1624806956
In this video we are going to create dictionary with fromkeys() method.
& then we discussed about copy(), and clear() Methods…
and also discussed that how can we access our dictionary by get() method and some more properties of get() Method…
I hope you like this video if you like this video please do not forget to hit the like button and subscribe our channel for more videos…
#python
1657081614
In this article, We will show how we can use python to automate Excel . A useful Python library is Openpyxl which we will learn to do Excel Automation
Openpyxl is a Python library that is used to read from an Excel file or write to an Excel file. Data scientists use Openpyxl for data analysis, data copying, data mining, drawing charts, styling sheets, adding formulas, and more.
Workbook: A spreadsheet is represented as a workbook in openpyxl. A workbook consists of one or more sheets.
Sheet: A sheet is a single page composed of cells for organizing data.
Cell: The intersection of a row and a column is called a cell. Usually represented by A1, B5, etc.
Row: A row is a horizontal line represented by a number (1,2, etc.).
Column: A column is a vertical line represented by a capital letter (A, B, etc.).
Openpyxl can be installed using the pip command and it is recommended to install it in a virtual environment.
pip install openpyxl
We start by creating a new spreadsheet, which is called a workbook in Openpyxl. We import the workbook module from Openpyxl and use the function Workbook()
which creates a new workbook.
from openpyxl
import Workbook
#creates a new workbook
wb = Workbook()
#Gets the first active worksheet
ws = wb.active
#creating new worksheets by using the create_sheet method
ws1 = wb.create_sheet("sheet1", 0) #inserts at first position
ws2 = wb.create_sheet("sheet2") #inserts at last position
ws3 = wb.create_sheet("sheet3", -1) #inserts at penultimate position
#Renaming the sheet
ws.title = "Example"
#save the workbook
wb.save(filename = "example.xlsx")
We load the file using the function load_Workbook()
which takes the filename as an argument. The file must be saved in the same working directory.
#loading a workbook
wb = openpyxl.load_workbook("example.xlsx")
#getting sheet names
wb.sheetnames
result = ['sheet1', 'Sheet', 'sheet3', 'sheet2']
#getting a particular sheet
sheet1 = wb["sheet2"]
#getting sheet title
sheet1.title
result = 'sheet2'
#Getting the active sheet
sheetactive = wb.active
result = 'sheet1'
#get a cell from the sheet
sheet1["A1"] <
Cell 'Sheet1'.A1 >
#get the cell value
ws["A1"].value 'Segment'
#accessing cell using row and column and assigning a value
d = ws.cell(row = 4, column = 2, value = 10)
d.value
10
#looping through each row and column
for x in range(1, 5):
for y in range(1, 5):
print(x, y, ws.cell(row = x, column = y)
.value)
#getting the highest row number
ws.max_row
701
#getting the highest column number
ws.max_column
19
There are two functions for iterating through rows and columns.
Iter_rows() => returns the rows
Iter_cols() => returns the columns {
min_row = 4, max_row = 5, min_col = 2, max_col = 5
} => This can be used to set the boundaries
for any iteration.
Example:
#iterating rows
for row in ws.iter_rows(min_row = 2, max_col = 3, max_row = 3):
for cell in row:
print(cell) <
Cell 'Sheet1'.A2 >
<
Cell 'Sheet1'.B2 >
<
Cell 'Sheet1'.C2 >
<
Cell 'Sheet1'.A3 >
<
Cell 'Sheet1'.B3 >
<
Cell 'Sheet1'.C3 >
#iterating columns
for col in ws.iter_cols(min_row = 2, max_col = 3, max_row = 3):
for cell in col:
print(cell) <
Cell 'Sheet1'.A2 >
<
Cell 'Sheet1'.A3 >
<
Cell 'Sheet1'.B2 >
<
Cell 'Sheet1'.B3 >
<
Cell 'Sheet1'.C2 >
<
Cell 'Sheet1'.C3 >
To get all the rows of the worksheet we use the method worksheet.rows and to get all the columns of the worksheet we use the method worksheet.columns. Similarly, to iterate only through the values we use the method worksheet.values.
Example:
for row in ws.values:
for value in row:
print(value)
Writing to a workbook can be done in many ways such as adding a formula, adding charts, images, updating cell values, inserting rows and columns, etc… We will discuss each of these with an example.
