1592567100

High-School Math for Machines: Differentiable Code

Differentiable programming makes the Machine Learning world go round. PyTorch, TensorFlow, and any other modern Machine Learning framework all rely on it when it comes to the actual learning. Reason enough for anybody even remotely interested in AI to be acquainted with differentiable programming. We invite you to follow us through a two-part explanation of the conceptual framework that powers a large part of today’s AI industry. No Ph.D. required!
Differentiable programming is vital to Machine Learning because it is the basis of gradient descent, a family of optimization algorithms doing the grunt work in the training of Machine Learning models. The adjective differentiable comes from the noun differentiation, the mathematical process of computing derivatives. Yes, the good old derivatives from your high-school calculus class. Indeed, you get amazingly far with high-school math, when it comes to AI. For example, as we will see below, the gradient in the name gradient descent is essentially a collection of derivatives.

1604008800

Static Code Analysis: What It Is? How to Use It?

Static code analysis refers to the technique of approximating the runtime behavior of a program. In other words, it is the process of predicting the output of a program without actually executing it.

Lately, however, the term “Static Code Analysis” is more commonly used to refer to one of the applications of this technique rather than the technique itself — program comprehension — understanding the program and detecting issues in it (anything from syntax errors to type mismatches, performance hogs likely bugs, security loopholes, etc.). This is the usage we’d be referring to throughout this post.

“The refinement of techniques for the prompt discovery of error serves as well as any other as a hallmark of what we mean by science.”

• J. Robert Oppenheimer

Outline

We cover a lot of ground in this post. The aim is to build an understanding of static code analysis and to equip you with the basic theory, and the right tools so that you can write analyzers on your own.

We start our journey with laying down the essential parts of the pipeline which a compiler follows to understand what a piece of code does. We learn where to tap points in this pipeline to plug in our analyzers and extract meaningful information. In the latter half, we get our feet wet, and write four such static analyzers, completely from scratch, in Python.

Note that although the ideas here are discussed in light of Python, static code analyzers across all programming languages are carved out along similar lines. We chose Python because of the availability of an easy to use `ast` module, and wide adoption of the language itself.

How does it all work?

Before a computer can finally “understand” and execute a piece of code, it goes through a series of complicated transformations:

As you can see in the diagram (go ahead, zoom it!), the static analyzers feed on the output of these stages. To be able to better understand the static analysis techniques, let’s look at each of these steps in some more detail:

Scanning

The first thing that a compiler does when trying to understand a piece of code is to break it down into smaller chunks, also known as tokens. Tokens are akin to what words are in a language.

A token might consist of either a single character, like `(`, or literals (like integers, strings, e.g., `7``Bob`, etc.), or reserved keywords of that language (e.g, `def` in Python). Characters which do not contribute towards the semantics of a program, like trailing whitespace, comments, etc. are often discarded by the scanner.

Python provides the `tokenize` module in its standard library to let you play around with tokens:

Python

1

``````import io
``````

2

``````import tokenize
``````

3

4

``````code = b"color = input('Enter your favourite color: ')"
``````

5

6

``````for token in tokenize.tokenize(io.BytesIO(code).readline):
``````

7

``````    print(token)
``````

Python

1

``````TokenInfo(type=62 (ENCODING),  string='utf-8')
``````

2

``````TokenInfo(type=1  (NAME),      string='color')
``````

3

``````TokenInfo(type=54 (OP),        string='=')
``````

4

``````TokenInfo(type=1  (NAME),      string='input')
``````

5

``````TokenInfo(type=54 (OP),        string='(')
``````

6

``````TokenInfo(type=3  (STRING),    string="'Enter your favourite color: '")
``````

7

``````TokenInfo(type=54 (OP),        string=')')
``````

8

``````TokenInfo(type=4  (NEWLINE),   string='')
``````

9

``````TokenInfo(type=0  (ENDMARKER), string='')
``````

(Note that for the sake of readability, I’ve omitted a few columns from the result above — metadata like starting index, ending index, a copy of the line on which a token occurs, etc.)

#code quality #code review #static analysis #static code analysis #code analysis #static analysis tools #code review tips #static code analyzer #static code analysis tool #static analyzer

1592567100

High-School Math for Machines: Differentiable Code

Differentiable programming makes the Machine Learning world go round. PyTorch, TensorFlow, and any other modern Machine Learning framework all rely on it when it comes to the actual learning. Reason enough for anybody even remotely interested in AI to be acquainted with differentiable programming. We invite you to follow us through a two-part explanation of the conceptual framework that powers a large part of today’s AI industry. No Ph.D. required!
Differentiable programming is vital to Machine Learning because it is the basis of gradient descent, a family of optimization algorithms doing the grunt work in the training of Machine Learning models. The adjective differentiable comes from the noun differentiation, the mathematical process of computing derivatives. Yes, the good old derivatives from your high-school calculus class. Indeed, you get amazingly far with high-school math, when it comes to AI. For example, as we will see below, the gradient in the name gradient descent is essentially a collection of derivatives.

1621137960

Guidelines for Java Code Reviews

Get a jump-start on your next code review session with this list.

Having another pair of eyes scan your code is always useful and helps you spot mistakes before you break production. You need not be an expert to review someone’s code. Some experience with the programming language and a review checklist should help you get started. We’ve put together a list of things you should keep in mind when you’re reviewing Java code. Read on!

5. Handle Exceptions With Care

#java #code quality #java tutorial #code analysis #code reviews #code review tips #code analysis tools #java tutorial for beginners #java code review

1604088000

How to Find the Stinky Parts of Your Code (Part II)

There are more code smells. Let’s keep changing the aromas. We see several symptoms and situations that make us doubt the quality of our development. Let’s look at some possible solutions.

Most of these smells are just hints of something that might be wrong. They are not rigid rules.

This is part II. Part I can be found here.

Code Smell 06 - Too Clever Programmer

The code is difficult to read, there are tricky with names without semantics. Sometimes using language’s accidental complexity.

_Image Source: NeONBRAND on _Unsplash

Problems

• Maintainability
• Code Quality
• Premature Optimization

Solutions

1. Refactor the code
2. Use better names

Examples

• Optimized loops

Exceptions

• Optimized code for low-level operations.

Sample Code

Wrong

``````function primeFactors(n){
var f = [],  i = 0, d = 2;

for (i = 0; n >= 2; ) {
if(n % d == 0){
f[i++]=(d);
n /= d;
}
else{
d++;
}
}
return f;
}
``````

Right

``````function primeFactors(numberToFactor){
var factors = [],
divisor = 2,
remainder = numberToFactor;

while(remainder>=2){
if(remainder % divisor === 0){
factors.push(divisor);
remainder = remainder/ divisor;
}
else{
divisor++;
}
}
return factors;
}
``````

Detection

Automatic detection is possible in some languages. Watch some warnings related to complexity, bad names, post increment variables, etc.

#pixel-face #code-smells #clean-code #stinky-code-parts #refactor-legacy-code #refactoring #stinky-code #common-code-smells

1620898103

5 Latest Technology Trends of Machine Learning for 2021

Check out the 5 latest technologies of machine learning trends to boost business growth in 2021 by considering the best version of digital development tools. It is the right time to accelerate user experience by bringing advancement in their lifestyle.

#machinelearningapps #machinelearningdevelopers #machinelearningexpert #machinelearningexperts #expertmachinelearningservices #topmachinelearningcompanies #machinelearningdevelopmentcompany

Visit Blog- https://www.xplace.com/article/8743

#machine learning companies #top machine learning companies #machine learning development company #expert machine learning services #machine learning experts #machine learning expert