Kim Hans  Jin

Kim Hans Jin


Faster Lists In Python save your time

Python lists are beautifully dynamic data structures. They are the choice data structure for so many things, so it is of the utmost importance to be conscious of the speed of each operation. This is commonly referred to as the Big O or time complexity of the solution.

List Creation

There are many ways to create arrays in python so let’s take a look at which take the least time. Here is the setup we used:

import random
from time import time
import numpy as np
import pandas as pd

# Initilize Random

#### List Tests ####

# How many test passes to run
num_tests = 25

# Create a dict for which to store tests
data = {'length':[], 'listComprehension': [], 'append': [], 'preAllocate': [], 'while': []}

for i in range(0, num_tests):
    # Randomize list length
    end = random.randint(100_000, 10_000_000)

    startTime = time()
    listComprehension = [i for i in range(0, end)]
    endTime = time()
    # Add timed entry
    tmpdata['listComprehension'].append(endTime - startTime)

# Get the median for all the rows
df = pd.DataFrame(data)

List Comprehensions are the first method for creating arrays. They are simple and easy to read which makes them just as easy to write.

listComp = [i for i in range(0, end)]

Append is the next method. I have a tendency to jump to this solution as it is one of the easier to use. It is similar to how you add to lists in most other languages.

append_list = []
for i in range(0,end):

Pre-Allocating is the final method we will test. This only works for arrays with a predetermined length. This involves creating all of the array objects beforehand and then modifying their values by index.

preAllocate = [0] * end
for i in range(0, end):
  preAllocate[i] = i

Results: While list comprehensions don’t always make the most sense here they are the clear winner. I am not recommending you try and jam every for loop into a comprehension. Where it makes sense is when you are using simple for loops or creating especially large arrays.

Method:                            Median Time:
listComprehension            0.5556 ms
preAllocate                        1.1466 ms
append                              1.3842 ms

Comparing Lists

The test for this was similar to the one above. We created two lists with 50,000 random numbers between 0 and 50,000. Then we compare the two lists to see if

Double For Loop: This should have a time complexity of O(n²). For each element, we will have to iterate over part or all of the second list.

for i in list_a:
  for j in list_b:
    if i == j:

In Search: The time complexity of ‘in’ is confusing. Knowing that the double for loop executes in O(n²) time, it would make sense for the ‘in’ access to operate in a similar manner. This does not seem to be the case. It seems to operate in closer to O(n log n) time. If someone happens to be familiar with the ‘in’ implementation in CPython leave a comment below and I will include the answer here.

for i in list_a:
  if i in list_b:

Set Search time complexity is a little different. The implementation of set in Python is essentially that of a hash table so it has O(1) access. Therefore because we are going through the list one time and checking in the second list is an O(1) operation the set search should operate in O(n) time.

unique = set(list_b)
for i in list_a:
  if i in unique:

Results: Comparisons with sets are great. For anyone wondering, the double for loop was one I never expected to do well. What did surprise me was just how much less time using the ‘in’ operator took than the double for.

Method:               Median Time:        Big O: 
Set Syntax:            0.0046ms            O(n)
In Syntax:              3.4710ms            O(n log n)
Double For:          42.3418ms           O(n^2)

Sorting Lists

For our last section, we will talk about sorting lists in python. There are many common sorting algorithms we will compare.

When talking about sorting we need to remember that there are stable and unstable sort algorithms. An algorithm is stable if it preserves the original order of equal items. Here is an example of why stability may be important:

Stability Example

Say we have a bug in our code and we want to see what went wrong. We might go to the log file and sort the requests by the user. Here is our sample log file:

user10: { 'request_number': 2 }
user11: { 'request_number': 1 }
user10: { 'request_number': 1 }

In an unstable sort we might end up with something like this, where the requests are sorted by the user, but because it is unstable we have lost the original sequence of the events. We might never find our bug because we wouldn’t be able to see that user10 had request 2 reach the server before request 1.

