Oral  Brekke

Oral Brekke

1622549400

Caching Ruby Gems on Github Actions Using ruby/setup-ruby or actions/cache

How do you cache Ruby gems on Github Actions CI? There are actually 2 ways of doing it with ruby/setup-ruby or actions/cache.

How to start CI build faster by loading Ruby gems from cache on Github Actions? You can start running your tests for a Ruby on Rails project quicker if you manage to set up all dependencies in a short amount of time. Caching can be helpful with that. Ruby gems needed for your project can be cached by Github Actions and thanks to that they can be loaded much faster when you run a new CI build.

You will learn how to configure Github Actions using:

  • actions/cache — it’s a popular solution to cache Ruby gems.
  • ruby/setup-ruby — it’s a solution to install a specific Ruby version and cache Ruby gems with bundler. Two features in one action.

Actions/cache — Just Cache Dependencies

Actions/cache is a popular solution that can be used to save data into the cache and restore it during the next CI build. It’s often used for Ruby on Rails projects that also use actions/setup-ruby for managing the Ruby version on Github Actions.

Let’s look at the Github Actions caching config example using actions/cache.

## .github/workflows/main.yml
name: Main
on: [push, pull_request]
jobs:
  test:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2

      - uses: actions/cache@v2
        with:
          path: vendor/bundle
          key: ${{ runner.os }}-gems-${{ hashFiles('**/Gemfile.lock') }}
          restore-keys: |
            ${{ runner.os }}-gems-

      - name: Bundle install
        env:
          RAILS_ENV: test
        run: |
          bundle config path vendor/bundle
          bundle install --jobs 4 --retry 3

#ruby #testing #tech #github #ruby on rails #cache #tests

What is GEEK

Buddha Community

Caching Ruby Gems on Github Actions Using ruby/setup-ruby or actions/cache
Chloe  Butler

Chloe Butler

1667425440

Pdf2gerb: Perl Script Converts PDF Files to Gerber format

pdf2gerb

Perl script converts PDF files to Gerber format

Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.

The general workflow is as follows:

  1. Design the PCB using your favorite CAD or drawing software.
  2. Print the top and bottom copper and top silk screen layers to a PDF file.
  3. Run Pdf2Gerb on the PDFs to create Gerber and Excellon files.
  4. Use a Gerber viewer to double-check the output against the original PCB design.
  5. Make adjustments as needed.
  6. Submit the files to a PCB manufacturer.

Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).

See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.


pdf2gerb_cfg.pm

#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;

use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)


##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file

use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call

#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software.  \nGerber files MAY CONTAIN ERRORS.  Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG

use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC

use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)

#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1); 

#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
    .010, -.001,  #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
    .031, -.014,  #used for vias
    .041, -.020,  #smallest non-filled plated hole
    .051, -.025,
    .056, -.029,  #useful for IC pins
    .070, -.033,
    .075, -.040,  #heavier leads
#    .090, -.043,  #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
    .100, -.046,
    .115, -.052,
    .130, -.061,
    .140, -.067,
    .150, -.079,
    .175, -.088,
    .190, -.093,
    .200, -.100,
    .220, -.110,
    .160, -.125,  #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
    .090, -.040,  #want a .090 pad option, but use dummy hole size
    .065, -.040, #.065 x .065 rect pad
    .035, -.040, #.035 x .065 rect pad
#traces:
    .001,  #too thin for real traces; use only for board outlines
    .006,  #minimum real trace width; mainly used for text
    .008,  #mainly used for mid-sized text, not traces
    .010,  #minimum recommended trace width for low-current signals
    .012,
    .015,  #moderate low-voltage current
    .020,  #heavier trace for power, ground (even if a lighter one is adequate)
    .025,
    .030,  #heavy-current traces; be careful with these ones!
    .040,
    .050,
    .060,
    .080,
    .100,
    .120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);

#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size:   parsed PDF diameter:      error:
#  .014                .016                +.002
#  .020                .02267              +.00267
#  .025                .026                +.001
#  .029                .03167              +.00267
#  .033                .036                +.003
#  .040                .04267              +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
    HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
    RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
    SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
    RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
    TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
    REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};

#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
    CIRCLE_ADJUST_MINX => 0,
    CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
    CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
    CIRCLE_ADJUST_MAXY => 0,
    SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
    WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
    RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};

#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches

#line join/cap styles:
use constant
{
    CAP_NONE => 0, #butt (none); line is exact length
    CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
    CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
    CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
    
#number of elements in each shape type:
use constant
{
    RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
    LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
    CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
    CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
    rect => RECT_SHAPELEN,
    line => LINE_SHAPELEN,
    curve => CURVE_SHAPELEN,
    circle => CIRCLE_SHAPELEN,
);

#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions

# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?

