1648888680
React class based components are the bread and butter of most modern web apps built in ReactJS. These components are simple classes (made up of multiple functions that add functionality to the application). All class based components are child classes for the Component class of ReactJS.
Chapters
00:00 Welcome to Coding Talkies with Hitesh
01:00 Introduction to the Newton School
03:00 Class Components in ReactJS
08:00 Example of Class Components
1677668905
Mocking library for TypeScript inspired by http://mockito.org/
mock
) (also abstract classes) #examplespy
) #examplewhen
) via:verify
)reset
, resetCalls
) #example, #examplecapture
) #example'Expected "convertNumberToString(strictEqual(3))" to be called 2 time(s). But has been called 1 time(s).'
)npm install ts-mockito --save-dev
// Creating mock
let mockedFoo:Foo = mock(Foo);
// Getting instance from mock
let foo:Foo = instance(mockedFoo);
// Using instance in source code
foo.getBar(3);
foo.getBar(5);
// Explicit, readable verification
verify(mockedFoo.getBar(3)).called();
verify(mockedFoo.getBar(anything())).called();
// Creating mock
let mockedFoo:Foo = mock(Foo);
// stub method before execution
when(mockedFoo.getBar(3)).thenReturn('three');
// Getting instance
let foo:Foo = instance(mockedFoo);
// prints three
console.log(foo.getBar(3));
// prints null, because "getBar(999)" was not stubbed
console.log(foo.getBar(999));
// Creating mock
let mockedFoo:Foo = mock(Foo);
// stub getter before execution
when(mockedFoo.sampleGetter).thenReturn('three');
// Getting instance
let foo:Foo = instance(mockedFoo);
// prints three
console.log(foo.sampleGetter);
Syntax is the same as with getter values.
Please note, that stubbing properties that don't have getters only works if Proxy object is available (ES6).
// Creating mock
let mockedFoo:Foo = mock(Foo);
// Getting instance
let foo:Foo = instance(mockedFoo);
// Some calls
foo.getBar(1);
foo.getBar(2);
foo.getBar(2);
foo.getBar(3);
// Call count verification
verify(mockedFoo.getBar(1)).once(); // was called with arg === 1 only once
verify(mockedFoo.getBar(2)).twice(); // was called with arg === 2 exactly two times
verify(mockedFoo.getBar(between(2, 3))).thrice(); // was called with arg between 2-3 exactly three times
verify(mockedFoo.getBar(anyNumber()).times(4); // was called with any number arg exactly four times
verify(mockedFoo.getBar(2)).atLeast(2); // was called with arg === 2 min two times
verify(mockedFoo.getBar(anything())).atMost(4); // was called with any argument max four times
verify(mockedFoo.getBar(4)).never(); // was never called with arg === 4
// Creating mock
let mockedFoo:Foo = mock(Foo);
let mockedBar:Bar = mock(Bar);
// Getting instance
let foo:Foo = instance(mockedFoo);
let bar:Bar = instance(mockedBar);
// Some calls
foo.getBar(1);
bar.getFoo(2);
// Call order verification
verify(mockedFoo.getBar(1)).calledBefore(mockedBar.getFoo(2)); // foo.getBar(1) has been called before bar.getFoo(2)
verify(mockedBar.getFoo(2)).calledAfter(mockedFoo.getBar(1)); // bar.getFoo(2) has been called before foo.getBar(1)
verify(mockedFoo.getBar(1)).calledBefore(mockedBar.getFoo(999999)); // throws error (mockedBar.getFoo(999999) has never been called)
let mockedFoo:Foo = mock(Foo);
when(mockedFoo.getBar(10)).thenThrow(new Error('fatal error'));
let foo:Foo = instance(mockedFoo);
try {
foo.getBar(10);
} catch (error:Error) {
console.log(error.message); // 'fatal error'
}
You can also stub method with your own implementation
let mockedFoo:Foo = mock(Foo);
let foo:Foo = instance(mockedFoo);
when(mockedFoo.sumTwoNumbers(anyNumber(), anyNumber())).thenCall((arg1:number, arg2:number) => {
return arg1 * arg2;
});
// prints '50' because we've changed sum method implementation to multiply!