#creates a new workbook
wb = openpyxl.Workbook()
#saving the workbook
wb.save("new.xlsx")
#creating a new sheet
ws1 = wb.create_sheet(title = "sheet 2")
#creating a new sheet at index 0
ws2 = wb.create_sheet(index = 0, title = "sheet 0")
#checking the sheet names
wb.sheetnames['sheet 0', 'Sheet', 'sheet 2']
#deleting a sheet
del wb['sheet 0']
#checking sheetnames
wb.sheetnames['Sheet', 'sheet 2']
#checking the sheet value
ws['B2'].value
null
#adding value to cell
ws['B2'] = 367
#checking value
ws['B2'].value
367
We often require formulas to be included in our Excel datasheet. We can easily add formulas using the Openpyxl module just like you add values to a cell.
For example:
import openpyxl
from openpyxl
import Workbook
wb = openpyxl.load_workbook("new1.xlsx")
ws = wb['Sheet']
ws['A9'] = '=SUM(A2:A8)'
wb.save("new2.xlsx")
The above program will add the formula (=SUM(A2:A8)) in cell A9. The result will be as below.
Two or more cells can be merged to a rectangular area using the method merge_cells(), and similarly, they can be unmerged using the method unmerge_cells().
For example:
Merge cells
#merge cells B2 to C9
ws.merge_cells('B2:C9')
ws['B2'] = "Merged cells"
Adding the above code to the previous example will merge cells as below.
#unmerge cells B2 to C9
ws.unmerge_cells('B2:C9')
The above code will unmerge cells from B2 to C9.
To insert an image we import the image function from the module openpyxl.drawing.image. We then load our image and add it to the cell as shown in the below example.
Example:
import openpyxl
from openpyxl
import Workbook
from openpyxl.drawing.image
import Image
wb = openpyxl.load_workbook("new1.xlsx")
ws = wb['Sheet']
#loading the image(should be in same folder)
img = Image('logo.png')
ws['A1'] = "Adding image"
#adjusting size
img.height = 130
img.width = 200
#adding img to cell A3
ws.add_image(img, 'A3')
wb.save("new2.xlsx")
Result:
Charts are essential to show a visualization of data. We can create charts from Excel data using the Openpyxl module chart. Different forms of charts such as line charts, bar charts, 3D line charts, etc., can be created. We need to create a reference that contains the data to be used for the chart, which is nothing but a selection of cells (rows and columns). I am using sample data to create a 3D bar chart in the below example:
Example
import openpyxl
from openpyxl
import Workbook
from openpyxl.chart
import BarChart3D, Reference, series
wb = openpyxl.load_workbook("example.xlsx")
ws = wb.active
values = Reference(ws, min_col = 3, min_row = 2, max_col = 3, max_row = 40)
chart = BarChart3D()
chart.add_data(values)
ws.add_chart(chart, "E3")
wb.save("MyChart.xlsx")
Result
Welcome to another video! In this video, We will cover how we can use python to automate Excel. I'll be going over everything from creating workbooks to accessing individual cells and stylizing cells. There is a ton of things that you can do with Excel but I'll just be covering the core/base things in OpenPyXl.