# Unstable Sort Result
user10: { 'request_number': 1 }
user10: { 'request_number': 2 }
user11: { 'request_number': 1 }
# Stable Sort Result
user10: { 'request_number': 2 }
user10: { 'request_number': 1 }
user11: { 'request_number': 1 }

Heapsort has a typical time complexity of O(n log n). This is not a stable sorting algorithm however so there is no guarantee that items will be in their original order. This algorithm works by placing items on a binary tree where the root node is the maximum value. Then it will deconstruct that tree to form the sorted array.

# Courtesy of

def heapify(nums, heap_size, root_index):
    # Assume the index of the largest element is the root index
    largest = root_index
    left_child = (2 * root_index) + 1
    right_child = (2 * root_index) + 2

    # If the left child of the root is a valid index, and the element is greater
    # than the current largest element, then update the largest element
    if left_child < heap_size and nums[left_child] > nums[largest]:
        largest = left_child

    # Do the same for the right child of the root
    if right_child < heap_size and nums[right_child] > nums[largest]:
        largest = right_child

    # If the largest element is no longer the root element, swap them
    if largest != root_index:
        nums[root_index], nums[largest] = nums[largest], nums[root_index]
        # Heapify the new root element to ensure it's the largest
        heapify(nums, heap_size, largest)

def heap_sort(nums):
    n = len(nums)

    # Create a Max Heap from the list
    # The 2nd argument of range means we stop at the element before -1 i.e.
    # the first element of the list.
    # The 3rd argument of range means we iterate backwards, reducing the count
    # of i by 1
    for i in range(n, -1, -1):
        heapify(nums, n, i)

    # Move the root of the max heap to the end of
    for i in range(n - 1, 0, -1):
        nums[i], nums[0] = nums[0], nums[i]
        heapify(nums, i, 0)

Mergesort is a divide and conquer algorithm that has a typical time complexity of O(n log n). This algorithm separates the list in half and those halves in half until there are individual elements left. Then the elements are paired up, sorted, and merged repeatedly until the list is complete again. This algorithm is stable so it is great where that is necessary.

# Courtesy of

def merge(left_list, right_list):
    sorted_list = []
    left_list_index = right_list_index = 0

    # We use the list lengths often, so its handy to make variables
    left_list_length, right_list_length = len(left_list), len(right_list)

    for _ in range(left_list_length + right_list_length):
        if left_list_index < left_list_length and right_list_index < right_list_length:
            # We check which value from the start of each list is smaller
            # If the item at the beginning of the left list is smaller, add it
            # to the sorted list
            if left_list[left_list_index] <= right_list[right_list_index]:
                left_list_index += 1
            # If the item at the beginning of the right list is smaller, add it
            # to the sorted list
                right_list_index += 1

        # If we've reached the end of the of the left list, add the elements
        # from the right list
        elif left_list_index == left_list_length:
            right_list_index += 1
        # If we've reached the end of the of the right list, add the elements
        # from the left list
        elif right_list_index == right_list_length:
            left_list_index += 1

    return sorted_list

def merge_sort(nums):
    # If the list is a single element, return it
    if len(nums) <= 1:
        return nums

    # Use floor division to get midpoint, indices must be integers
    mid = len(nums) // 2

    # Sort and merge each half
    left_list = merge_sort(nums[:mid])
    right_list = merge_sort(nums[mid:])

Quicksort is one very commonly used algorithm as it is easy to implement and has an average time complexity of O(n log n). The problem with this is everything is based around picking a good pivot point that is already in the proper place and sorting around it. Picking a poor pivot point could lead to an O(n²) time complexity. This tied with the fact that it is not stable leads me to not recommend it.

