A three level sentiment classification task using SVM with an imbalanced Twitter dataset

As a news addict, I love seeing how politics can garner such emotive responses across social media and wondered if this anecdotal sense of passion could translate into machine learning classification. I found a dataset of Tweets made in reaction to the first Republican Presidential debate in 2016 (here ) and wanted to create a three level sentiment classifier that could interpret emotions from the text of the Tweets. This article is part of a suite of methodologies and techniques I put together, for now I will just be focusing on one aspect; the humble Support Vector Machine. As a secondary task, I noticed the dataset was severely imbalanced so wanted to try and upsample the minority classes in an effort to improve the usefulness of the classifier across all labels (this will hopefully help the classifier improve across all categories).

#data-science #machine-learning #twitter #classification-algorithms #python

What is GEEK

Buddha Community

A three level sentiment classification task using SVM with an imbalanced Twitter dataset
Chloe  Butler

Chloe Butler

1667425440

Pdf2gerb: Perl Script Converts PDF Files to Gerber format

pdf2gerb

Perl script converts PDF files to Gerber format

Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.

The general workflow is as follows:

  1. Design the PCB using your favorite CAD or drawing software.
  2. Print the top and bottom copper and top silk screen layers to a PDF file.
  3. Run Pdf2Gerb on the PDFs to create Gerber and Excellon files.
  4. Use a Gerber viewer to double-check the output against the original PCB design.
  5. Make adjustments as needed.
  6. Submit the files to a PCB manufacturer.

Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).

See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.


pdf2gerb_cfg.pm

#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;

use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)


##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file

use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call

#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software.  \nGerber files MAY CONTAIN ERRORS.  Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG

use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC

use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)

#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1); 

#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
    .010, -.001,  #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
    .031, -.014,  #used for vias
    .041, -.020,  #smallest non-filled plated hole
    .051, -.025,
    .056, -.029,  #useful for IC pins
    .070, -.033,
    .075, -.040,  #heavier leads
#    .090, -.043,  #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
    .100, -.046,
    .115, -.052,
    .130, -.061,
    .140, -.067,
    .150, -.079,
    .175, -.088,
    .190, -.093,
    .200, -.100,
    .220, -.110,
    .160, -.125,  #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
    .090, -.040,  #want a .090 pad option, but use dummy hole size
    .065, -.040, #.065 x .065 rect pad
    .035, -.040, #.035 x .065 rect pad
#traces:
    .001,  #too thin for real traces; use only for board outlines
    .006,  #minimum real trace width; mainly used for text
    .008,  #mainly used for mid-sized text, not traces
    .010,  #minimum recommended trace width for low-current signals
    .012,
    .015,  #moderate low-voltage current
    .020,  #heavier trace for power, ground (even if a lighter one is adequate)
    .025,
    .030,  #heavy-current traces; be careful with these ones!
    .040,
    .050,
    .060,
    .080,
    .100,
    .120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);

#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size:   parsed PDF diameter:      error:
#  .014                .016                +.002
#  .020                .02267              +.00267
#  .025                .026                +.001
#  .029                .03167              +.00267
#  .033                .036                +.003
#  .040                .04267              +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
    HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
    RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
    SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
    RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
    TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
    REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};

#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
    CIRCLE_ADJUST_MINX => 0,
    CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
    CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
    CIRCLE_ADJUST_MAXY => 0,
    SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
    WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
    RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};

#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches

#line join/cap styles:
use constant
{
    CAP_NONE => 0, #butt (none); line is exact length
    CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
    CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
    CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
    
#number of elements in each shape type:
use constant
{
    RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
    LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
    CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
    CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
    rect => RECT_SHAPELEN,
    line => LINE_SHAPELEN,
    curve => CURVE_SHAPELEN,
    circle => CIRCLE_SHAPELEN,
);

#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions

# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?

