How to Send Email Using API or SMTP

Which email transfer method should you use for sending transactional or bulk emails? Primarily, there are two options. A platform-agnostic SMTP relay is the most common one. It is based on the Simple Mail Transfer Protocol and sometimes is the only choice that makes sense. Web APIs, however, are better than the SMTP method in many use cases and have increased in popularity. You may also want to give it a shot. Let’s find out.

What is the difference between Web API and SMTP Relay?

The SMTP is a set of rules used to send emails. SMTP relay refers to the process of transferring emails from one mail server to another. In practice, this term denotes the SMTP server that enables the relaying. For more on this, you can read our blog post about SMTP relay. Most email service providers (ESP) set up SMTP relay servers. This way, users can send their emails using the infrastructure of a sender with an outstanding reputation. 

API stands for an application programming interface. It lets you integrate different apps. A Web API or HTTP API is a type of interface where the communication takes place using the HyperText Transfer Protocol (HTTP). This is a universal web protocol for different kinds of data. If it’s used for email, a Web API is generally called an Email API. It allows a user app to access functions offered by ESPs for email handling.

What should I use: SMTP relay or Web API?

Your choice should depend on your needs and project requirements. Both email transfer methods focus on providing a high rate of email deliverability. But they differ in what approach they use. SMTP involves the back-and-forth communication (handshake) between the client and the server. Since these handshakes are many, the method is called chatty. SMTP relay is a good solution for casual email senders who need simplicity for basic tasks. You can use it to integrate with your CRM system or mail client. 

The Web API makes sending quicker because there is less back-and-forth required compared to the SMTP. Another benefit is additional functionality outside of pure email sending. For example, you can automate your transactions, track metrics, and so on. HTTP API is often the choice of marketers dealing with bulk emails and developers who build their own products. 

SMTP relay explained

As you know, SMTP is a protocol with which your mail user agent (the client) sends emails to the server. Email sending is based on the conversation between the client and the server. It starts with the initiation of a TCP connection with a particular port. The client sends separate pieces of information, and the server needs to check the email and authentication. They talk to each other using SMTP commands and response codes. If everything is okay, the email is relayed to the receiving SMTP server. The sender’s and recipient’s SMTP servers have a similar conversation. The outcome is that the email will be either delivered, blocked, or put into the spam folder. The further delivery of the email to the recipient’s mail user agent is carried out via IMAP or POP3 protocol. Read more about email protocols in SMTP vs. IMAP vs. POP3.

Pros and cons of SMTP relay

Pros:

No hassle with setup

All you need to do is input your SMTP credentials to your mail user agent. After that, you can send emails right from your system. No coding skills are required to do that.

Platform-independent

The SMTP connection has no specific restrictions that the app or system must integrate.

Detailed conversation between the client and server

Each command sent by the client to the server gets a response code, which always includes context. If there is an error, you’ll get an idea of what exactly went wrong.

Cons:

Bad choice for bulk email 

SMTP relay requires multiple communications between the client and the server. This not only increases the error rate but also slows down the sending of bulk emails. Furthermore, you’ll have to deal with Mail Merge and MIME. 

Changing deliverability

Most SMTP relay services use shared IP addresses, which affect the sender’s reputation. This, in turn, is crucial for deliverability – that’s why its rate may change all the time. A white label email marketing software can be a solution, but it requires some DNS tweaks. 

Blocked SMTP ports

Some environments may block SMTP due to built-in or firewall restrictions. Mostly, this refers to the use of port 25, which is one of the most abused ports for spamming. All these issues can be solved but it will take much of your time and effort.

Example of sending an email via SMTP 

Now, let’s take a look at a regular SMTP session between the client and the server. For this, we’ll use the fake SMTP server by Mailtrap and one of the most common tools for testing – Telnet. We’ve already blogged about how to use it in How to Test SMTP Server

>telnet smtp.mailtrap.io 25<220 mailtrap.io ESMTP ready>EHLO client<250-mailtrap.io<250-SIZE 5242880<250-PIPELINING<250-ENHANCEDSTATUSCODES<250-8BITMIME<250-DSN<250-AUTH PLAIN LOGIN CRAM-MD5<250 STARTTLS>AUTH LOGIN<334 VXNlcm5hbWU6//username encoded in BASE64 OTRiNzg0YjU5NzBlZGY=>dXNlcm5hbWU=<334 UGFzc3dvcmQ6//password encoded in BASE64  MDFhNWQ1MTUwMTFmNmU=>cGFzc3dvcmQ=<235 2.0.0 OK>MAIL FROM:<jon@snow.com><250 2.1.0 Ok>RCPT TO:<sansa@stark.com><250 2.1.0 Ok>DATA<354 Go ahead>From: jon@snow.com>Subject: Test email>To: sansa@stark.com >This is a body text >.<250 2.0.0 Ok: queued>QUIT

