_slave_1.jdbc-url= Your slave DB data source url
spring.shardingsphere.datasource.ds_slave_1.username= Your slave DB username
# Routing Policy Configuration
spring.shardingsphere.masterslave.load-balance-algorithm-type=round_robin
spring.shardingsphere.masterslave.name=ds_ms
spring.shardingsphere.masterslave.master-data-source-name=ds_master
spring.shardingsphere.masterslave.slave-data-source-names=ds_slave_0,ds_slave_1
# sharding-jdbc configures the information storage mode
spring.shardingsphere.mode.type=Memory
# start shardingsphere log,and you can see the conversion from logical SQL to actual SQL from the print
spring.shardingsphere.props.sql.show=true

 

3.2.3 Test and verification process description

  • Test environment data initialization: Spring JPA initialization automatically creates tables for testing.

  • Write data to the master instance

As shown in the ShardingSphere-SQL log figure below, the write SQL is executed on the ds_master data source.

  • Data query operations are performed on the slave library.

As shown in the ShardingSphere-SQL log figure below, the read SQL is executed on the ds_slave data source in the form of polling.

[INFO ] 2022-04-02 19:43:39,376 --main-- [ShardingSphere-SQL] Rule Type: master-slave 
[INFO ] 2022-04-02 19:43:39,376 --main-- [ShardingSphere-SQL] SQL: select orderentit0_.order_id as order_id1_1_, orderentit0_.address_id as address_2_1_, 
orderentit0_.status as status3_1_, orderentit0_.user_id as user_id4_1_ from t_order orderentit0_ ::: DataSources: ds_slave_0 
---------------------------- Print OrderItem Data -------------------
Hibernate: select orderiteme1_.order_item_id as order_it1_2_, orderiteme1_.order_id as order_id2_2_, orderiteme1_.status as status3_2_, orderiteme1_.user_id 
as user_id4_2_ from t_order orderentit0_ cross join t_order_item orderiteme1_ where orderentit0_.order_id=orderiteme1_.order_id
[INFO ] 2022-04-02 19:43:40,898 --main-- [ShardingSphere-SQL] Rule Type: master-slave 
[INFO ] 2022-04-02 19:43:40,898 --main-- [ShardingSphere-SQL] SQL: select orderiteme1_.order_item_id as order_it1_2_, orderiteme1_.order_id as order_id2_2_, orderiteme1_.status as status3_2_, 
orderiteme1_.user_id as user_id4_2_ from t_order orderentit0_ cross join t_order_item orderiteme1_ where orderentit0_.order_id=orderiteme1_.order_id ::: DataSources: ds_slave_1 

Note: As shown in the figure below, if there are both reads and writes in a transaction, Sharding-JDBC routes both read and write operations to the master library. If the read/write requests are not in the same transaction, the corresponding read requests are distributed to different read nodes according to the routing policy.

@Override
@Transactional // When a transaction is started, both read and write in the transaction go through the master library. When closed, read goes through the slave library and write goes through the master library
public void processSuccess() throws SQLException {
    System.out.println("-------------- Process Success Begin ---------------");
    List<Long> orderIds = insertData();
    printData();
    deleteData(orderIds);
    printData();
    System.out.println("-------------- Process Success Finish --------------");
}

3.2.4 Verifying Aurora failover scenario

The Aurora database environment adopts the configuration described in Section 2.2.1.

3.2.4.1 Verification process description

  1. Start the Spring-Boot project

2. Perform a failover on Aurora’s console

3. Execute the Rest API request

4. Repeatedly execute POST (http://localhost:8088/save-user) until the call to the API failed to write to Aurora and eventually recovered successfully.

5. The following figure shows the process of executing code failover. It takes about 37 seconds from the time when the latest SQL write is successfully performed to the time when the next SQL write is successfully performed. That is, the application can be automatically recovered from Aurora failover, and the recovery time is about 37 seconds.