⭐️ Timestamps ⭐️
00:00 | Introduction
02:14 | Installing openpyxl
03:19 | Testing Installation
04:25 | Loading an Existing Workbook
06:46 | Accessing Worksheets
07:37 | Accessing Cell Values
08:58 | Saving Workbooks
09:52 | Creating, Listing and Changing Sheets
11:50 | Creating a New Workbook
12:39 | Adding/Appending Rows
14:26 | Accessing Multiple Cells
20:46 | Merging Cells
22:27 | Inserting and Deleting Rows
23:35 | Inserting and Deleting Columns
24:48 | Copying and Moving Cells
26:06 | Practical Example, Formulas & Cell Styling
📄 Resources 📄
OpenPyXL Docs: https://openpyxl.readthedocs.io/en/stable/
Code Written in This Tutorial: https://github.com/techwithtim/ExcelPythonTutorial
Subscribe: https://www.youtube.com/c/TechWithTim/featured
1655630160
Install via pip:
$ pip install pytumblr
Install from source:
$ git clone https://github.com/tumblr/pytumblr.git
$ cd pytumblr
$ python setup.py install
A pytumblr.TumblrRestClient
is the object you'll make all of your calls to the Tumblr API through. Creating one is this easy:
client = pytumblr.TumblrRestClient(
'<consumer_key>',
'<consumer_secret>',
'<oauth_token>',
'<oauth_secret>',
)
client.info() # Grabs the current user information
Two easy ways to get your credentials to are:
interactive_console.py
tool (if you already have a consumer key & secret)client.info() # get information about the authenticating user
client.dashboard() # get the dashboard for the authenticating user
client.likes() # get the likes for the authenticating user
client.following() # get the blogs followed by the authenticating user
client.follow('codingjester.tumblr.com') # follow a blog
client.unfollow('codingjester.tumblr.com') # unfollow a blog
client.like(id, reblogkey) # like a post
client.unlike(id, reblogkey) # unlike a post
client.blog_info(blogName) # get information about a blog
client.posts(blogName, **params) # get posts for a blog
client.avatar(blogName) # get the avatar for a blog
client.blog_likes(blogName) # get the likes on a blog
client.followers(blogName) # get the followers of a blog
client.blog_following(blogName) # get the publicly exposed blogs that [blogName] follows
client.queue(blogName) # get the queue for a given blog
client.submission(blogName) # get the submissions for a given blog
Creating posts
PyTumblr lets you create all of the various types that Tumblr supports. When using these types there are a few defaults that are able to be used with any post type.
The default supported types are described below.
We'll show examples throughout of these default examples while showcasing all the specific post types.
Creating a photo post
Creating a photo post supports a bunch of different options plus the described default options * caption - a string, the user supplied caption * link - a string, the "click-through" url for the photo * source - a string, the url for the photo you want to use (use this or the data parameter) * data - a list or string, a list of filepaths or a single file path for multipart file upload
#Creates a photo post using a source URL
client.create_photo(blogName, state="published", tags=["testing", "ok"],
source="https://68.media.tumblr.com/b965fbb2e501610a29d80ffb6fb3e1ad/tumblr_n55vdeTse11rn1906o1_500.jpg")
#Creates a photo post using a local filepath
client.create_photo(blogName, state="queue", tags=["testing", "ok"],
tweet="Woah this is an incredible sweet post [URL]",
data="/Users/johnb/path/to/my/image.jpg")
#Creates a photoset post using several local filepaths
client.create_photo(blogName, state="draft", tags=["jb is cool"], format="markdown",
data=["/Users/johnb/path/to/my/image.jpg", "/Users/johnb/Pictures/kittens.jpg"],
caption="## Mega sweet kittens")
Creating a text post
Creating a text post supports the same options as default and just a two other parameters * title - a string, the optional title for the post. Supports markdown or html * body - a string, the body of the of the post. Supports markdown or html
#Creating a text post
client.create_text(blogName, state="published", slug="testing-text-posts", title="Testing", body="testing1 2 3 4")
Creating a quote post
Creating a quote post supports the same options as default and two other parameter * quote - a string, the full text of the qote. Supports markdown or html * source - a string, the cited source. HTML supported
#Creating a quote post
client.create_quote(blogName, state="queue", quote="I am the Walrus", source="Ringo")
Creating a link post
#Create a link post
client.create_link(blogName, title="I like to search things, you should too.", url="https://duckduckgo.com",
description="Search is pretty cool when a duck does it.")
Creating a chat post
Creating a chat post supports the same options as default and two other parameters * title - a string, the title of the chat post * conversation - a string, the text of the conversation/chat, with diablog labels (no html)
#Create a chat post
chat = """John: Testing can be fun!
Renee: Testing is tedious and so are you.
John: Aw.
"""
client.create_chat(blogName, title="Renee just doesn't understand.", conversation=chat, tags=["renee", "testing"])
Creating an audio post
Creating an audio post allows for all default options and a has 3 other parameters. The only thing to keep in mind while dealing with audio posts is to make sure that you use the external_url parameter or data. You cannot use both at the same time. * caption - a string, the caption for your post * external_url - a string, the url of the site that hosts the audio file * data - a string, the filepath of the audio file you want to upload to Tumblr
#Creating an audio file
client.create_audio(blogName, caption="Rock out.", data="/Users/johnb/Music/my/new/sweet/album.mp3")
#lets use soundcloud!
