1630084020
Eye-tracking uses virtual reality technology and involves wearing a high-quality VR headset with built-in eye tracking. Watch our video to learn more.
▶ TIME CODES:
00:00 Intro
00:37 What is VR eye-tracking?
02:00 Why employ eye-tracking In VR?
04:28 How close is eye-tracking to mind reading?
04:59 First VR headset with eye-tracking
05:40 Contact Jelvix
1596728880
In this tutorial we’ll learn how to begin programming with R using RStudio. We’ll install R, and RStudio RStudio, an extremely popular development environment for R. We’ll learn the key RStudio features in order to start programming in R on our own.
If you already know how to use RStudio and want to learn some tips, tricks, and shortcuts, check out this Dataquest blog post.
[tidyverse](https://www.dataquest.io/blog/tutorial-getting-started-with-r-and-rstudio/#tve-jump-173bb26184b)
Packages[tidyverse](https://www.dataquest.io/blog/tutorial-getting-started-with-r-and-rstudio/#tve-jump-173bb264c2b)
Packages into Memory#data science tutorials #beginner #r tutorial #r tutorials #rstats #tutorial #tutorials
1596513720
What exactly is clean data? Clean data is accurate, complete, and in a format that is ready to analyze. Characteristics of clean data include data that are:
Common symptoms of messy data include data that contain:
In this blog post, we will work with five property-sales datasets that are publicly available on the New York City Department of Finance Rolling Sales Data website. We encourage you to download the datasets and follow along! Each file contains one year of real estate sales data for one of New York City’s five boroughs. We will work with the following Microsoft Excel files:
As we work through this blog post, imagine that you are helping a friend launch their home-inspection business in New York City. You offer to help them by analyzing the data to better understand the real-estate market. But you realize that before you can analyze the data in R, you will need to diagnose and clean it first. And before you can diagnose the data, you will need to load it into R!
Benefits of using tidyverse tools are often evident in the data-loading process. In many cases, the tidyverse package readxl
will clean some data for you as Microsoft Excel data is loaded into R. If you are working with CSV data, the tidyverse readr
package function read_csv()
is the function to use (we’ll cover that later).
Let’s look at an example. Here’s how the Excel file for the Brooklyn borough looks:
The Brooklyn Excel file
Now let’s load the Brooklyn dataset into R from an Excel file. We’ll use the readxl
package. We specify the function argument skip = 4
because the row that we want to use as the header (i.e. column names) is actually row 5. We can ignore the first four rows entirely and load the data into R beginning at row 5. Here’s the code:
library(readxl) # Load Excel files
brooklyn <- read_excel("rollingsales_brooklyn.xls", skip = 4)
Note we saved this dataset with the variable name brooklyn
for future use.
The tidyverse offers a user-friendly way to view this data with the glimpse()
function that is part of the tibble
package. To use this package, we will need to load it for use in our current session. But rather than loading this package alone, we can load many of the tidyverse packages at one time. If you do not have the tidyverse collection of packages, install it on your machine using the following command in your R or R Studio session:
install.packages("tidyverse")
Once the package is installed, load it to memory:
library(tidyverse)
Now that tidyverse
is loaded into memory, take a “glimpse” of the Brooklyn dataset:
glimpse(brooklyn)
## Observations: 20,185
## Variables: 21
## $ BOROUGH <chr> "3", "3", "3", "3", "3", "3", "…
## $ NEIGHBORHOOD <chr> "BATH BEACH", "BATH BEACH", "BA…
## $ `BUILDING CLASS CATEGORY` <chr> "01 ONE FAMILY DWELLINGS", "01 …
## $ `TAX CLASS AT PRESENT` <chr> "1", "1", "1", "1", "1", "1", "…
## $ BLOCK <dbl> 6359, 6360, 6364, 6367, 6371, 6…
## $ LOT <dbl> 70, 48, 74, 24, 19, 32, 65, 20,…
## $ `EASE-MENT` <lgl> NA, NA, NA, NA, NA, NA, NA, NA,…
## $ `BUILDING CLASS AT PRESENT` <chr> "S1", "A5", "A5", "A9", "A9", "…
## $ ADDRESS <chr> "8684 15TH AVENUE", "14 BAY 10T…
## $ `APARTMENT NUMBER` <chr> NA, NA, NA, NA, NA, NA, NA, NA,…
## $ `ZIP CODE` <dbl> 11228, 11228, 11214, 11214, 112…
## $ `RESIDENTIAL UNITS` <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1…
## $ `COMMERCIAL UNITS` <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `TOTAL UNITS` <dbl> 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1…
## $ `LAND SQUARE FEET` <dbl> 1933, 2513, 2492, 1571, 2320, 3…
## $ `GROSS SQUARE FEET` <dbl> 4080, 1428, 972, 1456, 1566, 22…
## $ `YEAR BUILT` <dbl> 1930, 1930, 1950, 1935, 1930, 1…
## $ `TAX CLASS AT TIME OF SALE` <chr> "1", "1", "1", "1", "1", "1", "…
## $ `BUILDING CLASS AT TIME OF SALE` <chr> "S1", "A5", "A5", "A9", "A9", "…
## $ `SALE PRICE` <dbl> 1300000, 849000, 0, 830000, 0, …
## $ `SALE DATE` <dttm> 2020-04-28, 2020-03-18, 2019-0…
The glimpse()
function provides a user-friendly way to view the column names and data types for all columns, or variables, in the data frame. With this function, we are also able to view the first few observations in the data frame. This data frame has 20,185 observations, or property sales records. And there are 21 variables, or columns.