If you check your Demo inbox, you’ll find the email there. That’s a huge benefit of using a fake SMTP server. Your emails won’t go to real recipients. Therefore you can use fake email addresses just like we did in the example above. 

Web API explained

A web API is a type of interface where the communication takes place using web-specific protocols, mostly HTTP. It allows you to integrate functions from a third-party service into your own app. So, the web API is a sort of a bridge to other tools or services. Requests to web APIs use standard HTTP methods. The full list of them is CONNECT, DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT, and TRACE. An Email API is a web API that lets your app access functions provided by an ESP. In simple English, you add a few lines of code (API) to your app’s backend, and the email sending is triggered directly from there. 

Initially, web APIs were called web services. They were designed to be used as part of a service-oriented architecture (SOA) and to communicate using the Simple Object Access Protocol (SOAP). Today, most web-based APIs use Representational State Transfer (REST) as an architectural style. So, are REST APIs and HTTP APIs the same? Definitely not.

What is RESTful API?

RESTful API is an HTTP API that adheres to the REST architectural constraints. HTTP is a way to transfer files, while the REST is a set of rules about how to use transfer protocols including HTTP and SMTP. 

In practice, most RESTful APIs use HTTP as a transport layer, and most HTTP APIs can be very close to becoming a true RESTful API.

What does Web SMTP API stand for?

Many ESPs offer a Web SMTP API for sending emails via SMTP. These APIs are meant to work with any RFC-compliant SMTP server. You can integrate the SMTP API with any internal or third-party system and send emails from it. So, your emails will be delivered via SMTP, but you’ll get advanced control over your email sending. For example, you can label your emails, set filters for incoming data, create dynamic emails, track metrics, and many more. SMTP API is sort of a blend of Web API and SMTP relay. 

Check out the original article on Mailtrap Blog, where you can learn how Mailgun SMTP and API differs and explore other SMTP providers which have these two options available.
 

What is GEEK

Buddha Community

Chloe  Butler

Chloe Butler

1667425440

Pdf2gerb: Perl Script Converts PDF Files to Gerber format

pdf2gerb

Perl script converts PDF files to Gerber format

Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.

The general workflow is as follows:

  1. Design the PCB using your favorite CAD or drawing software.
  2. Print the top and bottom copper and top silk screen layers to a PDF file.
  3. Run Pdf2Gerb on the PDFs to create Gerber and Excellon files.
  4. Use a Gerber viewer to double-check the output against the original PCB design.
  5. Make adjustments as needed.
  6. Submit the files to a PCB manufacturer.

Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).

See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.


pdf2gerb_cfg.pm

#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;

use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)


##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file

use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call

#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software.  \nGerber files MAY CONTAIN ERRORS.  Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG

use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC

use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)

#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1); 

#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
    .010, -.001,  #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
    .031, -.014,  #used for vias
    .041, -.020,  #smallest non-filled plated hole
    .051, -.025,
    .056, -.029,  #useful for IC pins
    .070, -.033,
    .075, -.040,  #heavier leads
#    .090, -.043,  #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
    .100, -.046,
    .115, -.052,
    .130, -.061,
    .140, -.067,
    .150, -.079,
    .175, -.088,
    .190, -.093,
    .200, -.100,
    .220, -.110,
    .160, -.125,  #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
    .090, -.040,  #want a .090 pad option, but use dummy hole size
    .065, -.040, #.065 x .065 rect pad
    .035, -.040, #.035 x .065 rect pad
#traces:
    .001,  #too thin for real traces; use only for board outlines
    .006,  #minimum real trace width; mainly used for text
    .008,  #mainly used for mid-sized text, not traces
    .010,  #minimum recommended trace width for low-current signals
    .012,
    .015,  #moderate low-voltage current
    .020,  #heavier trace for power, ground (even if a lighter one is adequate)
    .025,
    .030,  #heavy-current traces; be careful with these ones!
    .040,
    .050,
    .060,
    .080,
    .100,
    .120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);