#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes. 
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes

#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches

# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)

# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time

# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const

use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool

my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time

print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load


#############################################################################################
#junk/experiment:

#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html

#my $caller = "pdf2gerb::";

#sub cfg
#{
#    my $proto = shift;
#    my $class = ref($proto) || $proto;
#    my $settings =
#    {
#        $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
#    };
#    bless($settings, $class);
#    return $settings;
#}

#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;

#print STDERR "read cfg file\n";

#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names

#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }

Download Details:

Author: swannman
Source Code: https://github.com/swannman/pdf2gerb

License: GPL-3.0 license

#perl 

Oral  Brekke

Oral Brekke

1622549400

Caching Ruby Gems on Github Actions Using ruby/setup-ruby or actions/cache

How do you cache Ruby gems on Github Actions CI? There are actually 2 ways of doing it with ruby/setup-ruby or actions/cache.

How to start CI build faster by loading Ruby gems from cache on Github Actions? You can start running your tests for a Ruby on Rails project quicker if you manage to set up all dependencies in a short amount of time. Caching can be helpful with that. Ruby gems needed for your project can be cached by Github Actions and thanks to that they can be loaded much faster when you run a new CI build.

You will learn how to configure Github Actions using:

  • actions/cache — it’s a popular solution to cache Ruby gems.
  • ruby/setup-ruby — it’s a solution to install a specific Ruby version and cache Ruby gems with bundler. Two features in one action.

Actions/cache — Just Cache Dependencies

Actions/cache is a popular solution that can be used to save data into the cache and restore it during the next CI build. It’s often used for Ruby on Rails projects that also use actions/setup-ruby for managing the Ruby version on Github Actions.

Let’s look at the Github Actions caching config example using actions/cache.

## .github/workflows/main.yml
name: Main
on: [push, pull_request]
jobs:
  test:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2

      - uses: actions/cache@v2
        with:
          path: vendor/bundle
          key: ${{ runner.os }}-gems-${{ hashFiles('**/Gemfile.lock') }}
          restore-keys: |
            ${{ runner.os }}-gems-

      - name: Bundle install
        env:
          RAILS_ENV: test
        run: |
          bundle config path vendor/bundle
          bundle install --jobs 4 --retry 3

#ruby #testing #tech #github #ruby on rails #cache #tests

Oral  Brekke

Oral Brekke

1617973680

Setup Ruby on Github Actions to cache Ruby gems for Rails project

How to start CI build faster by loading Ruby gems from cache on Github Actions? You can start running your tests for a Ruby on Rails project quicker if you manage to set up all dependencies in a short amount of time. Caching can be helpful with that. Ruby gems needed for your project can be cached by Github Actions and thanks to that they can be loaded much faster when you run a new CI build.

You will learn how to configure Github Actions using:

  • actions/cache — it’s a popular solution to cache Ruby gems.
  • ruby/setup-ruby — it’s a solution to install a specific Ruby version and cache Ruby gems with bundler. Two features in one action.

actions/cache — just cache dependencies

Actions/cache is a popular solution that can be used to save data into the cache and restore it during the next CI build. It’s often used for Ruby on Rails projects that also use actions/setup-ruby for managing the Ruby version on Github Actions.

#github-actions #ruby #github #tech

Josefa  Corwin

Josefa Corwin

1659852060

A Template Language That Completely Separates Structure and Logic/Ruby

Curly

Curly is a template language that completely separates structure and logic. Instead of interspersing your HTML with snippets of Ruby, all logic is moved to a presenter class.