#data science tutorials #beginner #r #r tutorial #r tutorials #rstats #tidyverse #tutorial #tutorials
1599097440
A famous general is thought to have said, “A good sketch is better than a long speech.” That advice may have come from the battlefield, but it’s applicable in lots of other areas — including data science. “Sketching” out our data by visualizing it using ggplot2 in R is more impactful than simply describing the trends we find.
This is why we visualize data. We visualize data because it’s easier to learn from something that we can see rather than read. And thankfully for data analysts and data scientists who use R, there’s a tidyverse package called ggplot2 that makes data visualization a snap!
In this blog post, we’ll learn how to take some data and produce a visualization using R. To work through it, it’s best if you already have an understanding of R programming syntax, but you don’t need to be an expert or have any prior experience working with ggplot2
#data science tutorials #beginner #ggplot2 #r #r tutorial #r tutorials #rstats #tutorial #tutorials
1596584126
In my previous role as a marketing data analyst for a blogging company, one of my most important tasks was to track how blog posts performed.
On the surface, it’s a fairly straightforward goal. With Google Analytics, you can quickly get just about any metric you need for your blog posts, for any date range.
But when it comes to comparing blog post performance, things get a bit trickier.
For example, let’s say we want to compare the performance of the blog posts we published on the Dataquest blog in June (using the month of June as our date range).
But wait… two blog posts with more than 1,000 pageviews were published earlier in the month, And the two with fewer than 500 pageviews were published at the end of the month. That’s hardly a fair comparison!
My first solution to this problem was to look up each post individually, so that I could make an even comparison of how each post performed in their first day, first week, first month, etc.
However, that required a lot of manual copy-and-paste work, which was extremely tedious if I wanted to compare more than a few posts, date ranges, or metrics at a time.
But then, I learned R, and realized that there was a much better way.
In this post, we’ll walk through how it’s done, so you can do my better blog post analysis for yourself!
To complete this tutorial, you’ll need basic knowledge of R syntax and the tidyverse, and access to a Google Analytics account.
Not yet familiar with the basics of R? We can help with that! Our interactive online courses teach you R from scratch, with no prior programming experience required. Sign up and start today!
You’ll also need the dyplr
, lubridate
, and stringr
packages installed — which, as a reminder, you can do with the install.packages()
command.
Finally, you will need a CSV of the blog posts you want to analyze. Here’s what’s in my dataset:
post_url
: the page path of the blog post
post_date
: the date the post was published (formatted m/d/yy)
category
: the blog category the post was published in (optional)
title
: the title of the blog post (optional)
Depending on your content management system, there may be a way for you to automate gathering this data — but that’s out of the scope of this tutorial!
For this tutorial, we’ll use a manually-gathered dataset of the past ten Dataquest blog posts.
#data science tutorials #promote #r #r tutorial #r tutorials #rstats #tutorial #tutorials
1659694200
public_activity
provides easy activity tracking for your ActiveRecord, Mongoid 3 and MongoMapper models in Rails 3 and 4.
Simply put: it can record what happens in your application and gives you the ability to present those recorded activities to users - in a similar way to how GitHub does it.
You probably don't want to read the docs for this unreleased version 2.0.
For the stable 1.5.X
readme see: https://github.com/chaps-io/public_activity/blob/1-5-stable/README.md
Here is a simple example showing what this gem is about:
Ryan Bates made a great screencast describing how to integrate Public Activity.