#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size:   parsed PDF diameter:      error:
#  .014                .016                +.002
#  .020                .02267              +.00267
#  .025                .026                +.001
#  .029                .03167              +.00267
#  .033                .036                +.003
#  .040                .04267              +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
    HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
    RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
    SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
    RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
    TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
    REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};

#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
    CIRCLE_ADJUST_MINX => 0,
    CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
    CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
    CIRCLE_ADJUST_MAXY => 0,
    SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
    WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
    RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};

#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches

#line join/cap styles:
use constant
{
    CAP_NONE => 0, #butt (none); line is exact length
    CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
    CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
    CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
    
#number of elements in each shape type:
use constant
{
    RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
    LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
    CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
    CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
    rect => RECT_SHAPELEN,
    line => LINE_SHAPELEN,
    curve => CURVE_SHAPELEN,
    circle => CIRCLE_SHAPELEN,
);

#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions

# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?

#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes. 
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes

#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches

# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)

# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time

# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const

use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool

my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time

print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load


#############################################################################################
#junk/experiment:

#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html

#my $caller = "pdf2gerb::";

#sub cfg
#{
#    my $proto = shift;
#    my $class = ref($proto) || $proto;
#    my $settings =
#    {
#        $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
#    };
#    bless($settings, $class);
#    return $settings;
#}

#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;

#print STDERR "read cfg file\n";

#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names

#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }

Download Details:

Author: swannman
Source Code: https://github.com/swannman/pdf2gerb

License: GPL-3.0 license

#perl 

Ayan Code

1656193861

Simple Login Page in HTML and CSS | Source Code

Hello guys, Today in this post we’ll learn How to Create a Simple Login Page with a fantastic design. To create it we are going to use pure CSS and HTML. Hope you enjoy this post.

A login page is one of the most important component of a website or app that allows authorized users to access an entire site or a part of a website. You would have already seen them when visiting a website. Let's head to create it.

Whether it’s a signup or login page, it should be catchy, user-friendly and easy to use. These types of Forms lead to increased sales, lead generation, and customer growth.


Demo

Click to watch demo!

Simple Login Page HTML CSS (source code)

<!DOCTYPE html>
  <html lang="en" >
  <head>
    <meta charset="UTF-8">
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/normalize/5.0.0/normalize.min.css">
  <link rel="stylesheet" href="styledfer.css">
  </head>

  <body>
   <div id="login-form-wrap">
    <h2>Login</h2>
    <form id="login-form">
      <p>
      <input type="email" id="email" name="email" placeholder="Email " required><i class="validation"><span></span><span></span></i>
      </p>
      <p>
      <input type="password" id="password" name="password" placeholder="Password" required><i class="validation"><span></span><span></span></i>
      </p>
      <p>
      <input type="submit" id="login" value="Login">
      </p>

      </form>
    <div id="create-account-wrap">
      <p>Don't have an accout? <a href="#">Create One</a><p>
    </div>
   </div>
    
  <script src='https://code.jquery.com/jquery-2.2.4.min.js'></script>
  <script src='https://cdnjs.cloudflare.com/ajax/libs/jquery-validate/1.15.0/jquery.validate.min.js'></script>
  </body>
</html>