Installing

Installing Curly is as simple as running gem install curly-templates. If you're using Bundler to manage your dependencies, add this to your Gemfile

gem 'curly-templates'

Curly can also install an application layout file, replacing the .erb file commonly created by Rails. If you wish to use this, run the curly:install generator.

$ rails generate curly:install

How to use Curly

In order to use Curly for a view or partial, use the suffix .curly instead of .erb, e.g. app/views/posts/_comment.html.curly. Curly will look for a corresponding presenter class named Posts::CommentPresenter. By convention, these are placed in app/presenters/, so in this case the presenter would reside in app/presenters/posts/comment_presenter.rb. Note that presenters for partials are not prepended with an underscore.

Add some HTML to the partial template along with some Curly components:

<!-- app/views/posts/_comment.html.curly -->
<div class="comment">
  <p>
    {{author_link}} posted {{time_ago}} ago.
  </p>

  {{body}}

  {{#author?}}
    <p>{{deletion_link}}</p>
  {{/author?}}
</div>

The presenter will be responsible for providing the data for the components. Add the necessary Ruby code to the presenter:

# app/presenters/posts/comment_presenter.rb
class Posts::CommentPresenter < Curly::Presenter
  presents :comment

  def body
    SafeMarkdown.render(@comment.body)
  end

  def author_link
    link_to @comment.author.name, @comment.author, rel: "author"
  end

  def deletion_link
    link_to "Delete", @comment, method: :delete
  end

  def time_ago
    time_ago_in_words(@comment.created_at)
  end

  def author?
    @comment.author == current_user
  end
end

The partial can now be rendered like any other, e.g. by calling

render 'comment', comment: comment
render comment
render collection: post.comments

Curly components are surrounded by curly brackets, e.g. {{hello}}. They always map to a public method on the presenter class, in this case #hello. Methods ending in a question mark can be used for conditional blocks, e.g. {{#admin?}} ... {{/admin?}}.

Identifiers

Curly components can specify an identifier using the so-called dot notation: {{x.y.z}}. This can be very useful if the data you're accessing is hierarchical in nature. One common example is I18n:

<h1>{{i18n.homepage.header}}</h1>
# In the presenter, the identifier is passed as an argument to the method. The
# argument will always be a String.
def i18n(key)
  translate(key)
end

The identifier is separated from the component name with a dot. If the presenter method has a default value for the argument, the identifier is optional – otherwise it's mandatory.

Attributes

In addition to an identifier, Curly components can be annotated with attributes. These are key-value pairs that affect how a component is rendered.

The syntax is reminiscent of HTML:

<div>{{sidebar rows=3 width=200px title="I'm the sidebar!"}}</div>

The presenter method that implements the component must have a matching keyword argument:

def sidebar(rows: "1", width: "100px", title:); end

All argument values will be strings. A compilation error will be raised if

  • an attribute is used in a component without a matching keyword argument being present in the method definition; or
  • a required keyword argument in the method definition is not set as an attribute in the component.

You can define default values using Ruby's own syntax. Additionally, if the presenter method accepts arbitrary keyword arguments using the **doublesplat syntax then all attributes will be valid for the component, e.g.

def greetings(**names)
  names.map {|name, greeting| "#{name}: #{greeting}!" }.join("\n")
end
{{greetings alice=hello bob=hi}}
<!-- The above would be rendered as: -->
alice: hello!
bob: hi!

Note that since keyword arguments in Ruby are represented as Symbol objects, which are not garbage collected in Ruby versions less than 2.2, accepting arbitrary attributes represents a security vulnerability if your application allows untrusted Curly templates to be rendered. Only use this feature with trusted templates if you're not on Ruby 2.2 yet.

Conditional blocks

If there is some content you only want rendered under specific circumstances, you can use conditional blocks. The {{#admin?}}...{{/admin?}} syntax will only render the content of the block if the admin? method on the presenter returns true, while the {{^admin?}}...{{/admin?}} syntax will only render the content if it returns false.