3.3 Testing table sharding-only function

3.3.1 Configuring Sharding-JDBC

application.properties spring boot master profile description

# Jpa automatically creates and drops data tables based on entities
spring.jpa.properties.hibernate.hbm2ddl.auto=create-drop
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MySQL5Dialect
spring.jpa.properties.hibernate.show_sql=true
#spring.profiles.active=sharding-databases
#Activate sharding-tables configuration items
#spring.profiles.active=sharding-tables
#spring.profiles.active=sharding-databases-tables
# spring.profiles.active=master-slave
#spring.profiles.active=sharding-master-slave

application-sharding-tables.properties sharding-jdbc profile description

## configure primary-key policy
spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id
spring.shardingsphere.sharding.tables.t_order.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order.key-generator.props.worker.id=123
spring.shardingsphere.sharding.tables.t_order_item.actual-data-nodes=ds.t_order_item_$->{0..1}
spring.shardingsphere.sharding.tables.t_order_item.table-strategy.inline.sharding-column=order_id
spring.shardingsphere.sharding.tables.t_order_item.table-strategy.inline.algorithm-expression=t_order_item_$->{order_id % 2}
spring.shardingsphere.sharding.tables.t_order_item.key-generator.column=order_item_id
spring.shardingsphere.sharding.tables.t_order_item.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order_item.key-generator.props.worker.id=123
# configure the binding relation of t_order and t_order_item
spring.shardingsphere.sharding.binding-tables[0]=t_order,t_order_item
# configure broadcast tables
spring.shardingsphere.sharding.broadcast-tables=t_address
# sharding-jdbc mode
spring.shardingsphere.mode.type=Memory
# start shardingsphere log
spring.shardingsphere.props.sql.show=true

 

3.3.2 Test and verification process description

1. DDL operation

JPA automatically creates tables for testing. When Sharding-JDBC routing rules are configured, the client executes DDL, and Sharding-JDBC automatically creates corresponding tables according to the table splitting rules. If t_address is a broadcast table, create a t_address because there is only one master instance. Two physical tables t_order_0 and t_order_1 will be created when creating t_order.

2. Write operation

As shown in the figure below, Logic SQL inserts a record into t_order. When Sharding-JDBC is executed, data will be distributed to t_order_0 and t_order_1 according to the table splitting rules.

When t_order and t_order_item are bound, the records associated with order_item and order are placed on the same physical table.

3. Read operation

As shown in the figure below, perform the join query operations to order and order_item under the binding table, and the physical shard is precisely located based on the binding relationship.

The join query operations on order and order_item under the unbound table will traverse all shards.

3.4 Testing database sharding-only function

3.4.1 Setting up the database environment

Create two instances on Aurora: ds_0 and ds_1

When the sharding-spring-boot-jpa-example project is started, tables t_order, t_order_itemt_address will be created on two Aurora instances.

3.4.2 Configuring Sharding-JDBC

application.properties springboot master profile description

# Jpa automatically creates and drops data tables based on entities
spring.jpa.properties.hibernate.hbm2ddl.auto=create
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MySQL5Dialect
spring.jpa.properties.hibernate.show_sql=true

# Activate sharding-databases configuration items
spring.profiles.active=sharding-databases
#spring.profiles.active=sharding-tables
#spring.profiles.active=sharding-databases-tables
#spring.profiles.active=master-slave
#spring.profiles.active=sharding-master-slave

application-sharding-databases.properties sharding-jdbc profile description

spring.shardingsphere.datasource.names=ds_0,ds_1
# ds_0
spring.shardingsphere.datasource.ds_0.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_0.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_0.jdbc-url= spring.shardingsphere.datasource.ds_0.username= 
spring.shardingsphere.datasource.ds_0.password=
# ds_1
spring.shardingsphere.datasource.ds_1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_1.jdbc-url= 
spring.shardingsphere.datasource.ds_1.username= 
spring.shardingsphere.datasource.ds_1.password=
spring.shardingsphere.sharding.default-database-strategy.inline.sharding-column=user_id
spring.shardingsphere.sharding.default-database-strategy.inline.algorithm-expression=ds_$->{user_id % 2}
spring.shardingsphere.sharding.binding-tables=t_order,t_order_item
spring.shardingsphere.sharding.broadcast-tables=t_address
spring.shardingsphere.sharding.default-data-source-name=ds_0

spring.shardingsphere.sharding.tables.t_order.actual-data-nodes=ds_$->{0..1}.t_order
spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id
spring.shardingsphere.sharding.tables.t_order.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order.key-generator.props.worker.id=123
spring.shardingsphere.sharding.tables.t_order_item.actual-data-nodes=ds_$->{0..1}.t_order_item
spring.shardingsphere.sharding.tables.t_order_item.key-generator.column=order_item_id
spring.shardingsphere.sharding.tables.t_order_item.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order_item.key-generator.props.worker.id=123
# sharding-jdbc mode
spring.shardingsphere.mode.type=Memory
# start shardingsphere log
spring.shardingsphere.props.sql.show=true

 

3.4.3 Test and verification process description

1. DDL operation

JPA automatically creates tables for testing. When Sharding-JDBC’s library splitting and routing rules are configured, the client executes DDL, and Sharding-JDBC will automatically create corresponding tables according to table splitting rules. If t_address is a broadcast table, physical tables will be created on ds_0 and ds_1. The three tables, t_address, t_order and t_order_item will be created on ds_0 and ds_1 respectively.