CSS CODE

body {
  background-color: #020202;
  font-size: 1.6rem;
  font-family: "Open Sans", sans-serif;
  color: #2b3e51;
}
h2 {
  font-weight: 300;
  text-align: center;
}
p {
  position: relative;
}
a,
a:link,
a:visited,
a:active {
  color: #ff9100;
  -webkit-transition: all 0.2s ease;
  transition: all 0.2s ease;
}
a:focus, a:hover,
a:link:focus,
a:link:hover,
a:visited:focus,
a:visited:hover,
a:active:focus,
a:active:hover {
  color: #ff9f22;
  -webkit-transition: all 0.2s ease;
  transition: all 0.2s ease;
}
#login-form-wrap {
  background-color: #fff;
  width: 16em;
  margin: 30px auto;
  text-align: center;
  padding: 20px 0 0 0;
  border-radius: 4px;
  box-shadow: 0px 30px 50px 0px rgba(0, 0, 0, 0.2);
}
#login-form {
  padding: 0 60px;
}
input {
  display: block;
  box-sizing: border-box;
  width: 100%;
  outline: none;
  height: 60px;
  line-height: 60px;
  border-radius: 4px;
}
#email,
#password {
  width: 100%;
  padding: 0 0 0 10px;
  margin: 0;
  color: #8a8b8e;
  border: 1px solid #c2c0ca;
  font-style: normal;
  font-size: 16px;
  -webkit-appearance: none;
     -moz-appearance: none;
          appearance: none;
  position: relative;
  display: inline-block;
  background: none;
}
#email:focus,
#password:focus {
  border-color: #3ca9e2;
}
#email:focus:invalid,
#password:focus:invalid {
  color: #cc1e2b;
  border-color: #cc1e2b;
}
#email:valid ~ .validation,
#password:valid ~ .validation 
{
  display: block;
  border-color: #0C0;
}
#email:valid ~ .validation span,
#password:valid ~ .validation span{
  background: #0C0;
  position: absolute;
  border-radius: 6px;
}
#email:valid ~ .validation span:first-child,
#password:valid ~ .validation span:first-child{
  top: 30px;
  left: 14px;
  width: 20px;
  height: 3px;
  -webkit-transform: rotate(-45deg);
          transform: rotate(-45deg);
}
#email:valid ~ .validation span:last-child
#password:valid ~ .validation span:last-child
{
  top: 35px;
  left: 8px;
  width: 11px;
  height: 3px;
  -webkit-transform: rotate(45deg);
          transform: rotate(45deg);
}
.validation {
  display: none;
  position: absolute;
  content: " ";
  height: 60px;
  width: 30px;
  right: 15px;
  top: 0px;
}
input[type="submit"] {
  border: none;
  display: block;
  background-color: #ff9100;
  color: #fff;
  font-weight: bold;
  text-transform: uppercase;
  cursor: pointer;
  -webkit-transition: all 0.2s ease;
  transition: all 0.2s ease;
  font-size: 18px;
  position: relative;
  display: inline-block;
  cursor: pointer;
  text-align: center;
}
input[type="submit"]:hover {
  background-color: #ff9b17;
  -webkit-transition: all 0.2s ease;
  transition: all 0.2s ease;
}

#create-account-wrap {
  background-color: #eeedf1;
  color: #8a8b8e;
  font-size: 14px;
  width: 100%;
  padding: 10px 0;
  border-radius: 0 0 4px 4px;
}

Congratulations! You have now successfully created our Simple Login Page in HTML and CSS.

My Website: codewithayan, see this to checkout all of my amazing Tutorials.

Samanta  Moore

Samanta Moore

1621111320

How to Validate an Email Address in Java

Email is one of the most universal tools for sharing and receiving information across the globe, with users able to connect with others online with almost no compatibility or access issues. Using this tool, information can be instantly and securely sent to partners on the other side of the world, and personal information can be verified without divulging sensitive data about a user.

Along with this widespread use, however, comes key security measures that must take place in order to ensure the safety of your organization and data. This is particularly the case when receiving email information from previously unknown sources. These risks can include phishing attempts, malware, and other threats that can cause a negative impact to your business. Furthermore, when receiving an email address via account forms and user sign up information, you need to check that the information you are given is not only correct and real, but also that it does not lead to any malicious sources that could harm your organizational security.

The following APIs will allow you to instantly verify and validate an input email address without sending any kind of notification to the email user. This will help protect your organization in the event of any threats. The goal of this tutorial is to provide you with the tools to protect your organization’s information while providing a way to verify new accounts and user information.

This will be done through three separate functions. The first will analyze the validity of an email address’ syntax. The second will check for the address’ servers, and the third performs a full email address validation including returning the results for the previous two functions.

#java #api #java api #api access keys #api tutorial #email verification #email validation #java api tutorials #java apis #api tutorials

Flo  D'Amore

Flo D'Amore

1602682380

Build vs. Buy Behavioral Email Platform for API Product Companies

Behavioral email is automated and targeted messages sent to customers based on their actions or behavior. By triggering on how your customers interact with your website or product, you’re able to send email whose content is actually aligned with what they’re doing, and will therefore be far more likely to resonate.

API companies are uniquely positioned to take advantage of behavioral emails; If monitoring and analytics is done right, then insights into what’s going on deep within the platform can be surfaced; And insightful, or even prescient, communiqués can be made.

Common capabilities of behavioral email in API platform companies include helping developers speed API integration & try out new product features, and keeping customers informed on subscription & platform issues.