client.create_audio(blogName, caption="Mega rock out.", external_url="https://soundcloud.com/skrillex/sets/recess")
Creating a video post
Creating a video post allows for all default options and has three other options. Like the other post types, it has some restrictions. You cannot use the embed and data parameters at the same time. * caption - a string, the caption for your post * embed - a string, the HTML embed code for the video * data - a string, the path of the file you want to upload
#Creating an upload from YouTube
client.create_video(blogName, caption="Jon Snow. Mega ridiculous sword.",
embed="http://www.youtube.com/watch?v=40pUYLacrj4")
#Creating a video post from local file
client.create_video(blogName, caption="testing", data="/Users/johnb/testing/ok/blah.mov")
Editing a post
Updating a post requires you knowing what type a post you're updating. You'll be able to supply to the post any of the options given above for updates.
client.edit_post(blogName, id=post_id, type="text", title="Updated")
client.edit_post(blogName, id=post_id, type="photo", data="/Users/johnb/mega/awesome.jpg")
Reblogging a Post
Reblogging a post just requires knowing the post id and the reblog key, which is supplied in the JSON of any post object.
client.reblog(blogName, id=125356, reblog_key="reblog_key")
Deleting a post
Deleting just requires that you own the post and have the post id
client.delete_post(blogName, 123456) # Deletes your post :(
A note on tags: When passing tags, as params, please pass them as a list (not a comma-separated string):
client.create_text(blogName, tags=['hello', 'world'], ...)
Getting notes for a post
In order to get the notes for a post, you need to have the post id and the blog that it is on.
data = client.notes(blogName, id='123456')
The results include a timestamp you can use to make future calls.
data = client.notes(blogName, id='123456', before_timestamp=data["_links"]["next"]["query_params"]["before_timestamp"])
# get posts with a given tag
client.tagged(tag, **params)
This client comes with a nice interactive console to run you through the OAuth process, grab your tokens (and store them for future use).
You'll need pyyaml
installed to run it, but then it's just:
$ python interactive-console.py
and away you go! Tokens are stored in ~/.tumblr
and are also shared by other Tumblr API clients like the Ruby client.
The tests (and coverage reports) are run with nose, like this:
python setup.py test
Author: tumblr
Source Code: https://github.com/tumblr/pytumblr
License: Apache-2.0 license
1586415180
Instagram is the fastest-growing social network, with 1 billion monthly users. It also has the highest engagement rate. To gain followers on Instagram, you’d have to upload engaging content, follow users, like posts, comment on user posts and a whole lot. This can be time-consuming and daunting. But there is hope, you can automate all of these tasks. In this course, we’re going to build an Instagram bot using Python to automate tasks on Instagram.
What you’ll learn:
I got around 500 real followers in 4 days!
Growing an audience is an expensive and painful task. And if you’d like to build an audience that’s relevant to you, and shares common interests, that’s even more difficult. I always saw Instagram has a great way to promote my photos, but I never had more than 380 followers… Every once in a while, I decide to start posting my photos on Instagram again, and I manage to keep posting regularly for a while, but it never lasts more than a couple of months, and I don’t have many followers to keep me motivated and engaged.
The objective of this project is to build a bigger audience and as a plus, maybe drive some traffic to my website where I sell my photos!
A year ago, on my last Instagram run, I got one of those apps that lets you track who unfollowed you. I was curious because in a few occasions my number of followers dropped for no apparent reason. After some research, I realized how some users basically crawl for followers. They comment, like and follow people — looking for a follow back. Only to unfollow them again in the next days.
I can’t say this was a surprise to me, that there were bots in Instagram… It just made me want to build one myself!
And that is why we’re here, so let’s get to it! I came up with a simple bot in Python, while I was messing around with Selenium and trying to figure out some project to use it. Simply put, Selenium is like a browser you can interact with very easily in Python.
Ideally, increasing my Instagram audience will keep me motivated to post regularly. As an extra, I included my website in my profile bio, where people can buy some photos. I think it is a bit of a stretch, but who knows?! My sales are basically zero so far, so it should be easy to track that conversion!
After giving this project some thought, my objective was to increase my audience with relevant people. I want to get followers that actually want to follow me and see more of my work. It’s very easy to come across weird content in the most used hashtags, so I’ve planed this bot to lookup specific hashtags and interact with the photos there. This way, I can be very specific about what kind of interests I want my audience to have. For instance, I really like long exposures, so I can target people who use that hashtag and build an audience around this kind of content. Simple and efficient!