Both forms can have an identifier: {{#locale.en?}}...{{/locale.en?}} will only render the block if the locale? method on the presenter returns true given the argument "en". Here's how to implement that method in the presenter:

class SomePresenter < Curly::Presenter
  # Allows rendering content only if the locale matches a specified identifier.
  def locale?(identifier)
    current_locale == identifier
  end
end

Furthermore, attributes can be set on the block. These only need to be specified when opening the block, not when closing it:

{{#square? width=3 height=3}}
  <p>It's square!</p>
{{/square?}}

Attributes work the same way as they do for normal components.

Collection blocks

Sometimes you want to render one or more items within the current template, and splitting out a separate template and rendering that in the presenter is too much overhead. You can instead define the template that should be used to render the items inline in the current template using the collection block syntax.

Collection blocks are opened using an asterisk:

{{*comments}}
  <li>{{body}} ({{author_name}})</li>
{{/comments}}

The presenter will need to expose the method #comments, which should return a collection of objects:

class Posts::ShowPresenter < Curly::Presenter
  presents :post

  def comments
    @post.comments
  end
end

The template within the collection block will be used to render each item, and it will be backed by a presenter named after the component – in this case, comments. The name will be singularized and Curly will try to find the presenter class in the following order:

  • Posts::ShowPresenter::CommentPresenter
  • Posts::CommentPresenter
  • CommentPresenter

This allows you some flexibility with regards to how you want to organize these nested templates and presenters.

Note that the nested template will only have access to the methods on the nested presenter, but all variables passed to the "parent" presenter will be forwarded to the nested presenter. In addition, the current item in the collection will be passed, as well as that item's index in the collection:

class Posts::CommentPresenter < Curly::Presenter
  presents :post, :comment, :comment_counter

  def number
    # `comment_counter` is automatically set to the item's index in the collection,
    # starting with 1.
    @comment_counter
  end

  def body
    @comment.body
  end

  def author_name
    @comment.author.name
  end
end

Collection blocks are an alternative to splitting out a separate template and rendering that from the presenter – which solution is best depends on your use case.

Context blocks

While collection blocks allow you to define the template that should be used to render items in a collection right within the parent template, context blocks allow you to define the template for an arbitrary context. This is very powerful, and can be used to define widget-style components and helpers, and provide an easy way to work with structured data. Let's say you have a comment form on your page, and you'd rather keep the template inline. A simple template could look like:

<!-- post.html.curly -->
<h1>{{title}}</h1>
{{body}}

{{@comment_form}}
  <b>Name: </b> {{name_field}}<br>
  <b>E-mail: </b> {{email_field}}<br>
  {{comment_field}}

  {{submit_button}}
{{/comment_form}}

Note that an @ character is used to denote a context block. Like with collection blocks, a separate presenter class is used within the block, and a simple convention is used to find it. The name of the context component (in this case, comment_form) will be camel cased, and the current presenter's namespace will be searched:

class PostPresenter < Curly::Presenter
  presents :post
  def title; @post.title; end
  def body; markdown(@post.body); end

  # A context block method *must* take a block argument. The return value
  # of the method will be used when rendering. Calling the block argument will
  # render the nested template. If you pass a value when calling the block
  # argument it will be passed to the presenter.
  def comment_form(&block)
    form_for(Comment.new, &block)
  end

  # The presenter name is automatically deduced.
  class CommentFormPresenter < Curly::Presenter
    # The value passed to the block argument will be passed in a parameter named
    # after the component.
    presents :comment_form

    # Any parameters passed to the parent presenter will be forwarded to this
    # presenter as well.
    presents :post

    def name_field
      @comment_form.text_field :name
    end

    # ...
  end
end

Context blocks were designed to work well with Rails' helper methods such as form_for and content_tag, but you can also work directly with the block. For instance, if you want to directly control the value that is passed to the nested presenter, you can call the call method on the block yourself:

def author(&block)
  content_tag :div, class: "author" do
    # The return value of `call` will be the result of rendering the nested template
    # with the argument. You can post-process the string if you want.
    block.call(@post.author)
  end
end

Context shorthand syntax

If you find yourself opening a context block just in order to use a single component, e.g. {{@author}}{{name}}{{/author}}, you can use the shorthand syntax instead: {{author:name}}. This works for all component types, e.g.