2. Write operation

For the broadcast table t_address, each record written will also be written to the t_address tables of ds_0 and ds_1.

The tables t_order and t_order_item of the slave library are written on the table in the corresponding instance according to the slave library field and routing policy.

3. Read operation

Query order is routed to the corresponding Aurora instance according to the routing rules of the slave library .

Query Address. Since address is a broadcast table, an instance of address will be randomly selected and queried from the nodes used.

As shown in the figure below, perform the join query operations to order and order_item under the binding table, and the physical shard is precisely located based on the binding relationship.

3.5 Verifying sharding function

3.5.1 Setting up the database environment

As shown in the figure below, create two instances on Aurora: ds_0 and ds_1

When the sharding-spring-boot-jpa-example project is started, physical tables t_order_01, t_order_02, t_order_item_01,and t_order_item_02 and global table t_address will be created on two Aurora instances.

3.5.2 Configuring Sharding-JDBC

application.properties springboot master profile description

# Jpa automatically creates and drops data tables based on entities
spring.jpa.properties.hibernate.hbm2ddl.auto=create
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MySQL5Dialect
spring.jpa.properties.hibernate.show_sql=true
# Activate sharding-databases-tables configuration items
#spring.profiles.active=sharding-databases
#spring.profiles.active=sharding-tables
spring.profiles.active=sharding-databases-tables
#spring.profiles.active=master-slave
#spring.profiles.active=sharding-master-slave

application-sharding-databases.properties sharding-jdbc profile description

spring.shardingsphere.datasource.names=ds_0,ds_1
# ds_0
spring.shardingsphere.datasource.ds_0.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_0.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_0.jdbc-url= 306/dev?useSSL=false&characterEncoding=utf-8
spring.shardingsphere.datasource.ds_0.username= 
spring.shardingsphere.datasource.ds_0.password=
spring.shardingsphere.datasource.ds_0.max-active=16
# ds_1
spring.shardingsphere.datasource.ds_1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_1.jdbc-url= 
spring.shardingsphere.datasource.ds_1.username= 
spring.shardingsphere.datasource.ds_1.password=
spring.shardingsphere.datasource.ds_1.max-active=16
# default library splitting policy
spring.shardingsphere.sharding.default-database-strategy.inline.sharding-column=user_id
spring.shardingsphere.sharding.default-database-strategy.inline.algorithm-expression=ds_$->{user_id % 2}
spring.shardingsphere.sharding.binding-tables=t_order,t_order_item
spring.shardingsphere.sharding.broadcast-tables=t_address
# Tables that do not meet the library splitting policy are placed on ds_0
spring.shardingsphere.sharding.default-data-source-name=ds_0
# t_order table splitting policy
spring.shardingsphere.sharding.tables.t_order.actual-data-nodes=ds_$->{0..1}.t_order_$->{0..1}
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.sharding-column=order_id
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.algorithm-expression=t_order_$->{order_id % 2}
spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id
spring.shardingsphere.sharding.tables.t_order.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order.key-generator.props.worker.id=123
# t_order_item table splitting policy
spring.shardingsphere.sharding.tables.t_order_item.actual-data-nodes=ds_$->{0..1}.t_order_item_$->{0..1}
spring.shardingsphere.sharding.tables.t_order_item.table-strategy.inline.sharding-column=order_id
spring.shardingsphere.sharding.tables.t_order_item.table-strategy.inline.algorithm-expression=t_order_item_$->{order_id % 2}
spring.shardingsphere.sharding.tables.t_order_item.key-generator.column=order_item_id
spring.shardingsphere.sharding.tables.t_order_item.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order_item.key-generator.props.worker.id=123
# sharding-jdbc mdoe
spring.shardingsphere.mode.type=Memory
# start shardingsphere log
spring.shardingsphere.props.sql.show=true

 

3.5.3 Test and verification process description

1. DDL operation

JPA automatically creates tables for testing. When Sharding-JDBC’s sharding and routing rules are configured, the client executes DDL, and Sharding-JDBC will automatically create corresponding tables according to table splitting rules. If t_address is a broadcast table, t_address will be created on both ds_0 and ds_1. The three tables, t_address, t_order and t_order_item will be created on ds_0 and ds_1 respectively.