# Courtesy of

def partition(nums, low, high):
    # We select the middle element to be the pivot. Some implementations select
    # the first element or the last element. Sometimes the median value becomes
    # the pivot, or a random one. There are many more strategies that can be
    # chosen or created.
    pivot = nums[(low + high) // 2]
    i = low - 1
    j = high + 1
    while True:
        i += 1
        while nums[i] < pivot:
            i += 1

        j -= 1
        while nums[j] > pivot:
            j -= 1

        if i >= j:
            return j

        # If an element at i (on the left of the pivot) is larger than the
        # element at j (on right right of the pivot), then swap them
        nums[i], nums[j] = nums[j], nums[i]

def quick_sort(nums):
    # Create a helper function that will be called recursively
    def _quick_sort(items, low, high):
        if low < high:
            # This is the index after the pivot, where our lists are split
            split_index = partition(items, low, high)
            _quick_sort(items, low, split_index)
            _quick_sort(items, split_index + 1, high)

    _quick_sort(nums, 0, len(nums) - 1)

Timsort is a sort that you may not have ever heard of. This sort, named for its inventor Tim Peters, is a combination of a binary search, insert sort, and a merge sort. Its average time complexity is O(n log n) however it is able to hit this with better consistency and has a best-case complexity of O(n). Also, this is a stable algorithm which makes it great to use anywhere.

The best part is using Timsort in python only takes one line. That’s right. It is the built-in sort function.


Results: Timsort outperforms all the others which is why it is the core sorting algorithm for python. Next Mergesort and Quicksort are neck and neck. Finally, Heapsort is pulling up the rear… well, the rear of this list at least. There are plenty of worse sorting algorithms such as random sort.

Algorithm:           Time:          
timsort             0.001594 ms
mergesort       0.033845 ms
quicksort         0.097097 ms
heapsort         0.365555 ms

Here is a chart that shows the Big O of all of these sorting algorithms. Also, we have space complexity which is how much extra space is needed to complete the algorithm.

That is all for this list. Now go forth and use these in your day to day Python and follow along for more tips and tricks.

Thank you.

#python #data-science #programming #algorithms #optimization

What is GEEK

Buddha Community

Faster Lists In Python save your time
Ray  Patel

Ray Patel


top 30 Python Tips and Tricks for Beginners

Welcome to my Blog , In this article, you are going to learn the top 10 python tips and tricks.

1) swap two numbers.

2) Reversing a string in Python.

3) Create a single string from all the elements in list.

4) Chaining Of Comparison Operators.

5) Print The File Path Of Imported Modules.

6) Return Multiple Values From Functions.

7) Find The Most Frequent Value In A List.

8) Check The Memory Usage Of An Object.

#python #python hacks tricks #python learning tips #python programming tricks #python tips #python tips and tricks #python tips and tricks advanced #python tips and tricks for beginners #python tips tricks and techniques #python tutorial #tips and tricks in python #tips to learn python #top 30 python tips and tricks for beginners

Ray  Patel

Ray Patel


Lambda, Map, Filter functions in python

Welcome to my Blog, In this article, we will learn python lambda function, Map function, and filter function.

Lambda function in python: Lambda is a one line anonymous function and lambda takes any number of arguments but can only have one expression and python lambda syntax is

Syntax: x = lambda arguments : expression

Now i will show you some python lambda function examples:

#python #anonymous function python #filter function in python #lambda #lambda python 3 #map python #python filter #python filter lambda #python lambda #python lambda examples #python map

Shardul Bhatt

Shardul Bhatt


Why use Python for Software Development

No programming language is pretty much as diverse as Python. It enables building cutting edge applications effortlessly. Developers are as yet investigating the full capability of end-to-end Python development services in various areas. 

By areas, we mean FinTech, HealthTech, InsureTech, Cybersecurity, and that's just the beginning. These are New Economy areas, and Python has the ability to serve every one of them. The vast majority of them require massive computational abilities. Python's code is dynamic and powerful - equipped for taking care of the heavy traffic and substantial algorithmic capacities. 