My gallery is a mix of different subjects and styles, from street photography to aerial photography, and some travel photos too. Since it’s my hometown, I also have lots of Lisbon images there. These will be the main topics I’ll use in the hashtags I want to target.
This is not a “get 1000 followers in 24 hours” kind of bot!
I ran the bot a few times in a few different hashtags like “travelblogger”, “travelgram”, “lisbon”, “dronephotography”. In the course of three days I went from 380 to 800 followers. Lots of likes, comments and even some organic growth (people that followed me but were not followed by the bot).
To be clear, I’m not using this bot intensively, as Instagram will stop responding if you run it too fast. It needs to have some sleep commands in between the actions, because after some comments and follows in a short period of time, Instagram stops responding and the bot crashes.
You will be logged into your account, so I’m almost sure that Instagram can know you’re doing something weird if you speed up the process. And most importantly, after doing this for a dozen hashtags, it just gets harder to find new users in the same hashtags. You will need to give it a few days to refresh the user base there.
The most efficient way to get followers in Instagram (apart from posting great photos!) is to follow people. And this bot worked really well for me because I don’t care if I follow 2000 people to get 400 followers.
The bot saves a list with all the users that were followed while it was running, so someday I may actually do something with this list. For instance, I can visit each user profile, evaluate how many followers or posts they have, and decide if I want to keep following them. Or I can get the first picture in their gallery and check its date to see if they are active users.
If we remove the follow action from the bot, I can assure you the growth rate will suffer, as people are less inclined to follow based on a single like or comment.
That’s the debate I had with myself. Even though I truly believe in giving back to the community (I still learn a lot from it too!), there are several paid platforms that do more or less the same as this project. Some are shady, some are used by celebrities. The possibility of starting a similar platform myself, is not off the table yet, so why make the code available?
With that in mind, I decided to add an extra level of difficulty to the process, so I was going to post the code below as an image. I wrote “was”, because meanwhile, I’ve realized the image I’m getting is low quality. Which in turn made me reconsider and post the gist. I’m that nice! The idea behind the image was that if you really wanted to use it, you would have to type the code yourself. And that was my way of limiting the use of this tool to people that actually go through the whole process to create it and maybe even improve it.
I learn a lot more when I type the code myself, instead of copy/pasting scripts. I hope you feel the same way!
The script isn’t as sophisticated as it could be, and I know there’s lots of room to improve it. But hey… it works! I have other projects I want to add to my portfolio, so my time to develop it further is rather limited. Nevertheless, I will try to update this article if I dig deeper.
You’ll need Python (I’m using Python 3.7), Selenium, a browser (in my case I’ll be using Chrome) and… obviously, an Instagram account! Quick overview regarding what the bot will do:
If you reached this paragraph, thank you! You totally deserve to collect your reward! If you find this useful for your profile/brand in any way, do share your experience below :)
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
from time import sleep, strftime
from random import randint
import pandas as pd
chromedriver_path = 'C:/Users/User/Downloads/chromedriver_win32/chromedriver.exe' # Change this to your own chromedriver path!
webdriver = webdriver.Chrome(executable_path=chromedriver_path)
sleep(2)
webdriver.get('https://www.instagram.com/accounts/login/?source=auth_switcher')
sleep(3)
username = webdriver.find_element_by_name('username')
username.send_keys('your_username')
password = webdriver.find_element_by_name('password')
password.send_keys('your_password')
button_login = webdriver.find_element_by_css_selector('#react-root > section > main > div > article > div > div:nth-child(1) > div > form > div:nth-child(3) > button')
button_login.click()
sleep(3)
notnow = webdriver.find_element_by_css_selector('body > div:nth-child(13) > div > div > div > div.mt3GC > button.aOOlW.HoLwm')
notnow.click() #comment these last 2 lines out, if you don't get a pop up asking about notifications
In order to use chrome with Selenium, you need to install chromedriver. It’s a fairly simple process and I had no issues with it. Simply install and replace the path above. Once you do that, our variable webdriver will be our Chrome tab.
In cell number 3 you should replace the strings with your own username and the respective password. This is for the bot to type it in the fields displayed. You might have already noticed that when running cell number 2, Chrome opened a new tab. After the password, I’ll define the login button as an object, and in the following line, I click it.