2. Write operation

For the broadcast table t_address, each record written will also be written to the t_address tables of ds_0 and ds_1.

The tables t_order and t_order_item of the sub-library are written to the table on the corresponding instance according to the slave library field and routing policy.

3. Read operation

The read operation is similar to the library split function verification described in section2.4.3.

3.6 Testing database sharding, table sharding and read/write splitting function

3.6.1 Setting up the database environment

The following figure shows the physical table of the created database instance.

3.6.2 Configuring Sharding-JDBC

application.properties spring boot master profile description

# Jpa automatically creates and drops data tables based on entities
spring.jpa.properties.hibernate.hbm2ddl.auto=create
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MySQL5Dialect
spring.jpa.properties.hibernate.show_sql=true

# activate sharding-databases-tables configuration items
#spring.profiles.active=sharding-databases
#spring.profiles.active=sharding-tables
#spring.profiles.active=sharding-databases-tables
#spring.profiles.active=master-slave
spring.profiles.active=sharding-master-slave

application-sharding-master-slave.properties sharding-jdbc profile description

The url, name and password of the database need to be changed to your own database parameters.

spring.shardingsphere.datasource.names=ds_master_0,ds_master_1,ds_master_0_slave_0,ds_master_0_slave_1,ds_master_1_slave_0,ds_master_1_slave_1
spring.shardingsphere.datasource.ds_master_0.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_master_0.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_master_0.jdbc-url= spring.shardingsphere.datasource.ds_master_0.username= 
spring.shardingsphere.datasource.ds_master_0.password=
spring.shardingsphere.datasource.ds_master_0.max-active=16
spring.shardingsphere.datasource.ds_master_0_slave_0.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_master_0_slave_0.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_master_0_slave_0.jdbc-url= spring.shardingsphere.datasource.ds_master_0_slave_0.username= 
spring.shardingsphere.datasource.ds_master_0_slave_0.password=
spring.shardingsphere.datasource.ds_master_0_slave_0.max-active=16
spring.shardingsphere.datasource.ds_master_0_slave_1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_master_0_slave_1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_master_0_slave_1.jdbc-url= spring.shardingsphere.datasource.ds_master_0_slave_1.username= 
spring.shardingsphere.datasource.ds_master_0_slave_1.password=
spring.shardingsphere.datasource.ds_master_0_slave_1.max-active=16
spring.shardingsphere.datasource.ds_master_1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_master_1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_master_1.jdbc-url= 
spring.shardingsphere.datasource.ds_master_1.username= 
spring.shardingsphere.datasource.ds_master_1.password=
spring.shardingsphere.datasource.ds_master_1.max-active=16
spring.shardingsphere.datasource.ds_master_1_slave_0.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_master_1_slave_0.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_master_1_slave_0.jdbc-url=
spring.shardingsphere.datasource.ds_master_1_slave_0.username=
spring.shardingsphere.datasource.ds_master_1_slave_0.password=
spring.shardingsphere.datasource.ds_master_1_slave_0.max-active=16
spring.shardingsphere.datasource.ds_master_1_slave_1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_master_1_slave_1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_master_1_slave_1.jdbc-url= spring.shardingsphere.datasource.ds_master_1_slave_1.username=admin
spring.shardingsphere.datasource.ds_master_1_slave_1.password=
spring.shardingsphere.datasource.ds_master_1_slave_1.max-active=16
spring.shardingsphere.sharding.default-database-strategy.inline.sharding-column=user_id
spring.shardingsphere.sharding.default-database-strategy.inline.algorithm-expression=ds_$->{user_id % 2}
spring.shardingsphere.sharding.binding-tables=t_order,t_order_item
spring.shardingsphere.sharding.broadcast-tables=t_address
spring.shardingsphere.sharding.default-data-source-name=ds_master_0
spring.shardingsphere.sharding.tables.t_order.actual-data-nodes=ds_$->{0..1}.t_order_$->{0..1}
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.sharding-column=order_id
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.algorithm-expression=t_order_$->{order_id % 2}
spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id
spring.shardingsphere.sharding.tables.t_order.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order.key-generator.props.worker.id=123
spring.shardingsphere.sharding.tables.t_order_item.actual-data-nodes=ds_$->{0..1}.t_order_item_$->{0..1}
spring.shardingsphere.sharding.tables.t_order_item.table-strategy.inline.sharding-column=order_id
spring.shardingsphere.sharding.tables.t_order_item.table-strategy.inline.algorithm-expression=t_order_item_$->{order_id % 2}
spring.shardingsphere.sharding.tables.t_order_item.key-generator.column=order_item_id
spring.shardingsphere.sharding.tables.t_order_item.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order_item.key-generator.props.worker.id=123
# master/slave data source and slave data source configuration
spring.shardingsphere.sharding.master-slave-rules.ds_0.master-data-source-name=ds_master_0
spring.shardingsphere.sharding.master-slave-rules.ds_0.slave-data-source-names=ds_master_0_slave_0, ds_master_0_slave_1
spring.shardingsphere.sharding.master-slave-rules.ds_1.master-data-source-name=ds_master_1
spring.shardingsphere.sharding.master-slave-rules.ds_1.slave-data-source-names=ds_master_1_slave_0, ds_master_1_slave_1
# sharding-jdbc mode
spring.shardingsphere.mode.type=Memory
# start shardingsphere log
spring.shardingsphere.props.sql.show=true