A great step-by-step guide on implementing activity feeds using public_activity by Ilya Bodrov.
You can see an actual application using this gem here: http://public-activity-example.herokuapp.com/feed
The source code of the demo is hosted here: https://github.com/pokonski/activity_blog
You can install public_activity
as you would any other gem:
gem install public_activity
or in your Gemfile:
gem 'public_activity'
By default public_activity
uses Active Record. If you want to use Mongoid or MongoMapper as your backend, create an initializer file in your Rails application with the corresponding code inside:
For Mongoid:
# config/initializers/public_activity.rb
PublicActivity.configure do |config|
config.orm = :mongoid
end
For MongoMapper:
# config/initializers/public_activity.rb
PublicActivity.configure do |config|
config.orm = :mongo_mapper
end
(ActiveRecord only) Create migration for activities and migrate the database (in your Rails project):
rails g public_activity:migration
rake db:migrate
Include PublicActivity::Model
and add tracked
to the model you want to keep track of:
For ActiveRecord:
class Article < ActiveRecord::Base
include PublicActivity::Model
tracked
end
For Mongoid:
class Article
include Mongoid::Document
include PublicActivity::Model
tracked
end
For MongoMapper:
class Article
include MongoMapper::Document
include PublicActivity::Model
tracked
end
And now, by default create/update/destroy activities are recorded in activities table. This is all you need to start recording activities for basic CRUD actions.
Optional: If you don't need #tracked
but still want the comfort of #create_activity
, you can include only the lightweight Common
module instead of Model
.
You can trigger custom activities by setting all your required parameters and triggering create_activity
on the tracked model, like this:
@article.create_activity key: 'article.commented_on', owner: current_user
See this entry http://rubydoc.info/gems/public_activity/PublicActivity/Common:create_activity for more details.
To display them you simply query the PublicActivity::Activity
model:
# notifications_controller.rb
def index
@activities = PublicActivity::Activity.all
end
And in your views:
<%= render_activities(@activities) %>
Note: render_activities
is an alias for render_activity
and does the same.
You can also pass options to both activity#render
and #render_activity
methods, which are passed deeper to the internally used render_partial
method. A useful example would be to render activities wrapped in layout, which shares common elements of an activity, like a timestamp, owner's avatar etc:
<%= render_activities(@activities, layout: :activity) %>
The activity will be wrapped with the app/views/layouts/_activity.html.erb
layout, in the above example.
Important: please note that layouts for activities are also partials. Hence the _
prefix.
Sometimes, it's desirable to pass additional local variables to partials. It can be done this way:
<%= render_activity(@activity, locals: {friends: current_user.friends}) %>
Note: Before 1.4.0, one could pass variables directly to the options hash for #render_activity
and access it from activity parameters. This functionality is retained in 1.4.0 and later, but the :locals
method is preferred, since it prevents bugs from shadowing variables from activity parameters in the database.
public_activity
looks for views in app/views/public_activity
.
For example, if you have an activity with :key
set to "activity.user.changed_avatar"
, the gem will look for a partial in app/views/public_activity/user/_changed_avatar.html.(|erb|haml|slim|something_else)
.
Hint: the "activity."
prefix in :key
is completely optional and kept for backwards compatibility, you can skip it in new projects.
If you would like to fallback to a partial, you can utilize the fallback
parameter to specify the path of a partial to use when one is missing:
<%= render_activity(@activity, fallback: 'default') %>
When used in this manner, if a partial with the specified :key
cannot be located it will use the partial defined in the fallback
instead. In the example above this would resolve to public_activity/_default.html.(|erb|haml|slim|something_else)
.
If a view file does not exist then ActionView::MisingTemplate will be raised. If you wish to fallback to the old behaviour and use an i18n based translation in this situation you can specify a :fallback
parameter of text
to fallback to this mechanism like such:
<%= render_activity(@activity, fallback: :text) %>
Translations are used by the #text
method, to which you can pass additional options in form of a hash. #render
method uses translations when view templates have not been provided. You can render pure i18n strings by passing {display: :i18n}
to #render_activity
or #render
.
Translations should be put in your locale .yml
files. To render pure strings from I18n Example structure:
activity:
article:
create: 'Article has been created'
update: 'Someone has edited the article'
destroy: 'Some user removed an article!'
This structure is valid for activities with keys "activity.article.create"
or "article.create"
. As mentioned before, "activity."
part of the key is optional.