Once you get in inspect mode find the bit of html code that corresponds to what you want to map. Right click it and hover over Copy. You will see that you have some options regarding how you want it to be copied. I used a mix of XPath and css selectors throughout the code (it’s visible in the find_element_ method). It took me a while to get all the references to run smoothly. At points, the css or the xpath directions would fail, but as I adjusted the sleep times, everything started running smoothly.
In this case, I selected “copy selector” and pasted it inside a find_element_ method (cell number 3). It will get you the first result it finds. If it was find_elements_, all elements would be retrieved and you could specify which to get.
Once you get that done, time for the loop. You can add more hashtags in the hashtag_list. If you run it for the first time, you still don’t have a file with the users you followed, so you can simply create prev_user_list as an empty list.
Once you run it once, it will save a csv file with a timestamp with the users it followed. That file will serve as the prev_user_list on your second run. Simple and easy to keep track of what the bot does.
Update with the latest timestamp on the following runs and you get yourself a series of csv backlogs for every run of the bot.
The code is really simple. If you have some basic notions of Python you can probably pick it up quickly. I’m no Python ninja and I was able to build it, so I guess that if you read this far, you are good to go!
hashtag_list = ['travelblog', 'travelblogger', 'traveler']
# prev_user_list = [] - if it's the first time you run it, use this line and comment the two below
prev_user_list = pd.read_csv('20181203-224633_users_followed_list.csv', delimiter=',').iloc[:,1:2] # useful to build a user log
prev_user_list = list(prev_user_list['0'])
new_followed = []
tag = -1
followed = 0
likes = 0
comments = 0
for hashtag in hashtag_list:
tag += 1
webdriver.get('https://www.instagram.com/explore/tags/'+ hashtag_list[tag] + '/')
sleep(5)
first_thumbnail = webdriver.find_element_by_xpath('//*[@id="react-root"]/section/main/article/div[1]/div/div/div[1]/div[1]/a/div')
first_thumbnail.click()
sleep(randint(1,2))
try:
for x in range(1,200):
username = webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/header/div[2]/div[1]/div[1]/h2/a').text
if username not in prev_user_list:
# If we already follow, do not unfollow
if webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/header/div[2]/div[1]/div[2]/button').text == 'Follow':
webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/header/div[2]/div[1]/div[2]/button').click()
new_followed.append(username)
followed += 1
# Liking the picture
button_like = webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/div[2]/section[1]/span[1]/button/span')
button_like.click()
likes += 1
sleep(randint(18,25))
# Comments and tracker
comm_prob = randint(1,10)
print('{}_{}: {}'.format(hashtag, x,comm_prob))
if comm_prob > 7:
comments += 1
webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/div[2]/section[1]/span[2]/button/span').click()
comment_box = webdriver.find_element_by_xpath('/html/body/div[3]/div/div[2]/div/article/div[2]/section[3]/div/form/textarea')
if (comm_prob < 7):
comment_box.send_keys('Really cool!')
sleep(1)
elif (comm_prob > 6) and (comm_prob < 9):
comment_box.send_keys('Nice work :)')
sleep(1)
elif comm_prob == 9:
comment_box.send_keys('Nice gallery!!')
sleep(1)
elif comm_prob == 10:
comment_box.send_keys('So cool! :)')
sleep(1)
# Enter to post comment
comment_box.send_keys(Keys.ENTER)
sleep(randint(22,28))
# Next picture
webdriver.find_element_by_link_text('Next').click()
sleep(randint(25,29))
else:
webdriver.find_element_by_link_text('Next').click()
sleep(randint(20,26))
# some hashtag stops refreshing photos (it may happen sometimes), it continues to the next
except:
continue
for n in range(0,len(new_followed)):
prev_user_list.append(new_followed[n])
updated_user_df = pd.DataFrame(prev_user_list)
updated_user_df.to_csv('{}_users_followed_list.csv'.format(strftime("%Y%m%d-%H%M%S")))
print('Liked {} photos.'.format(likes))
print('Commented {} photos.'.format(comments))
print('Followed {} new people.'.format(followed))
The print statement inside the loop is the way I found to be able to have a tracker that lets me know at what iteration the bot is all the time. It will print the hashtag it’s in, the number of the iteration, and the random number generated for the comment action. I decided not to post comments in every page, so I added three different comments and a random number between 1 and 10 that would define if there was any comment at all, or one of the three. The loop ends, we append the new_followed users to the previous users “database” and saves the new file with the timestamp. You should also get a small report.