 

3.6.3 Test and verification process description

1. DDL operation

JPA automatically creates tables for testing. When Sharding-JDBC’s library splitting and routing rules are configured, the client executes DDL, and Sharding-JDBC will automatically create corresponding tables according to table splitting rules. If t_address is a broadcast table, t_address will be created on both ds_0 and ds_1. The three tables, t_address, t_order and t_order_item will be created on ds_0 and ds_1 respectively.

2. Write operation

For the broadcast table t_address, each record written will also be written to the t_address tables of ds_0 and ds_1.

The tables t_order and t_order_item of the slave library are written to the table on the corresponding instance according to the slave library field and routing policy.

3. Read operation

The join query operations on order and order_item under the binding table are shown below.

3. Conclusion

As an open source product focusing on database enhancement, ShardingSphere is pretty good in terms of its community activitiy, product maturity and documentation richness.

Among its products, ShardingSphere-JDBC is a sharding solution based on the client-side, which supports all sharding scenarios. And there’s no need to introduce an intermediate layer like Proxy, so the complexity of operation and maintenance is reduced. Its latency is theoretically lower than Proxy due to the lack of intermediate layer. In addition, ShardingSphere-JDBC can support a variety of relational databases based on SQL standards such as MySQL/PostgreSQL/Oracle/SQL Server, etc.

However, due to the integration of Sharding-JDBC with the application program, it only supports Java language for now, and is strongly dependent on the application programs. Nevertheless, Sharding-JDBC separates all sharding configuration from the application program, which brings relatively small changes when switching to other middleware.

In conclusion, Sharding-JDBC is a good choice if you use a Java-based system and have to to interconnect with different relational databases — and don’t want to bother with introducing an intermediate layer.

Author

Sun Jinhua

A senior solution architect at AWS, Sun is responsible for the design and consult on cloud architecture. for providing customers with cloud-related design and consulting services. Before joining AWS, he ran his own business, specializing in building e-commerce platforms and designing the overall architecture for e-commerce platforms of automotive companies. He worked in a global leading communication equipment company as a senior engineer, responsible for the development and architecture design of multiple subsystems of LTE equipment system. He has rich experience in architecture design with high concurrency and high availability system, microservice architecture design, database, middleware, IOT etc.

Variable de Impresión de Python

Python es un lenguaje versátil y flexible; a menudo hay más de una forma de lograr algo.

En este tutorial, verá algunas de las formas en que puede imprimir una cadena y una variable juntas.

¡Empecemos!

Cómo usar la print()función en Python

Para imprimir cualquier cosa en Python, se utiliza la print()función - que es la printpalabra clave seguida de un conjunto de apertura y cierre de paréntesis, ().

#how to print a string
print("Hello world")

#how to print an integer
print(7)

#how to print a variable 
#to just print the variable on its own include only the name of it

fave_language = "Python"
print(fave_language)

#output

#Hello world
#7
#Python

Si omite los paréntesis, obtendrá un error:

print "hello world"

#output after running the code:
#File "/Users/dionysialemonaki/python_articles/demo.py", line 1
#    print "hello world"
#    ^^^^^^^^^^^^^^^^^^^
#SyntaxError: Missing parentheses in call to 'print'. Did you mean print(...)?

