George  Koelpin

George Koelpin

1602838800

QRNN: A Potential Competitor to the Transformer

Recurrent Neural Networks (RNNs) have been in the sequence modeling business for a long time. But RNNs are slow; they process one token at a time. Moreover, the recurrent architecture adds a limitation of fixed-length encoding vectors for the complete sequence. To overcome these issues, architectures like CNN-LSTM, Transformer, QRNNs burgeoned.

In this article, we’ll be discussing the QRNN model proposed in the paper, “Quasi-Recurrent Neural Networks.” It is essentially an approach for adding convolution to recurrence and recurrence to convolution. You will get this as you proceed through the article.

Long Short-Term Memory (LSTM)

LSTM is the most well-known variant of RNNs. The red blocks are linear functions or matrix multiplications, and the blue ones are parameter-less element-wise blocks. An LSTM-cell applies gated functions (input, forget, output) to obtain the output and a memory element called the hidden state. This hidden state contains contextual information of the entire sequence. Since a single vector encodes the complete sequence, LSTMs cannot remember long-term dependencies. Moreover, the computation at each timestep is dependent on the hidden state of the previous timestep, i.e., LSTM computes one timestep at a time. Hence, the computations cannot be done in parallel.

Colah’s Blog is, by far, one of the best explanations for RNNs (in my opinion). Consider giving it a read if you’re interested in knowing the math behind LSTM.

#artificial-intelligence #machine-learning #towards-data-science #data-science #deep-learning

What is GEEK

Buddha Community

QRNN: A Potential Competitor to the Transformer

Ajay Kapoor

1624252974

Digital Transformation Consulting Services & solutions

Compete in this Digital-First world with PixelCrayons’ advanced level digital transformation consulting services. With 16+ years of domain expertise, we have transformed thousands of companies digitally. Our insight-led, unique, and mindful thinking process helps organizations realize Digital Capital from business outcomes.

Let our expert digital transformation consultants partner with you in order to solve even complex business problems at speed and at scale.

Digital transformation company in india

#digital transformation agency #top digital transformation companies in india #digital transformation companies in india #digital transformation services india #digital transformation consulting firms

Chelsie  Towne

Chelsie Towne

1596716340

A Deep Dive Into the Transformer Architecture – The Transformer Models

Transformers for Natural Language Processing

It may seem like a long time since the world of natural language processing (NLP) was transformed by the seminal “Attention is All You Need” paper by Vaswani et al., but in fact that was less than 3 years ago. The relative recency of the introduction of transformer architectures and the ubiquity with which they have upended language tasks speaks to the rapid rate of progress in machine learning and artificial intelligence. There’s no better time than now to gain a deep understanding of the inner workings of transformer architectures, especially with transformer models making big inroads into diverse new applications like predicting chemical reactions and reinforcement learning.

Whether you’re an old hand or you’re only paying attention to transformer style architecture for the first time, this article should offer something for you. First, we’ll dive deep into the fundamental concepts used to build the original 2017 Transformer. Then we’ll touch on some of the developments implemented in subsequent transformer models. Where appropriate we’ll point out some limitations and how modern models inheriting ideas from the original Transformer are trying to overcome various shortcomings or improve performance.

What Do Transformers Do?

Transformers are the current state-of-the-art type of model for dealing with sequences. Perhaps the most prominent application of these models is in text processing tasks, and the most prominent of these is machine translation. In fact, transformers and their conceptual progeny have infiltrated just about every benchmark leaderboard in natural language processing (NLP), from question answering to grammar correction. In many ways transformer architectures are undergoing a surge in development similar to what we saw with convolutional neural networks following the 2012 ImageNet competition, for better and for worse.

#natural language processing #ai artificial intelligence #transformers #transformer architecture #transformer models

Edna  Bernhard

Edna Bernhard

1596525540

A Deep Dive Into the Transformer Architecture

Transformers for Natural Language Processing

It may seem like a long time since the world of natural language processing (NLP) was transformed by the seminal “Attention is All You Need” paper by Vaswani et al., but in fact that was less than 3 years ago. The relative recency of the introduction of transformer architectures and the ubiquity with which they have upended language tasks speaks to the rapid rate of progress in machine learning and artificial intelligence. There’s no better time than now to gain a deep understanding of the inner workings of transformer architectures, especially with transformer models making big inroads into diverse new applications like predicting chemical reactions and reinforcement learning.

Whether you’re an old hand or you’re only paying attention to transformer style architecture for the first time, this article should offer something for you. First, we’ll dive deep into the fundamental concepts used to build the original 2017 Transformer. Then we’ll touch on some of the developments implemented in subsequent transformer models. Where appropriate we’ll point out some limitations and how modern models inheriting ideas from the original Transformer are trying to overcome various shortcomings or improve performance.

What Do Transformers Do?

Transformers are the current state-of-the-art type of model for dealing with sequences. Perhaps the most prominent application of these models is in text processing tasks, and the most prominent of these is machine translation. In fact, transformers and their conceptual progeny have infiltrated just about every benchmark leaderboard in natural language processing (NLP), from question answering to grammar correction. In many ways transformer architectures are undergoing a surge in development similar to what we saw with convolutional neural networks following the 2012 ImageNet competition, for better and for worse.

#natural language processing #ai artificial intelligence #transformers #transformer architecture #transformer models #ai

Eve  Klocko

Eve Klocko

1596736920

A Deep Dive Into the Transformer Architecture

Transformers for Natural Language Processing

It may seem like a long time since the world of natural language processing (NLP) was transformed by the seminal “Attention is All You Need” paper by Vaswani et al., but in fact that was less than 3 years ago. The relative recency of the introduction of transformer architectures and the ubiquity with which they have upended language tasks speaks to the rapid rate of progress in machine learning and artificial intelligence. There’s no better time than now to gain a deep understanding of the inner workings of transformer architectures, especially with transformer models making big inroads into diverse new applications like predicting chemical reactions and reinforcement learning.

Whether you’re an old hand or you’re only paying attention to transformer style architecture for the first time, this article should offer something for you. First, we’ll dive deep into the fundamental concepts used to build the original 2017 Transformer. Then we’ll touch on some of the developments implemented in subsequent transformer models. Where appropriate we’ll point out some limitations and how modern models inheriting ideas from the original Transformer are trying to overcome various shortcomings or improve performance.

What Do Transformers Do?

Transformers are the current state-of-the-art type of model for dealing with sequences. Perhaps the most prominent application of these models is in text processing tasks, and the most prominent of these is machine translation. In fact, transformers and their conceptual progeny have infiltrated just about every benchmark leaderboard in natural language processing (NLP), from question answering to grammar correction. In many ways transformer architectures are undergoing a surge in development similar to what we saw with convolutional neural networks following the 2012 ImageNet competition, for better and for worse.

#natural language processing #ai artificial intelligence #transformers #transformer architecture #transformer models

Digital Transformation - Security Solutions, Technologies, Challenges and Vision

The Digital Transformation practises is getting standardized in SME’s and Enterprises with crucial precautions raised against cybersecurity attacks. We have emphasized the dire need for a resilient security solutions for digital systems to avert from email and malware attacks.

Learn More at : Digital Transformation Solutions

#digitalsecurity #digital transformation benefits #challenges in digital transformation #digital technologies #efficiency in digital transformation