{{#author:admin?}}
  <p>The author is an admin!</p>
{{/author:admin?}}

The syntax works for nested contexts as well, e.g. {{comment:author:name}}. Any identifier and attributes are passed to the target component, which in this example would be {{name}}.

Setting up state

Although most code in Curly presenters should be free of side effects, sometimes side effects are required. One common example is defining content for a content_for block.

If a Curly presenter class defines a setup! method, it will be called before the view is rendered:

class PostPresenter < Curly::Presenter
  presents :post

  def setup!
    content_for :title, post.title

    content_for :sidebar do
      render 'post_sidebar', post: post
    end
  end
end

Escaping Curly syntax

In order to have {{ appear verbatim in the rendered HTML, use the triple Curly escape syntax:

This is {{{escaped}}.

You don't need to escape the closing }}.

Comments

If you want to add comments to your Curly templates that are not visible in the rendered HTML, use the following syntax:

{{! This is some interesting stuff }}

Presenters

Presenters are classes that inherit from Curly::Presenter – they're usually placed in app/presenters/, but you can put them anywhere you'd like. The name of the presenter classes match the virtual path of the view they're part of, so if your controller is rendering posts/show, the Posts::ShowPresenter class will be used. Note that Curly is only used to render a view if a template can be found – in this case, at app/views/posts/show.html.curly.

Presenters can declare a list of accepted variables using the presents method:

class Posts::ShowPresenter < Curly::Presenter
  presents :post
end

A variable can have a default value:

class Posts::ShowPresenter < Curly::Presenter
  presents :post
  presents :comment, default: nil
end

Any public method defined on the presenter is made available to the template as a component:

class Posts::ShowPresenter < Curly::Presenter
  presents :post

  def title
    @post.title
  end

  def author_link
    # You can call any Rails helper from within a presenter instance:
    link_to author.name, profile_path(author), rel: "author"
  end

  private

  # Private methods are not available to the template, so they're safe to
  # use.
  def author
    @post.author
  end
end

Presenter methods can even take an argument. Say your Curly template has the content {{t.welcome_message}}, where welcome_message is an I18n key. The following presenter method would make the lookup work:

def t(key)
  translate(key)
end

That way, simple ``functions'' can be added to the Curly language. Make sure these do not have any side effects, though, as an important part of Curly is the idempotence of the templates.

Layouts and content blocks

Both layouts and content blocks (see content_for) use yield to signal that content can be inserted. Curly works just like ERB, so calling yield with no arguments will make the view usable as a layout, while passing a Symbol will make it try to read a content block with the given name:

# Given you have the following Curly template in
# app/views/layouts/application.html.curly
#
#   <html>
#     <head>
#       <title>{{title}}</title>
#     </head>
#     <body>
#       <div id="sidebar">{{sidebar}}</div>
#       {{body}}
#     </body>
#   </html>
#
class ApplicationLayout < Curly::Presenter
  def title
    "You can use methods just like in any other presenter!"
  end

  def sidebar
    # A view can call `content_for(:sidebar) { "some HTML here" }`
    yield :sidebar
  end

  def body
    # The view will be rendered and inserted here:
    yield
  end
end

Rails helper methods

In order to make a Rails helper method available as a component in your template, use the exposes_helper method:

class Layouts::ApplicationPresenter < Curly::Presenter
  # The components {{sign_in_path}} and {{root_path}} are made available.
  exposes_helper :sign_in_path, :root_path
end

Testing

Presenters can be tested directly, but sometimes it makes sense to integrate with Rails on some levels. Currently, only RSpec is directly supported, but you can easily instantiate a presenter:

SomePresenter.new(context, assigns)

context is a view context, i.e. an object that responds to render, has all the helper methods you expect, etc. You can pass in a test double and see what you need to stub out. assigns is the hash containing the controller and local assigns. You need to pass in a key for each argument the presenter expects.