And that’s it!
After a few hours without checking the phone, these were the numbers I was getting. I definitely did not expect it to do so well! In about 4 days since I’ve started testing it, I had around 500 new followers, which means I have doubled my audience in a matter of days. I’m curious to see how many of these new followers I will lose in the next days, to see if the growth can be sustainable. I also had a lot more “likes” in my latest photos, but I guess that’s even more expected than the follow backs.
It would be nice to get this bot running in a server, but I have other projects I want to explore, and configuring a server is not one of them! Feel free to leave a comment below, and I’ll do my best to answer your questions.
I’m actually curious to see how long will I keep posting regularly! If you feel like this article was helpful for you, consider thanking me by buying one of my photos.
What do SocialCaptain, Kicksta, Instavast, and many other companies have in common? They all help you reach a greater audience, gain more followers, and get more likes on Instagram while you hardly lift a finger. They do it all through automation, and people pay them a good deal of money for it. But you can do the same thing—for free—using InstaPy!
In this tutorial, you’ll learn how to build a bot with Python and InstaPy, which automates your Instagram activities so that you gain more followers and likes with minimal manual input. Along the way, you’ll learn about browser automation with Selenium and the Page Object Pattern, which together serve as the basis for InstaPy.
In this tutorial, you’ll learn:
You’ll begin by learning how Instagram bots work before you build one.
Table of Contents
Important: Make sure you check Instagram’s Terms of Use before implementing any kind of automation or scraping techniques.
How can an automation script gain you more followers and likes? Before answering this question, think about how an actual person gains more followers and likes.
They do it by being consistently active on the platform. They post often, follow other people, and like and leave comments on other people’s posts. Bots work exactly the same way: They follow, like, and comment on a consistent basis according to the criteria you set.
The better the criteria you set, the better your results will be. You want to make sure you’re targeting the right groups because the people your bot interacts with on Instagram will be more likely to interact with your content.
For example, if you’re selling women’s clothing on Instagram, then you can instruct your bot to like, comment on, and follow mostly women or profiles whose posts include hashtags such as #beauty
, #fashion
, or #clothes
. This makes it more likely that your target audience will notice your profile, follow you back, and start interacting with your posts.
How does it work on the technical side, though? You can’t use the Instagram Developer API since it is fairly limited for this purpose. Enter browser automation. It works in the following way:
https://instagram.com
on the address bar, logs in with your credentials, and starts doing the things you instructed it to do.Next, you’ll build the initial version of your Instagram bot, which will automatically log in to your profile. Note that you won’t use InstaPy just yet.
For this version of your Instagram bot, you’ll be using Selenium, which is the tool that InstaPy uses under the hood.
First, install Selenium. During installation, make sure you also install the Firefox WebDriver since the latest version of InstaPy dropped support for Chrome. This also means that you need the Firefox browser installed on your computer.
Now, create a Python file and write the following code in it:
from time import sleep
from selenium import webdriver
browser = webdriver.Firefox()
browser.get('https://www.instagram.com/')
sleep(5)
browser.close()
Run the code and you’ll see that a Firefox browser opens and directs you to the Instagram login page. Here’s a line-by-line breakdown of the code:
sleep
and webdriver
.browser
.https://www.instagram.com/
on the address bar and hits Enter.This is the Selenium version of Hello, World
. Now you’re ready to add the code that logs in to your Instagram profile. But first, think about how you would log in to your profile manually. You would do the following:
https://www.instagram.com/
.The first step is already done by the code above. Now change it so that it clicks on the login link on the Instagram home page:
from time import sleep
from selenium import webdriver
browser = webdriver.Firefox()
browser.implicitly_wait(5)
browser.get('https://www.instagram.com/')
login_link = browser.find_element_by_xpath("//a[text()='Log in']")
login_link.click()
sleep(5)
browser.close()
Note the highlighted lines:
<a>
whose text is equal to Log in
. It does this using XPath, but there are a few other methods you could use.<a>
for the login link.Run the script and you’ll see your script in action. It will open the browser, go to Instagram, and click on the login link to go to the login page.