For RSpec you can first disable public_activity
and add require helper methods in the rails_helper.rb
with:
#rails_helper.rb
require 'public_activity/testing'
PublicActivity.enabled = false
In your specs you can then blockwise decide whether to turn public_activity
on or off.
# file_spec.rb
PublicActivity.with_tracking do
# your test code goes here
end
PublicActivity.without_tracking do
# your test code goes here
end
For more documentation go here
You can set up a default value for :owner
by doing this:
PublicActivity::StoreController
in your ApplicationController
like this:class ApplicationController < ActionController::Base
include PublicActivity::StoreController
end
:owner
attribute for tracked
class method in your desired model. For example:class Article < ActiveRecord::Base
tracked owner: Proc.new{ |controller, model| controller.current_user }
end
Note: current_user
applies to Devise, if you are using a different authentication gem or your own code, change the current_user
to a method you use.
If you need to disable tracking temporarily, for example in tests or db/seeds.rb
then you can use PublicActivity.enabled=
attribute like below:
# Disable p_a globally
PublicActivity.enabled = false
# Perform some operations that would normally be tracked by p_a:
Article.create(title: 'New article')
# Switch it back on
PublicActivity.enabled = true
You can also disable public_activity for a specific class:
# Disable p_a for Article class
Article.public_activity_off
# p_a will not do anything here:
@article = Article.create(title: 'New article')
# But will be enabled for other classes:
# (creation of the comment will be recorded if you are tracking the Comment class)
@article.comments.create(body: 'some comment!')
# Enable it again for Article:
Article.public_activity_on
Besides standard, automatic activities created on CRUD actions on your model (deactivatable), you can post your own activities that can be triggered without modifying the tracked model. There are a few ways to do this, as PublicActivity gives three tiers of options to be set.
Because every activity needs a key (otherwise: NoKeyProvided
is raised), the shortest and minimal way to post an activity is:
@user.create_activity :mood_changed
# the key of the action will be user.mood_changed
@user.create_activity action: :mood_changed # this is exactly the same as above
Besides assigning your key (which is obvious from the code), it will take global options from User class (given in #tracked
method during class definition) and overwrite them with instance options (set on @user
by #activity
method). You can read more about options and how PublicActivity inherits them for you here.
Note the action parameter builds the key like this: "#{model_name}.#{action}"
. You can read further on options for #create_activity
here.
To provide more options, you can do:
@user.create_activity action: 'poke', parameters: {reason: 'bored'}, recipient: @friend, owner: current_user
In this example, we have provided all the things we could for a standard Activity.
Besides the few fields that every Activity has (key
, owner
, recipient
, trackable
, parameters
), you can also set custom fields. This could be very beneficial, as parameters
are a serialized hash, which cannot be queried easily from the database. That being said, use custom fields when you know that you will set them very often and search by them (don't forget database indexes :) ).
owner
and recipient
based on associationsclass Comment < ActiveRecord::Base
include PublicActivity::Model
tracked owner: :commenter, recipient: :commentee
belongs_to :commenter, :class_name => "User"
belongs_to :commentee, :class_name => "User"
end
class Post < ActiveRecord::Base
include PublicActivity::Model
tracked only: [:update], parameters: :tracked_values
def tracked_values
{}.tap do |hash|
hash[:tags] = tags if tags_changed?
end
end
end
Skip this step if you are using ActiveRecord in Rails 4 or Mongoid
The first step is similar in every ORM available (except mongoid):
PublicActivity::Activity.class_eval do
attr_accessible :custom_field
end
place this code under config/initializers/public_activity.rb
, you have to create it first.
To be able to assign to that field, we need to move it to the mass assignment sanitizer's whitelist.
If you're using ActiveRecord, you will also need to provide a migration to add the actual field to the Activity
. Taken from our tests:
class AddCustomFieldToActivities < ActiveRecord::Migration
def change
change_table :activities do |t|
t.string :custom_field
end
end
end
Assigning is done by the same methods that you use for normal parameters: #tracked
, #create_activity
. You can just pass the name of your custom variable and assign its value. Even better, you can pass it to #tracked
to tell us how to harvest your data for custom fields so we can do that for you.
class Article < ActiveRecord::Base
include PublicActivity::Model
tracked custom_field: proc {|controller, model| controller.some_helper }
end
If you need help with using public_activity please visit our discussion group and ask a question there:
https://groups.google.com/forum/?fromgroups#!forum/public-activity
Please do not ask general questions in the Github Issues.
Author: public-activity
Source code: https://github.com/public-activity/public_activity
License: MIT license