Programming advancement is multidimensional today. Endeavor programming requires an intelligent application with AI and ML capacities. Shopper based applications require information examination to convey a superior client experience. Netflix, Trello, and Amazon are genuine instances of such applications. Python assists with building them effortlessly. 

5 Reasons to Utilize Python for Programming Web Apps 

Python can do such numerous things that developers can't discover enough reasons to admire it. Python application development isn't restricted to web and enterprise applications. It is exceptionally adaptable and superb for a wide range of uses.

Robust frameworks 

Python is known for its tools and frameworks. There's a structure for everything. Django is helpful for building web applications, venture applications, logical applications, and mathematical processing. Flask is another web improvement framework with no conditions. 

Web2Py, CherryPy, and Falcon offer incredible capabilities to customize Python development services. A large portion of them are open-source frameworks that allow quick turn of events. 

Simple to read and compose 

Python has an improved sentence structure - one that is like the English language. New engineers for Python can undoubtedly understand where they stand in the development process. The simplicity of composing allows quick application building. 

The motivation behind building Python, as said by its maker Guido Van Rossum, was to empower even beginner engineers to comprehend the programming language. The simple coding likewise permits developers to roll out speedy improvements without getting confused by pointless subtleties. 

Utilized by the best 

Alright - Python isn't simply one more programming language. It should have something, which is the reason the business giants use it. Furthermore, that too for different purposes. Developers at Google use Python to assemble framework organization systems, parallel information pusher, code audit, testing and QA, and substantially more. Netflix utilizes Python web development services for its recommendation algorithm and media player. 

Massive community support 

Python has a steadily developing community that offers enormous help. From amateurs to specialists, there's everybody. There are a lot of instructional exercises, documentation, and guides accessible for Python web development solutions. 

Today, numerous universities start with Python, adding to the quantity of individuals in the community. Frequently, Python designers team up on various tasks and help each other with algorithmic, utilitarian, and application critical thinking. 

Progressive applications 

Python is the greatest supporter of data science, Machine Learning, and Artificial Intelligence at any enterprise software development company. Its utilization cases in cutting edge applications are the most compelling motivation for its prosperity. Python is the second most well known tool after R for data analytics.

The simplicity of getting sorted out, overseeing, and visualizing information through unique libraries makes it ideal for data based applications. TensorFlow for neural networks and OpenCV for computer vision are two of Python's most well known use cases for Machine learning applications.


Thinking about the advances in programming and innovation, Python is a YES for an assorted scope of utilizations. Game development, web application development services, GUI advancement, ML and AI improvement, Enterprise and customer applications - every one of them uses Python to its full potential. 

The disadvantages of Python web improvement arrangements are regularly disregarded by developers and organizations because of the advantages it gives. They focus on quality over speed and performance over blunders. That is the reason it's a good idea to utilize Python for building the applications of the future.

#python development services #python development company #python app development #python development #python in web development #python software development

Python Tips and Tricks for Competitive Programming

Python Programming language makes everything easier and straightforward. Effective use of its built-in libraries can save a lot of time and help with faster submissions while doing Competitive Programming. Below are few such useful tricks that every Pythonist should have at their fingertips:

  • **Converting a number into a List of digits using map() Function: **

Below is the implementation to convert a given number into a list of digits:

#competitive programming #python programs #python-itertools #python-library #python-list #python-list-of-lists #python-map

Osiki  Douglas

Osiki Douglas


The anatomy of Python Lists

An easy guide to summarize the most common methods and operations regarding list manipulation in Python.

Python lists are a built-in type of data used to store items of any data type such as strings, integers, booleans, or any sort of objects, into a single variable.

Lists are created by enclosing one or multiple arbitrary comma-separated objects between square brackets.

Lists may contain elements of different data types

List items follows a sequenced or specific order

Access values by index

#python-programming #python #tutorial #list-manipulation #python-list #the anatomy of python lists