#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes. 
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes

#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches

# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)

# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time

# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const

use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool

my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time

print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load


#############################################################################################
#junk/experiment:

#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html

#my $caller = "pdf2gerb::";

#sub cfg
#{
#    my $proto = shift;
#    my $class = ref($proto) || $proto;
#    my $settings =
#    {
#        $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
#    };
#    bless($settings, $class);
#    return $settings;
#}

#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;

#print STDERR "read cfg file\n";

#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names

#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }

Download Details:

Author: swannman
Source Code: https://github.com/swannman/pdf2gerb

License: GPL-3.0 license

#perl 

A three level sentiment classification task using SVM with an imbalanced Twitter dataset

As a news addict, I love seeing how politics can garner such emotive responses across social media and wondered if this anecdotal sense of passion could translate into machine learning classification. I found a dataset of Tweets made in reaction to the first Republican Presidential debate in 2016 (here ) and wanted to create a three level sentiment classifier that could interpret emotions from the text of the Tweets. This article is part of a suite of methodologies and techniques I put together, for now I will just be focusing on one aspect; the humble Support Vector Machine. As a secondary task, I noticed the dataset was severely imbalanced so wanted to try and upsample the minority classes in an effort to improve the usefulness of the classifier across all labels (this will hopefully help the classifier improve across all categories).

#data-science #machine-learning #twitter #classification-algorithms #python

Inside ABCD, A Dataset To Build In-Depth Task-Oriented Dialogue Systems

According to a recent study, call centre agents’ spend approximately 82 percent of their total time looking at step-by-step guides, customer data, and knowledge base articles.

Traditionally, dialogue state tracking (DST) has served as a way to determine what a caller wants at a given point in a conversation. Unfortunately, these aspects are not accounted for in popular DST benchmarks. DST is the core part of a spoken dialogue system. It estimates the beliefs of possible user’s goals at every dialogue turn.

To reduce the burden on call centre agents and improve the SOTA of task-oriented dialogue systems, AI-powered customer service company ASAPP recently launched an action-based conversations dataset (ABCD). The dataset is designed to help develop task-oriented dialogue systems for customer service applications. ABCD consists of a fully labelled dataset with over 10,000 human dialogues containing 55 distinct user intents requiring sequences of actions constrained by company policies to accomplish tasks.

https://twitter.com/asapp/status/1397928363923177472

The dataset is currently available on GitHub.

#developers corner #asapp abcd dataset #asapp new dataset #build enterprise chatbot #chatbot datasets latest #customer support datasets #customer support model training #dataset for chatbots #dataset for customer datasets

Jupyter Notebook Kernel for Running ansible Tasks and Playbooks

Ansible Jupyter Kernel

Example Jupyter Usage

The Ansible Jupyter Kernel adds a kernel backend for Jupyter to interface directly with Ansible and construct plays and tasks and execute them on the fly.

Demo

Demo

Installation:

ansible-kernel is available to be installed from pypi but you can also install it locally. The setup package itself will register the kernel with Jupyter automatically.

From pypi

pip install ansible-kernel
python -m ansible_kernel.install

From a local checkout

pip install -e .
python -m ansible_kernel.install

For Anaconda/Miniconda

pip install ansible-kernel
python -m ansible_kernel.install --sys-prefix

Usage

Local install

    jupyter notebook
    # In the notebook interface, select Ansible from the 'New' menu

Container

docker run -p 8888:8888 benthomasson/ansible-jupyter-kernel

Then copy the URL from the output into your browser:
http://localhost:8888/?token=ABCD1234

Using the Cells

Normally Ansible brings together various components in different files and locations to launch a playbook and performs automation tasks. For this jupyter interface you need to provide this information in cells by denoting what the cell contains and then finally writing your tasks that will make use of them. There are Examples available to help you, in this section we'll go over the currently supported cell types.

In order to denote what the cell contains you should prefix it with a pound/hash symbol (#) and the type as listed here as the first line as shown in the examples below.

#inventory

The inventory that your tasks will use

#inventory
[all]
ahost ansible_connection=local
anotherhost examplevar=val

#play

This represents the opening block of a typical Ansible play

#play
name: Hello World
hosts: all
gather_facts: false

#task

This is the default cell type if no type is given for the first line

#task
debug:
#task
shell: cat /tmp/afile
register: output

#host_vars

This takes an argument that represents the hostname. Variables defined in this file will be available in the tasks for that host.

#host_vars Host1
hostname: host1

#group_vars

This takes an argument that represents the group name. Variables defined in this file will be available in the tasks for hosts in that group.