console.log(foo.sumTwoNumbers(5, 10));
You can also stub method to resolve / reject promise
let mockedFoo:Foo = mock(Foo);
when(mockedFoo.fetchData("a")).thenResolve({id: "a", value: "Hello world"});
when(mockedFoo.fetchData("b")).thenReject(new Error("b does not exist"));
You can reset just mock call counter
// Creating mock
let mockedFoo:Foo = mock(Foo);
// Getting instance
let foo:Foo = instance(mockedFoo);
// Some calls
foo.getBar(1);
foo.getBar(1);
verify(mockedFoo.getBar(1)).twice(); // getBar with arg "1" has been called twice
// Reset mock
resetCalls(mockedFoo);
// Call count verification
verify(mockedFoo.getBar(1)).never(); // has never been called after reset
You can also reset calls of multiple mocks at once resetCalls(firstMock, secondMock, thirdMock)
Or reset mock call counter with all stubs
// Creating mock
let mockedFoo:Foo = mock(Foo);
when(mockedFoo.getBar(1)).thenReturn("one").
// Getting instance
let foo:Foo = instance(mockedFoo);
// Some calls
console.log(foo.getBar(1)); // "one" - as defined in stub
console.log(foo.getBar(1)); // "one" - as defined in stub
verify(mockedFoo.getBar(1)).twice(); // getBar with arg "1" has been called twice
// Reset mock
reset(mockedFoo);
// Call count verification
verify(mockedFoo.getBar(1)).never(); // has never been called after reset
console.log(foo.getBar(1)); // null - previously added stub has been removed
You can also reset multiple mocks at once reset(firstMock, secondMock, thirdMock)
let mockedFoo:Foo = mock(Foo);
let foo:Foo = instance(mockedFoo);
// Call method
foo.sumTwoNumbers(1, 2);
// Check first arg captor values
const [firstArg, secondArg] = capture(mockedFoo.sumTwoNumbers).last();
console.log(firstArg); // prints 1
console.log(secondArg); // prints 2
You can also get other calls using first()
, second()
, byCallIndex(3)
and more...
You can set multiple returning values for same matching values
const mockedFoo:Foo = mock(Foo);
when(mockedFoo.getBar(anyNumber())).thenReturn('one').thenReturn('two').thenReturn('three');
const foo:Foo = instance(mockedFoo);
console.log(foo.getBar(1)); // one
console.log(foo.getBar(1)); // two
console.log(foo.getBar(1)); // three
console.log(foo.getBar(1)); // three - last defined behavior will be repeated infinitely
Another example with specific values
let mockedFoo:Foo = mock(Foo);
when(mockedFoo.getBar(1)).thenReturn('one').thenReturn('another one');
when(mockedFoo.getBar(2)).thenReturn('two');
let foo:Foo = instance(mockedFoo);
console.log(foo.getBar(1)); // one
console.log(foo.getBar(2)); // two
console.log(foo.getBar(1)); // another one
console.log(foo.getBar(1)); // another one - this is last defined behavior for arg '1' so it will be repeated
console.log(foo.getBar(2)); // two
console.log(foo.getBar(2)); // two - this is last defined behavior for arg '2' so it will be repeated
Short notation:
const mockedFoo:Foo = mock(Foo);
// You can specify return values as multiple thenReturn args
when(mockedFoo.getBar(anyNumber())).thenReturn('one', 'two', 'three');
const foo:Foo = instance(mockedFoo);
console.log(foo.getBar(1)); // one
console.log(foo.getBar(1)); // two
console.log(foo.getBar(1)); // three
console.log(foo.getBar(1)); // three - last defined behavior will be repeated infinity
Possible errors:
const mockedFoo:Foo = mock(Foo);
// When multiple matchers, matches same result:
when(mockedFoo.getBar(anyNumber())).thenReturn('one');
when(mockedFoo.getBar(3)).thenReturn('one');
const foo:Foo = instance(mockedFoo);
foo.getBar(3); // MultipleMatchersMatchSameStubError will be thrown, two matchers match same method call
You can mock interfaces too, just instead of passing type to mock
function, set mock
function generic type Mocking interfaces requires Proxy
implementation