Off-the-shelf behavioral email solutions can provide all of the functionality as outlined in this article. But in this post we’re going to break down what it would take, technically, to build your own behavioral email solution.

What’s required to build your own behavioral email solution?

A behavioral email product consists of at least three parts:

1. A methodology to get monitoring data from an API

2. A way to define rules and validate the monitoring data

3. A process to send specific emails to users when a rule is met

Acquisition of monitoring data from an API

Depending on how confident you feel, you could build a whole monitoring solution from scratch, or you could employ an off-the-shelf open-source system such as Prometheus.

Prometheus is a monitoring solution for microservices. By including a Prometheus client in your application, it can be called when you want to record a metric. The Prometheus server will then poll the data source at regular intervals and persist the result. The Prometheus docs have a setup guide to help with installation.

Prometheus clients come with default metrics configured out-of-the-box, so you don’t have to manually set up basic stuff like CPU or memory monitoring.

For a Node.js/Express.js based API, you can install the Node.js client for Prometheus via NPM and configuration only takes a few lines of code:


const prometheus = require('prom-client');

const register = new prometheus.Registry();

prometheus.collectDefaultMetrics({ register });

The default metrics are fundamental and not API related, so you would have to set up more complex metrics yourself.

The code for a very simple API metric might look like:


const activeRequests = new client.Gauge({

 name: 'activeRequests'

});

registry.registerMetric(activeRequests);

api.use((req, res, next) => {

 activeRequests.inc();

 res.on('close', () => activeRequests.dec());

 next();

});

Prometheus only covers three out of the top 15 most important API metrics you should be tracking, the rest have to be defined with custom code.

#api #email marketing #api integration #analytics platforms #api monitoring #monitoring and alerting #api providers #email api #email solution #user behavior analytics

Sival Alethea

Sival Alethea

1624302000

APIs for Beginners - How to use an API (Full Course / Tutorial)

What is an API? Learn all about APIs (Application Programming Interfaces) in this full tutorial for beginners. You will learn what APIs do, why APIs exist, and the many benefits of APIs. APIs are used all the time in programming and web development so it is important to understand how to use them.

You will also get hands-on experience with a few popular web APIs. As long as you know the absolute basics of coding and the web, you’ll have no problem following along.
⭐️ Unit 1 - What is an API
⌨️ Video 1 - Welcome (0:00:00)
⌨️ Video 2 - Defining Interface (0:03:57)
⌨️ Video 3 - Defining API (0:07:51)
⌨️ Video 4 - Remote APIs (0:12:55)
⌨️ Video 5 - How the web works (0:17:04)
⌨️ Video 6 - RESTful API Constraint Scavenger Hunt (0:22:00)

⭐️ Unit 2 - Exploring APIs
⌨️ Video 1 - Exploring an API online (0:27:36)
⌨️ Video 2 - Using an API from the command line (0:44:30)
⌨️ Video 3 - Using Postman to explore APIs (0:53:56)
⌨️ Video 4 - Please please Mr. Postman (1:03:33)
⌨️ Video 5 - Using Helper Libraries (JavaScript) (1:14:41)
⌨️ Video 6 - Using Helper Libraries (Python) (1:24:40)

⭐️ Unit 3 - Using APIs
⌨️ Video 1 - Introducing the project (1:34:18)
⌨️ Video 2 - Flask app (1:36:07)
⌨️ Video 3 - Dealing with API Limits (1:50:00)
⌨️ Video 4 - JavaScript Single Page Application (1:54:27)
⌨️ Video 5 - Moar JavaScript and Recap (2:07:53)
⌨️ Video 6 - Review (2:18:03)
📺 The video in this post was made by freeCodeCamp.org
The origin of the article: https://www.youtube.com/watch?v=GZvSYJDk-us&list=PLWKjhJtqVAblfum5WiQblKPwIbqYXkDoC&index=5
🔥 If you’re a beginner. I believe the article below will be useful to you ☞ What You Should Know Before Investing in Cryptocurrency - For Beginner
⭐ ⭐ ⭐The project is of interest to the community. Join to Get free ‘GEEK coin’ (GEEKCASH coin)!
☞ **-----CLICK HERE-----**⭐ ⭐ ⭐
Thanks for visiting and watching! Please don’t forget to leave a like, comment and share!

#apis #apis for beginners #how to use an api #apis for beginners - how to use an api #application programming interfaces #learn all about apis