1645544106
Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, pandas API on Spark for pandas workloads, MLlib for machine learning, GraphX for graph processing, and Structured Streaming for stream processing.
You can find the latest Spark documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.
Spark is built using Apache Maven. To build Spark and its example programs, run:
./build/mvn -DskipTests clean package
(You do not need to do this if you downloaded a pre-built package.)
More detailed documentation is available from the project site, at "Building Spark".
For general development tips, including info on developing Spark using an IDE, see "Useful Developer Tools".
The easiest way to start using Spark is through the Scala shell:
./bin/spark-shell
Try the following command, which should return 1,000,000,000:
scala> spark.range(1000 * 1000 * 1000).count()
Alternatively, if you prefer Python, you can use the Python shell:
./bin/pyspark
And run the following command, which should also return 1,000,000,000:
>>> spark.range(1000 * 1000 * 1000).count()
Spark also comes with several sample programs in the examples
directory. To run one of them, use ./bin/run-example <class> [params]
. For example:
./bin/run-example SparkPi
will run the Pi example locally.
You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples
package. For instance:
MASTER=spark://host:7077 ./bin/run-example SparkPi
Many of the example programs print usage help if no params are given.
Testing first requires building Spark. Once Spark is built, tests can be run using:
./dev/run-tests
Please see the guidance on how to run tests for a module, or individual tests.
There is also a Kubernetes integration test, see resource-managers/kubernetes/integration-tests/README.md
Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.
Please refer to the build documentation at "Specifying the Hadoop Version and Enabling YARN" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.
Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.
Please review the Contribution to Spark guide for information on how to get started contributing to the project.
Download Details:
Author: apache
Source Code: https://github.com/apache/spark
License: Apache-2.0 License
1624399200
What exactly is Big Data? Big Data is nothing but large and complex data sets, which can be both structured and unstructured. Its concept encompasses the infrastructures, technologies, and Big Data Tools created to manage this large amount of information.
To fulfill the need to achieve high-performance, Big Data Analytics tools play a vital role. Further, various Big Data tools and frameworks are responsible for retrieving meaningful information from a huge set of data.
The most important as well as popular Big Data Analytics Open Source Tools which are used in 2020 are as follows:
#big data engineering #top 10 big data tools for data management and analytics #big data tools for data management and analytics #tools for data management #analytics #top big data tools for data management and analytics
1620466520
If you accumulate data on which you base your decision-making as an organization, you should probably think about your data architecture and possible best practices.
If you accumulate data on which you base your decision-making as an organization, you most probably need to think about your data architecture and consider possible best practices. Gaining a competitive edge, remaining customer-centric to the greatest extent possible, and streamlining processes to get on-the-button outcomes can all be traced back to an organization’s capacity to build a future-ready data architecture.
In what follows, we offer a short overview of the overarching capabilities of data architecture. These include user-centricity, elasticity, robustness, and the capacity to ensure the seamless flow of data at all times. Added to these are automation enablement, plus security and data governance considerations. These points from our checklist for what we perceive to be an anticipatory analytics ecosystem.
#big data #data science #big data analytics #data analysis #data architecture #data transformation #data platform #data strategy #cloud data platform #data acquisition
1620629020
The opportunities big data offers also come with very real challenges that many organizations are facing today. Often, it’s finding the most cost-effective, scalable way to store and process boundless volumes of data in multiple formats that come from a growing number of sources. Then organizations need the analytical capabilities and flexibility to turn this data into insights that can meet their specific business objectives.
This Refcard dives into how a data lake helps tackle these challenges at both ends — from its enhanced architecture that’s designed for efficient data ingestion, storage, and management to its advanced analytics functionality and performance flexibility. You’ll also explore key benefits and common use cases.
As technology continues to evolve with new data sources, such as IoT sensors and social media churning out large volumes of data, there has never been a better time to discuss the possibilities and challenges of managing such data for varying analytical insights. In this Refcard, we dig deep into how data lakes solve the problem of storing and processing enormous amounts of data. While doing so, we also explore the benefits of data lakes, their use cases, and how they differ from data warehouses (DWHs).
This is a preview of the Getting Started With Data Lakes Refcard. To read the entire Refcard, please download the PDF from the link above.
#big data #data analytics #data analysis #business analytics #data warehouse #data storage #data lake #data lake architecture #data lake governance #data lake management
1621431780
A new update of the Big Data Tools plugin has been released. This is our first version for general use, after a year and a half of the Early Access Preview program.
Install the plugin from the JetBrains Plugin Repository or from inside your IDE to edit Zeppelin notebooks, upload files to cloud filesystems, and monitor Hadoop and Spark clusters. The following JetBrains IDEs support the plugin: IntelliJ IDEA Ultimate, PyCharm Professional Edition, and DataGrip.
In this release, we’ve added many useful features and addressed a variety of bugs. Let’s dive into the details.
#big data tools #newsletter #plugins #releases #apache #apache spark #apache zeppelin #big data #big data tools #precode #python #spark #spark-submit #zeppelin
1608101527
For Big Data Analytics, the challenges faced by businesses are unique and so will be the solution required to help access the full potential of Big Data.
Let’s take a look at the Top Big Data Analytics Challenges faced by Businesses and their Solutions.
#big data analytics challenges #big data analytics #data management #data analytics strategy #business solutions by big data #top big data analytics companies