let mockedFoo:Foo = mock<FooInterface>(); // instead of mock(FooInterface)
const foo: SampleGeneric<FooInterface> = instance(mockedFoo);
You can mock abstract classes
const mockedFoo: SampleAbstractClass = mock(SampleAbstractClass);
const foo: SampleAbstractClass = instance(mockedFoo);
You can also mock generic classes, but note that generic type is just needed by mock type definition
const mockedFoo: SampleGeneric<SampleInterface> = mock(SampleGeneric);
const foo: SampleGeneric<SampleInterface> = instance(mockedFoo);
You can partially mock an existing instance:
const foo: Foo = new Foo();
const spiedFoo = spy(foo);
when(spiedFoo.getBar(3)).thenReturn('one');
console.log(foo.getBar(3)); // 'one'
console.log(foo.getBaz()); // call to a real method
You can spy on plain objects too:
const foo = { bar: () => 42 };
const spiedFoo = spy(foo);
foo.bar();
console.log(capture(spiedFoo.bar).last()); // [42]
Author: NagRock
Source Code: https://github.com/NagRock/ts-mockito
License: MIT license
1662107520
Superdom
You have dom
. It has all the DOM virtually within it. Use that power:
// Fetch all the page links
let links = dom.a.href;
// Links open in a new tab
dom.a.target = '_blank';
Only for modern browsers
Simply use the CDN via unpkg.com:
<script src="https://unpkg.com/superdom@1"></script>
Or use npm or bower:
npm|bower install superdom --save
It always returns an array with the matched elements. Get all the elements that match the selector:
// Simple element selector into an array
let allLinks = dom.a;
// Loop straight on the selection
dom.a.forEach(link => { ... });
// Combined selector
let importantLinks = dom['a.important'];
There are also some predetermined elements, such as id
, class
and attr
:
// Select HTML Elements by id:
let main = dom.id.main;
// by class:
let buttons = dom.class.button;
// or by attribute:
let targeted = dom.attr.target;
let targeted = dom.attr['target="_blank"'];
Use it as a function or a tagged template literal to generate DOM fragments:
// Not a typo; tagged template literals
let link = dom`<a href="https://google.com/">Google</a>`;
// It is the same as
let link = dom('<a href="https://google.com/">Google</a>');
Delete a piece of the DOM
// Delete all of the elements with the class .google
delete dom.class.google; // Is this an ad-block rule?
You can easily manipulate attributes right from the dom
node. There are some aliases that share the syntax of the attributes such as html
and text
(aliases for innerHTML
and textContent
). There are others that travel through the dom such as parent
(alias for parentNode) and children
. Finally, class
behaves differently as explained below.
The fetching will always return an array with the element for each of the matched nodes (or undefined if not there):
// Retrieve all the urls from the page
let urls = dom.a.href; // #attr-list
// ['https://google.com', 'https://facebook.com/', ...]
// Get an array of the h2 contents (alias of innerHTML)
let h2s = dom.h2.html; // #attr-alias
// ['Level 2 header', 'Another level 2 header', ...]
// Get whether any of the attributes has the value "_blank"
let hasBlank = dom.class.cta.target._blank; // #attr-value
// true/false
You also use these:
innerHTML
): retrieve a list of the htmlstextContent
): retrieve a list of the htmlsparentNode
): travel up one level// Set target="_blank" to all links
dom.a.target = '_blank'; // #attr-set
dom.class.tableofcontents.html = `
<ul class="tableofcontents">
${dom.h2.map(h2 => `
<li>
<a href="#${h2.id}">
${h2.innerHTML}
</a>
</li>
`).join('')}
</ul>
`;
To delete an attribute use the delete
keyword:
// Remove all urls from the page
delete dom.a.href;
// Remove all ids
delete dom.a.id;
It provides an easy way to manipulate the classes.