Testing with RSpec

In order to test presenters with RSpec, make sure you have rspec-rails in your Gemfile. Given the following presenter:

# app/presenters/posts/show_presenter.rb
class Posts::ShowPresenter < Curly::Presenter
  presents :post

  def body
    Markdown.render(@post.body)
  end
end

You can test the presenter methods like this:

# You can put this in your `spec_helper.rb`.
require 'curly/rspec'

# spec/presenters/posts/show_presenter_spec.rb
describe Posts::ShowPresenter, type: :presenter do
  describe "#body" do
    it "renders the post's body as Markdown" do
      assign(:post, double(:post, body: "**hello!**"))
      expect(presenter.body).to eq "<strong>hello!</strong>"
    end
  end
end

Note that your spec must be tagged with type: :presenter.

Examples

Here is a simple Curly template – it will be looked up by Rails automatically.

<!-- app/views/posts/show.html.curly -->
<h1>{{title}}<h1>
<p class="author">{{author}}</p>
<p>{{description}}</p>

{{comment_form}}

<div class="comments">
  {{comments}}
</div>

When rendering the template, a presenter is automatically instantiated with the variables assigned in the controller or the render call. The presenter declares the variables it expects with presents, which takes a list of variables names.

# app/presenters/posts/show_presenter.rb
class Posts::ShowPresenter < Curly::Presenter
  presents :post

  def title
    @post.title
  end

  def author
    link_to(@post.author.name, @post.author, rel: "author")
  end

  def description
    Markdown.new(@post.description).to_html.html_safe
  end

  def comments
    render 'comment', collection: @post.comments
  end

  def comment_form
    if @post.comments_allowed?
      render 'comment_form', post: @post
    else
      content_tag(:p, "Comments are disabled for this post")
    end
  end
end

Caching

Caching is handled at two levels in Curly – statically and dynamically. Static caching concerns changes to your code and templates introduced by deploys. If you do not wish to clear your entire cache every time you deploy, you need a way to indicate that some view, helper, or other piece of logic has changed.

Dynamic caching concerns changes that happen on the fly, usually made by your users in the running system. You wish to cache a view or a partial and have it expire whenever some data is updated – usually whenever a specific record is changed.

Dynamic Caching

Because of the way logic is contained in presenters, caching entire views or partials by the data they present becomes exceedingly straightforward. Simply define a #cache_key method that returns a non-nil object, and the return value will be used to cache the template.

Whereas in ERB you would include the cache call in the template itself:

<% cache([@post, signed_in?]) do %>
  ...
<% end %>

In Curly you would instead declare it in the presenter:

class Posts::ShowPresenter < Curly::Presenter
  presents :post

  def cache_key
    [@post, signed_in?]
  end
end

Likewise, you can add a #cache_duration method if you wish to automatically expire the fragment cache:

class Posts::ShowPresenter < Curly::Presenter
  ...

  def cache_duration
    30.minutes
  end
end

In order to set any cache option, define a #cache_options method that returns a Hash of options:

class Posts::ShowPresenter < Curly::Presenter
  ...

  def cache_options
    { compress: true, namespace: "my-app" }
  end
end

Static Caching

Static caching will only be enabled for presenters that define a non-nil #cache_key method (see Dynamic Caching.)

In order to make a deploy expire the cache for a specific view, set the version of the view to something new, usually by incrementing by one:

class Posts::ShowPresenter < Curly::Presenter
  version 3

  def cache_key
    # Some objects
  end
end

This will change the cache keys for all instances of that view, effectively expiring the old cache entries.

This works well for views, or for partials that are rendered in views that themselves are not cached. If the partial is nested within a view that is cached, however, the outer cache will not be expired. The solution is to register that the inner partial is a dependency of the outer one such that Curly can automatically deduce that the outer partial cache should be expired:

class Posts::ShowPresenter < Curly::Presenter
  version 3
  depends_on 'posts/comment'

  def cache_key
    # Some objects
  end
end

class Posts::CommentPresenter < Curly::Presenter
  version 4

  def cache_key
    # Some objects
  end
end

Now, if the version of Posts::CommentPresenter is bumped, the cache keys for both presenters would change. You can register any number of view paths with depends_on.

Curly integrates well with the caching mechanism in Rails 4 (or Cache Digests in Rails 3), so the dependencies defined with depends_on will be tracked by Rails. This will allow you to deploy changes to your templates and have the relevant caches automatically expire.

Thanks

Thanks to Zendesk for sponsoring the work on Curly.