Si escribe su código Python en Visual Studio Code, con la extensión Python , también obtendrá un subrayado y una pista que indican que algo no está del todo bien:

Captura de pantalla-2021-12-07-a-3.08.14-PM

Como se mencionó anteriormente, la declaración de impresión se utiliza para generar todo tipo de información. Esto incluye datos textuales y numéricos, variables y otros tipos de datos.

También puede imprimir texto (o cadenas) combinado con variables, todo en una declaración.

Verá algunas de las diferentes formas de hacer esto en las secciones siguientes.

Cómo imprimir una variable y una cadena en Python usando la concatenación

Concatenar, según el diccionario, significa enlazar (cosas) juntas en una cadena o serie.

Esto se hace mediante la adición de varias cosas (en este caso la programación - se añaden datos), junto con otros, utilizando el operador de suma Python, +.

Tenga en cuenta que la concatenación solo se usa para cadenas, por lo que si la variable que desea concatenar con el resto de las cadenas es de un tipo de datos entero, tendrá que convertirla en una cadena con la str()función.

En el siguiente ejemplo, quiero imprimir el valor de una variable junto con algún otro texto.

Agrego las cadenas entre comillas dobles y el nombre de la variable sin rodearlo, usando el operador de suma para encadenarlos todos juntos:

fave_language = "Python"

print("I like coding in " + fave_language + " the most")

#output
#I like coding in Python the most

Con la concatenación de cadenas, debe agregar espacios usted mismo, por lo que si en el ejemplo anterior no hubiera incluido ningún espacio entre las comillas, la salida se vería así:

fave_language = "Python"

print("I like coding in" + fave_language + "the most")

#output
#I like coding inPythonthe most

Incluso puede agregar los espacios por separado:

fave_language = "Python"

print("I like coding in" + " " + fave_language + " "  + "the most")

#output
#I like coding in Python the most

Esta no es la forma más preferida de imprimir cadenas y variables, ya que puede ser propensa a errores y consumir mucho tiempo.

Cómo imprimir una variable y una cadena en Python separando cada una con una coma

Puede imprimir texto junto a una variable, separados por comas, en una declaración de impresión.

first_name = "John"

print("Hello",first_name)

#output
#Hello John

En el ejemplo anterior, primero incluí un texto que quería imprimir entre comillas dobles; en este caso, el texto era la cadena Hello.

Después de las comillas de cierre, agregué una coma que separa ese fragmento de texto del valor contenido en el nombre de la variable ( first_nameen este caso) que luego incluí.

Podría haber agregado más texto siguiendo la variable, así:

first_name = "John"

print("Hello",first_name,"good to see you")

#output
#Hello John good to see you

Este método también funciona con más de una variable:

first_name = "John"
last_name = "Doe"

print("Hello",first_name,last_name,"good to see you")

#output
Hello John Doe good to see you

Asegúrate de separar todo con una coma.

Entonces, separa el texto de las variables con una coma, pero también las variables de otras variables, como se muestra arriba.

Si no se hubiera agregado la coma entre first_namey last_name, el código habría arrojado un error:

first_name = "John"
last_name = "Doe"

print("Hello",first_name last_name,"good to see you")

#output
#File "/Users/dionysialemonaki/python_articles/demo.py", line 4
#    print("Hello",first_name last_name,"good to see you")
#                 ^^^^^^^^^^^^^^^^^^^^
#SyntaxError: invalid syntax. Perhaps you forgot a comma?

Como puede ver, los mensajes de error de Python son extremadamente útiles y facilitan un poco el proceso de depuración :)

Cómo imprimir una variable y una cadena en Python usando formato de cadena

Utiliza el formato de cadena al incluir un conjunto de llaves de apertura y cierre {}, en el lugar donde desea agregar el valor de una variable.

first_name = "John"

print("Hello {}, hope you're well!")

En este ejemplo hay una variable, first_name.

Dentro de la declaración impresa hay un conjunto de comillas dobles de apertura y cierre con el texto que debe imprimirse.

Dentro de eso, agregué un conjunto de llaves en el lugar donde quiero agregar el valor de la variable first_name.