To retrieve whether a particular class is present or not:
// Get an array with true/false for a single class
let isTest = dom.a.class.test; // #class-one
For a general method to retrieve all classes you can do:
// Get a list of the classes of each matched element
let arrays = dom.a.class; // #class-arrays
// [['important'], ['button', 'cta'], ...]
// If you want a plain list with all of the classes:
let flatten = dom.a.class._flat; // #class-flat
// ['important', 'button', 'cta', ...]
// And if you just want an string with space-separated classes:
let text = dom.a.class._text; // #class-text
// 'important button cta ...'
// Add the class 'test' (different ways)
dom.a.class.test = true; // #class-make-true
dom.a.class = 'test'; // #class-push
// Remove the class 'test'
dom.a.class.test = false; // #class-make-false
Did we say it returns a simple array?
dom.a.forEach(link => link.innerHTML = 'I am a link');
But what an interesting array it is; indeed we are also proxy'ing it so you can manipulate its sub-elements straight from the selector:
// Replace all of the link's html with 'I am a link'
dom.a.html = 'I am a link';
Of course we might want to manipulate them dynamically depending on the current value. Just pass it a function:
// Append ' ^_^' to all of the links in the page
dom.a.html = html => html + ' ^_^';
// Same as this:
dom.a.forEach(link => link.innerHTML = link.innerHTML + ' ^_^');
Note: this won't work
dom.a.html += ' ^_^';
for more than 1 match (for reasons)
Or get into genetics to manipulate the attributes:
dom.a.attr.target = '_blank';
// Only to external sites:
let isOwnPage = el => /^https?\:\/\/mypage\.com/.test(el.getAttribute('href'));
dom.a.attr.target = (prev, i, element) => isOwnPage(element) ? '' : '_blank';
You can also handle and trigger events:
// Handle click events for all <a>
dom.a.on.click = e => ...;
// Trigger click event for all <a>
dom.a.trigger.click;
We are using Jest as a Grunt task for testing. Install Jest and run in the terminal:
grunt watch
Author: franciscop
Source Code: https://github.com/franciscop/superdom
License: MIT license
1617449307
Chartered Accountancy course requires mental focus & discipline, coaching for CA Foundation, CA Inter and CA Finals are omnipresent, and some of the best faculty’s classes have moved online, in this blog, we are going to give the best way to find online videos lectures, various online websites provide the CA lectures, Smartnstudy one of the best site to CA preparation, here all faculty’s video lecture available.
check here : ca classes
#ca classes online #ca classes in delhi #ca classes app #ca pendrive classes #ca google drive classes #best ca classes online
1596728880
In this tutorial we’ll learn how to begin programming with R using RStudio. We’ll install R, and RStudio RStudio, an extremely popular development environment for R. We’ll learn the key RStudio features in order to start programming in R on our own.
If you already know how to use RStudio and want to learn some tips, tricks, and shortcuts, check out this Dataquest blog post.
[tidyverse](https://www.dataquest.io/blog/tutorial-getting-started-with-r-and-rstudio/#tve-jump-173bb26184b)
Packages[tidyverse](https://www.dataquest.io/blog/tutorial-getting-started-with-r-and-rstudio/#tve-jump-173bb264c2b)
Packages into Memory#data science tutorials #beginner #r tutorial #r tutorials #rstats #tutorial #tutorials
1596513720
What exactly is clean data? Clean data is accurate, complete, and in a format that is ready to analyze. Characteristics of clean data include data that are:
Common symptoms of messy data include data that contain:
In this blog post, we will work with five property-sales datasets that are publicly available on the New York City Department of Finance Rolling Sales Data website. We encourage you to download the datasets and follow along! Each file contains one year of real estate sales data for one of New York City’s five boroughs. We will work with the following Microsoft Excel files:
As we work through this blog post, imagine that you are helping a friend launch their home-inspection business in New York City. You offer to help them by analyzing the data to better understand the real-estate market. But you realize that before you can analyze the data in R, you will need to diagnose and clean it first. And before you can diagnose the data, you will need to load it into R!