Contributors

Build Status


Author: zendesk
Source code: https://github.com/zendesk/curly

#ruby   #ruby-on-rails 

Josefa  Corwin

Josefa Corwin

1659736920

Mailboxer: A Rails Gem to Send Messages inside A Web Application

Mailboxer

This project is based on the need for a private message system for ging / social_stream. Instead of creating our core message system heavily dependent on our development, we are trying to implement a generic and potent messaging gem.

After looking for a good gem to use we noticed the lack of messaging gems and functionality in them. Mailboxer tries to fill this void delivering a powerful and flexible message system. It supports the use of conversations with two or more participants, sending notifications to recipients (intended to be used as system notifications “Your picture has new comments”, “John Doe has updated his document”, etc.), and emailing the messageable model (if configured to do so). It has a complete implementation of a Mailbox object for each messageable with inbox, sentbox and trash.

The gem is constantly growing and improving its functionality. As it is used with our parallel development ging / social_stream we are finding and fixing bugs continously. If you want some functionality not supported yet or marked as TODO, you can create an issue to ask for it. It will be great feedback for us, and we will know what you may find useful in the gem.

Mailboxer was born from the great, but outdated, code from lpsergi / acts_as_messageable.

We are now working to make exhaustive documentation and some wiki pages in order to make it even easier to use the gem to its full potential. Please, give us some time if you find something missing or ask for it. You can also find us on the Gitter room for this repo. Join us there to talk.

Installation

Add to your Gemfile:

gem 'mailboxer'

Then run:

$ bundle install

Run install script:

$ rails g mailboxer:install

And don't forget to migrate your database:

$ rake db:migrate

You can also generate email views:

$ rails g mailboxer:views

Upgrading

If upgrading from 0.11.0 to 0.12.0, run the following generators:

$ rails generate mailboxer:namespacing_compatibility
$ rails generate mailboxer:install -s

Then, migrate your database:

$ rake db:migrate

Requirements & Settings

Emails

We are now adding support for sending emails when a Notification or a Message is sent to one or more recipients. You should modify the mailboxer initializer (/config/initializer/mailboxer.rb) to edit these settings:

Mailboxer.setup do |config|
  #Enables or disables email sending for Notifications and Messages
  config.uses_emails = true
  #Configures the default `from` address for the email sent for Messages and Notifications of Mailboxer
  config.default_from = "no-reply@dit.upm.es"
  ...
end

You can change the way in which emails are delivered by specifying a custom implementation of notification and message mailers:

Mailboxer.setup do |config|
  config.notification_mailer = CustomNotificationMailer
  config.message_mailer = CustomMessageMailer
  ...
end

If you have subclassed the Mailboxer::Notification class, you can specify the mailers using a member method:

class NewDocumentNotification < Mailboxer::Notification
  def mailer_class
    NewDocumentNotificationMailer
  end
end

class NewCommentNotification < Mailboxer::Notification
  def mailer_class
    NewDocumentNotificationMailer
  end
end

Otherwise, the mailer class will be determined by appending 'Mailer' to the mailable class name.

User identities

Users must have an identity defined by a name and an email. We must ensure that Messageable models have some specific methods. These methods are:

#Returning any kind of identification you want for the model
def name
  return "You should add method :name in your Messageable model"
end
#Returning the email address of the model if an email should be sent for this object (Message or Notification).
#If no mail has to be sent, return nil.
def mailboxer_email(object)
  #Check if an email should be sent for that object
  #if true
  return "define_email@on_your.model"
  #if false
  #return nil
end

These names are explicit enough to avoid colliding with other methods, but as long as you need to change them you can do it by using mailboxer initializer (/config/initializer/mailboxer.rb). Just add or uncomment the following lines:

Mailboxer.setup do |config|
  # ...
  #Configures the methods needed by mailboxer
  config.email_method = :mailboxer_email
  config.name_method = :name
  config.notify_method = :notify
  # ...
end

You may change whatever you want or need. For example:

config.email_method = :notification_email
config.name_method = :display_name
config.notify_method = :notify_mailboxer

Will use the method notification_email(object) instead of mailboxer_email(object), display_name for name and notify_mailboxer for notify.