Si intento ejecutar este código, tendrá el siguiente resultado:

#output
#Hello {}, hope you're well!

¡En realidad, no imprime el valor de first_name!

Para imprimirlo, necesito agregar el .format()método de cadena al final de la cadena, que es inmediatamente después de las comillas de cierre:

first_name = "John"

print("Hello {}, hope you're well!".format(first_name))

#output
#Hello John, hope you're well!

Cuando hay más de una variable, usa tantas llaves como la cantidad de variables que desee imprimir:

first_name = "John"
last_name = "Doe"

print("Hello {} {}, hope you're well!")

En este ejemplo, he creado dos variables y quiero imprimir ambas, una después de la otra, así que agregué dos juegos de llaves en el lugar donde quiero que se sustituyan las variables.

Ahora, cuando se trata del .format()método, importa el orden en el que coloque los nombres de las variables.

Entonces, el valor del nombre de la variable que se agregará primero en el método estará en el lugar de la primera llave, el valor del nombre de la variable que se agregará en segundo lugar estará en el lugar de la segunda llave, y pronto.

Asegúrese de separar los nombres de las variables con comas dentro del método:

first_name = "John"
last_name = "Doe"

print("Hello {} {}, hope you're well!".format(first_name,last_name))

#output
#Hello John Doe, hope you're well!

Si hubiera invertido el orden de los nombres dentro del método, la salida se vería diferente:

first_name = "John"
last_name = "Doe"

print("Hello {} {}, hope you're well!".format(last_name,first_name))

#output
#Hello Doe John, hope you're well!

Cómo imprimir una variable y una cadena en Python usando f-strings

f-strings son una forma mejor, más legible y concisa de lograr el formato de cadena en comparación con el método que vimos en la sección anterior.

La sintaxis es más sencilla y requiere menos trabajo manual.

La sintaxis general para crear un se f-stringve así:

print(f"I want this text printed to the console!")

#output
#I want this text printed to the console!

Primero incluye el carácter fantes de las comillas de apertura y cierre, dentro de la print()función.

Para imprimir una variable con una cadena en una línea, vuelva a incluir el carácter fen el mismo lugar, justo antes de las comillas.

Luego agrega el texto que desea dentro de las comillas, y en el lugar donde desea agregar el valor de una variable, agrega un conjunto de llaves con el nombre de la variable dentro de ellas:

first_name = "John"

print(f"Hello, {first_name}!")

#output
#Hello, John!

Para imprimir más de una variable, agrega otro conjunto de llaves con el nombre de la segunda variable:

first_name = "John"
last_name = "Doe"

print(f"Hello, {first_name} {last_name}!")

#output
#Hello, John Doe!

El orden en que coloque los nombres de las variables es importante, así que asegúrese de agregarlos de acuerdo con la salida que desee.

Si hubiera invertido el orden de los nombres, obtendría el siguiente resultado:

first_name = "John"
last_name = "Doe"

print(f"Hello, {last_name} {first_name}!")

#output
#Hello, Doe John!

Conclusión

¡Gracias por leer y llegar hasta el final! Ahora conoce algunas formas diferentes de imprimir cadenas y variables juntas en una línea en Python.

Si desea obtener más información sobre Python, consulte la Certificación Python de freeCodeCamp .

Es adecuado para principiantes, ya que comienza desde los fundamentos y se construye gradualmente hacia conceptos más avanzados. También podrás construir cinco proyectos y poner en práctica todos los nuevos conocimientos que adquieras.

¡Feliz codificación!

https://www.freecodecamp.org/news/python-print-variable-how-to-print-a-string-and-variable/

#python 

Adaline  Kulas

Adaline Kulas

1594162500

Multi-cloud Spending: 8 Tips To Lower Cost

A multi-cloud approach is nothing but leveraging two or more cloud platforms for meeting the various business requirements of an enterprise. The multi-cloud IT environment incorporates different clouds from multiple vendors and negates the dependence on a single public cloud service provider. Thus enterprises can choose specific services from multiple public clouds and reap the benefits of each.

Given its affordability and agility, most enterprises opt for a multi-cloud approach in cloud computing now. A 2018 survey on the public cloud services market points out that 81% of the respondents use services from two or more providers. Subsequently, the cloud computing services market has reported incredible growth in recent times. The worldwide public cloud services market is all set to reach $500 billion in the next four years, according to IDC.