Benefits of using tidyverse tools are often evident in the data-loading process. In many cases, the tidyverse package readxl
will clean some data for you as Microsoft Excel data is loaded into R. If you are working with CSV data, the tidyverse readr
package function read_csv()
is the function to use (we’ll cover that later).
Let’s look at an example. Here’s how the Excel file for the Brooklyn borough looks:
The Brooklyn Excel file
Now let’s load the Brooklyn dataset into R from an Excel file. We’ll use the readxl
package. We specify the function argument skip = 4
because the row that we want to use as the header (i.e. column names) is actually row 5. We can ignore the first four rows entirely and load the data into R beginning at row 5. Here’s the code:
library(readxl) # Load Excel files
brooklyn <- read_excel("rollingsales_brooklyn.xls", skip = 4)
Note we saved this dataset with the variable name brooklyn
for future use.
The tidyverse offers a user-friendly way to view this data with the glimpse()
function that is part of the tibble
package. To use this package, we will need to load it for use in our current session. But rather than loading this package alone, we can load many of the tidyverse packages at one time. If you do not have the tidyverse collection of packages, install it on your machine using the following command in your R or R Studio session:
install.packages("tidyverse")
Once the package is installed, load it to memory:
library(tidyverse)
Now that tidyverse
is loaded into memory, take a “glimpse” of the Brooklyn dataset:
glimpse(brooklyn)
## Observations: 20,185
## Variables: 21
## $ BOROUGH <chr> "3", "3", "3", "3", "3", "3", "…
## $ NEIGHBORHOOD <chr> "BATH BEACH", "BATH BEACH", "BA…
## $ `BUILDING CLASS CATEGORY` <chr> "01 ONE FAMILY DWELLINGS", "01 …
## $ `TAX CLASS AT PRESENT` <chr> "1", "1", "1", "1", "1", "1", "…
## $ BLOCK <dbl> 6359, 6360, 6364, 6367, 6371, 6…
## $ LOT <dbl> 70, 48, 74, 24, 19, 32, 65, 20,…
## $ `EASE-MENT` <lgl> NA, NA, NA, NA, NA, NA, NA, NA,…
## $ `BUILDING CLASS AT PRESENT` <chr> "S1", "A5", "A5", "A9", "A9", "…
## $ ADDRESS <chr> "8684 15TH AVENUE", "14 BAY 10T…
## $ `APARTMENT NUMBER` <chr> NA, NA, NA, NA, NA, NA, NA, NA,…
## $ `ZIP CODE` <dbl> 11228, 11228, 11214, 11214, 112…
## $ `RESIDENTIAL UNITS` <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1…
## $ `COMMERCIAL UNITS` <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `TOTAL UNITS` <dbl> 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1…
## $ `LAND SQUARE FEET` <dbl> 1933, 2513, 2492, 1571, 2320, 3…
## $ `GROSS SQUARE FEET` <dbl> 4080, 1428, 972, 1456, 1566, 22…
## $ `YEAR BUILT` <dbl> 1930, 1930, 1950, 1935, 1930, 1…
## $ `TAX CLASS AT TIME OF SALE` <chr> "1", "1", "1", "1", "1", "1", "…
## $ `BUILDING CLASS AT TIME OF SALE` <chr> "S1", "A5", "A5", "A9", "A9", "…
## $ `SALE PRICE` <dbl> 1300000, 849000, 0, 830000, 0, …
## $ `SALE DATE` <dttm> 2020-04-28, 2020-03-18, 2019-0…
The glimpse()
function provides a user-friendly way to view the column names and data types for all columns, or variables, in the data frame. With this function, we are also able to view the first few observations in the data frame. This data frame has 20,185 observations, or property sales records. And there are 21 variables, or columns.
#data science tutorials #beginner #r #r tutorial #r tutorials #rstats #tidyverse #tutorial #tutorials