Using default or custom method names, if your model doesn't implement them, Mailboxer will use dummy methods so as to notify you of missing methods rather than crashing.

Preparing your models

In your model:

class User < ActiveRecord::Base
  acts_as_messageable
end

You are not limited to the User model. You can use Mailboxer in any other model and use it in several different models. If you have ducks and cylons in your application and you want to exchange messages as if they were the same, just add acts_as_messageable to each one and you will be able to send duck-duck, duck-cylon, cylon-duck and cylon-cylon messages. Of course, you can extend it for as many classes as you need.

Example:

class Duck < ActiveRecord::Base
  acts_as_messageable
end
class Cylon < ActiveRecord::Base
  acts_as_messageable
end

Mailboxer API

Warning for version 0.8.0

Version 0.8.0 sees Messageable#read and Messageable#unread renamed to mark_as_(un)read, and Receipt#read and Receipt#unread to is_(un)read. This may break existing applications, but read is a reserved name for Active Record, and the best pratice in this case is simply avoid using it.

How can I send a message?

#alfa wants to send a message to beta
alfa.send_message(beta, "Body", "subject")

How can I read the messages of a conversation?

As a messageable, what you receive are receipts, which are associated with the message itself. You should retrieve your receipts for the conversation and get the message associated with them.

This is done this way because receipts save the information about the relation between messageable and the messages: is it read?, is it trashed?, etc.

#alfa gets the last conversation (chronologically, the first in the inbox)
conversation = alfa.mailbox.inbox.first

#alfa gets it receipts chronologically ordered.
receipts = conversation.receipts_for alfa

#using the receipts (i.e. in the view)
receipts.each do |receipt|
  ...
  message = receipt.message
  read = receipt.is_unread? #or message.is_unread?(alfa)
  ...
end

How can I reply to a message?

#alfa wants to reply to all in a conversation
#using a receipt
alfa.reply_to_all(receipt, "Reply body")

#using a conversation
alfa.reply_to_conversation(conversation, "Reply body")
#alfa wants to reply to the sender of a message (and ONLY the sender)
#using a receipt
alfa.reply_to_sender(receipt, "Reply body")

How can I delete a message from trash?

#delete conversations forever for one receipt (still in database)
receipt.mark_as_deleted

#you can mark conversation as deleted for one participant
conversation.mark_as_deleted participant

#Mark the object as deleted for messageable
#Object can be:
  #* A Receipt
  #* A Conversation
  #* A Notification
  #* A Message
  #* An array with any of them
alfa.mark_as_deleted conversation

# get available message for specific user
conversation.messages_for(alfa)

How can I retrieve my conversations?

#alfa wants to retrieve all his conversations
alfa.mailbox.conversations

#A wants to retrieve his inbox
alfa.mailbox.inbox

#A wants to retrieve his sent conversations
alfa.mailbox.sentbox

#alfa wants to retrieve his trashed conversations
alfa.mailbox.trash

How can I paginate conversations?

You can use Kaminari to paginate the conversations as normal. Please, make sure you use the last version as mailboxer uses select('DISTINCT conversations.*') which was not respected before Kaminari 0.12.4 according to its changelog. Working correctly on Kaminari 0.13.0.

#Paginating all conversations using :page parameter and 9 per page
conversations = alfa.mailbox.conversations.page(params[:page]).per(9)

#Paginating received conversations using :page parameter and 9 per page
conversations = alfa.mailbox.inbox.page(params[:page]).per(9)

#Paginating sent conversations using :page parameter and 9 per page
conversations = alfa.mailbox.sentbox.page(params[:page]).per(9)

#Paginating trashed conversations using :page parameter and 9 per page
conversations = alfa.mailbox.trash.page(params[:page]).per(9)

You can take a look at the full documentation for Mailboxer in rubydoc.info.

Do you want to test Mailboxer?

Thanks to Roman Kushnir (@RKushnir) you can test Mailboxer with this sample app.

I need a GUI!

If you need a GUI you should take a look at these links:

Contributors


Author: mailboxer
Source code: https://github.com/mailboxer/mailboxer
License: MIT license

#ruby  #ruby-on-rails