By choosing multi-cloud solutions strategically, enterprises can optimize the benefits of cloud computing and aim for some key competitive advantages. They can avoid the lengthy and cumbersome processes involved in buying, installing and testing high-priced systems. The IaaS and PaaS solutions have become a windfall for the enterprise’s budget as it does not incur huge up-front capital expenditure.

However, cost optimization is still a challenge while facilitating a multi-cloud environment and a large number of enterprises end up overpaying with or without realizing it. The below-mentioned tips would help you ensure the money is spent wisely on cloud computing services.

  • Deactivate underused or unattached resources

Most organizations tend to get wrong with simple things which turn out to be the root cause for needless spending and resource wastage. The first step to cost optimization in your cloud strategy is to identify underutilized resources that you have been paying for.

Enterprises often continue to pay for resources that have been purchased earlier but are no longer useful. Identifying such unused and unattached resources and deactivating it on a regular basis brings you one step closer to cost optimization. If needed, you can deploy automated cloud management tools that are largely helpful in providing the analytics needed to optimize the cloud spending and cut costs on an ongoing basis.

  • Figure out idle instances

Another key cost optimization strategy is to identify the idle computing instances and consolidate them into fewer instances. An idle computing instance may require a CPU utilization level of 1-5%, but you may be billed by the service provider for 100% for the same instance.

Every enterprise will have such non-production instances that constitute unnecessary storage space and lead to overpaying. Re-evaluating your resource allocations regularly and removing unnecessary storage may help you save money significantly. Resource allocation is not only a matter of CPU and memory but also it is linked to the storage, network, and various other factors.

  • Deploy monitoring mechanisms

The key to efficient cost reduction in cloud computing technology lies in proactive monitoring. A comprehensive view of the cloud usage helps enterprises to monitor and minimize unnecessary spending. You can make use of various mechanisms for monitoring computing demand.

For instance, you can use a heatmap to understand the highs and lows in computing visually. This heat map indicates the start and stop times which in turn lead to reduced costs. You can also deploy automated tools that help organizations to schedule instances to start and stop. By following a heatmap, you can understand whether it is safe to shut down servers on holidays or weekends.

#cloud computing services #all #hybrid cloud #cloud #multi-cloud strategy #cloud spend #multi-cloud spending #multi cloud adoption #why multi cloud #multi cloud trends #multi cloud companies #multi cloud research #multi cloud market

Adaline  Kulas

Adaline Kulas

1594166040

What are the benefits of cloud migration? Reasons you should migrate

The moving of applications, databases and other business elements from the local server to the cloud server called cloud migration. This article will deal with migration techniques, requirement and the benefits of cloud migration.

In simple terms, moving from local to the public cloud server is called cloud migration. Gartner says 17.5% revenue growth as promised in cloud migration and also has a forecast for 2022 as shown in the following image.

#cloud computing services #cloud migration #all #cloud #cloud migration strategy #enterprise cloud migration strategy #business benefits of cloud migration #key benefits of cloud migration #benefits of cloud migration #types of cloud migration

Hello World Scala in the Cloud With Spring

In this tutorial, we are going to look at Scala using Spring MVC and MongoDB.

The first step is a Maven project and adds the following content to your Maven POM file. The easiest way to bootstrap a Spring Boot Maven project is by using Spring Initializer.

The next step is to set the Scala dependency in the pom.xml:

 <dependencies>

        ...
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>2.13.3</version>
        </dependency>
    </dependencies>
     <build>
        <finalName>spring-scala-mongodb</finalName>
        <plugins>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>4.4.0</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>

If you want to run MongoDB locally, a good option might be Docker, which you can run with the command below:

docker run -d --name mongodb-instance -p 27017:27017 mongo

In this project, we’ll create a sample that will handle a user in its respective client. The first step is to create the entity class, in this sample, a User class.

import org.springframework.data.annotation.Id
import org.springframework.data.mongodb.core.mapping.Document
import scala.annotation.meta.field
import scala.beans.BeanProperty
@Document class User
(@(Id@field) @BeanProperty var id: String,
 @BeanProperty var name: String,
 @BeanProperty var country: String) {
  def this() = this(null, null, null)
}

The repository interface makes the integration between the Scala application and the MongoDB instance easy:

import org.springframework.data.repository.CrudRepository
import org.springframework.stereotype.Repository
@Repository trait UserRepository extends CrudRepository[User, String]

#java #spring #scala #cloud (add topic) #platform.sh #cloud