#group_vars BranchOfficeX
gateway: 192.168.1.254

#vars

This takes an argument that represents the filename for use in later cells

#vars example_vars
message: hello vars
#play
name: hello world
hosts: localhost
gather_facts: false
vars_files:
    - example_vars

#template

This takes an argument in order to create a templated file that can be used in later cells

#template hello.j2
{{ message }}
#task
template:
    src: hello.j2
    dest: /tmp/hello

#ansible.cfg

Provides overrides typically found in ansible.cfg

#ansible.cfg
[defaults]
host_key_checking=False

Examples

You can find various example notebooks in the repository

Using the development environment

It's possible to use whatever python development process you feel comfortable with. The repository itself includes mechanisms for using pipenv

pipenv install
...
pipenv shell

Author: ansible
Source Code:  https://github.com/ansible/ansible-jupyter-kernel
License: Apache-2.0 License

#jupyter #python 

How to Create an Image Clip Animation with Slider Controls using Only HTML & CSS

In this blog you’ll learn how to create an Image Clip Animation with Slider Controls using only HTML & CSS.

To create an Image Clip Animation with Slider Controls using only HTML & CSS. First, you need to create two Files one HTML File and another one is CSS File.

1: First, create an HTML file with the name of index.html

<!DOCTYPE html>
<html lang="en" dir="ltr">
  <head>
    <meta charset="utf-8">
    <title>Image Clip Animation | Codequs</title>
    <link rel="stylesheet" href="style.css">
  </head>
  <body>
    <div class="wrapper">
      <input type="radio" name="slide" id="one" checked>
      <input type="radio" name="slide" id="two">
      <input type="radio" name="slide" id="three">
      <input type="radio" name="slide" id="four">
      <input type="radio" name="slide" id="five">
      <div class="img img-1">
        <!-- <img src="images/img-1.jpg" alt="">
      </div>
      <div class="img img-2">
        <img src="images/img-2.jpg" alt="">
      </div>
      <div class="img img-3">
        <img src="images/img-3.jpg" alt="">
      </div>
      <div class="img img-4">
        <img src="images/img-4.jpg" alt="">
      </div>
      <div class="img img-5">
        <img src="images/img-5.jpg" alt="">
      </div>
      <div class="sliders">
        <label for="one" class="one"></label>
        <label for="two" class="two"></label>
        <label for="three" class="three"></label>
        <label for="four" class="four"></label>
        <label for="five" class="five"></label>
      </div>
    </div>
  </body>
</html>

2: Second, create a CSS file with the name of style.css

*{
  margin: 0;
  padding: 0;
  box-sizing: border-box;
}
body{
  min-height: 100vh;
  display: flex;
  align-items: center;
  justify-content: center;
  background: -webkit-linear-gradient(136deg, rgb(224,195,252) 0%, rgb(142,197,252) 100%);
}
.wrapper{
  position: relative;
  width: 700px;
  height: 400px;
}
.wrapper .img{
  position: absolute;
  width: 100%;
  height: 100%;
}
.wrapper .img img{
  height: 100%;
  width: 100%;
  object-fit: cover;
  clip-path: circle(0% at 0% 100%);
  transition: all 0.7s;
}
#one:checked ~ .img-1 img{
  clip-path: circle(150% at 0% 100%);
}
#two:checked ~ .img-1 img,
#two:checked ~ .img-2 img{
  clip-path: circle(150% at 0% 100%);
}
#three:checked ~ .img-1 img,
#three:checked ~ .img-2 img,
#three:checked ~ .img-3 img{
  clip-path: circle(150% at 0% 100%);
}
#four:checked ~ .img-1 img,
#four:checked ~ .img-2 img,
#four:checked ~ .img-3 img,
#four:checked ~ .img-4 img{
  clip-path: circle(150% at 0% 100%);
}
#five:checked ~ .img-1 img,
#five:checked ~ .img-2 img,
#five:checked ~ .img-3 img,
#five:checked ~ .img-4 img,
#five:checked ~ .img-5 img{
  clip-path: circle(150% at 0% 100%);
}
.wrapper .sliders{
  position: absolute;
  bottom: 20px;
  left: 50%;
  transform: translateX(-50%);
  z-index: 99;
  display: flex;
}
.wrapper .sliders label{
  border: 2px solid rgb(142,197,252);
  width: 13px;
  height: 13px;
  margin: 0 3px;
  border-radius: 50%;
  cursor: pointer;
  transition: all 0.3s ease;
}
#one:checked ~ .sliders label.one,
#two:checked ~ .sliders label.two,
#three:checked ~ .sliders label.three,
#four:checked ~ .sliders label.four,
#five:checked ~ .sliders label.five{
  width: 35px;
  border-radius: 14px;
  background: rgb(142,197,252);
}
.sliders label:hover{
  background: rgb(142,197,252);
}
input[type="radio"]{
  display: none;
}

Now you’ve successfully created an Image Clip Animation with Sliders using only HTML & CSS.

#html #css