On the login page, there are three important elements:
Next, change the script so that it finds those elements, enters your credentials, and clicks on the login button:
from time import sleep
from selenium import webdriver
browser = webdriver.Firefox()
browser.implicitly_wait(5)
browser.get('https://www.instagram.com/')
login_link = browser.find_element_by_xpath("//a[text()='Log in']")
login_link.click()
sleep(2)
username_input = browser.find_element_by_css_selector("input[name='username']")
password_input = browser.find_element_by_css_selector("input[name='password']")
username_input.send_keys("<your username>")
password_input.send_keys("<your password>")
login_button = browser.find_element_by_xpath("//button[@type='submit']")
login_button.click()
sleep(5)
browser.close()
Here’s a breakdown of the changes:
<your username>
and <your password>
!Run the script and you’ll be automatically logged in to to your Instagram profile.
You’re off to a good start with your Instagram bot. If you were to continue writing this script, then the rest would look very similar. You would find the posts that you like by scrolling down your feed, find the like button by CSS, click on it, find the comments section, leave a comment, and continue.
The good news is that all of those steps can be handled by InstaPy. But before you jump into using Instapy, there is one other thing that you should know about to better understand how InstaPy works: the Page Object Pattern.
Now that you’ve written the login code, how would you write a test for it? It would look something like the following:
def test_login_page(browser):
browser.get('https://www.instagram.com/accounts/login/')
username_input = browser.find_element_by_css_selector("input[name='username']")
password_input = browser.find_element_by_css_selector("input[name='password']")
username_input.send_keys("<your username>")
password_input.send_keys("<your password>")
login_button = browser.find_element_by_xpath("//button[@type='submit']")
login_button.click()
errors = browser.find_elements_by_css_selector('#error_message')
assert len(errors) == 0
Can you see what’s wrong with this code? It doesn’t follow the DRY principle. That is, the code is duplicated in both the application and the test code.
Duplicating code is especially bad in this context because Selenium code is dependent on UI elements, and UI elements tend to change. When they do change, you want to update your code in one place. That’s where the Page Object Pattern comes in.
With this pattern, you create page object classes for the most important pages or fragments that provide interfaces that are straightforward to program to and that hide the underlying widgetry in the window. With this in mind, you can rewrite the code above and create a HomePage
class and a LoginPage
class:
from time import sleep
class LoginPage:
def __init__(self, browser):
self.browser = browser
def login(self, username, password):
username_input = self.browser.find_element_by_css_selector("input[name='username']")
password_input = self.browser.find_element_by_css_selector("input[name='password']")
username_input.send_keys(username)
password_input.send_keys(password)
login_button = browser.find_element_by_xpath("//button[@type='submit']")
login_button.click()
sleep(5)
class HomePage:
def __init__(self, browser):
self.browser = browser
self.browser.get('https://www.instagram.com/')
def go_to_login_page(self):
self.browser.find_element_by_xpath("//a[text()='Log in']").click()
sleep(2)
return LoginPage(self.browser)
The code is the same except that the home page and the login page are represented as classes. The classes encapsulate the mechanics required to find and manipulate the data in the UI. That is, there are methods and accessors that allow the software to do anything a human can.
One other thing to note is that when you navigate to another page using a page object, it returns a page object for the new page. Note the returned value of go_to_log_in_page()
. If you had another class called FeedPage
, then login()
of the LoginPage
class would return an instance of that: return FeedPage()
.
Here’s how you can put the Page Object Pattern to use:
from selenium import webdriver
browser = webdriver.Firefox()
browser.implicitly_wait(5)
home_page = HomePage(browser)
login_page = home_page.go_to_login_page()
login_page.login("<your username>", "<your password>")
browser.close()
It looks much better, and the test above can now be rewritten to look like this:
def test_login_page(browser):
home_page = HomePage(browser)
login_page = home_page.go_to_login_page()
login_page.login("<your username>", "<your password>")
errors = browser.find_elements_by_css_selector('#error_message')
assert len(errors) == 0
With these changes, you won’t have to touch your tests if something changes in the UI.
For more information on the Page Object Pattern, refer to the official documentation and to Martin Fowler’s article.
Now that you’re familiar with both Selenium and the Page Object Pattern, you’ll feel right at home with InstaPy. You’ll build a basic bot with it next.
Note: Both Selenium and the Page Object Pattern are widely used for other websites, not just for Instagram.
In this section, you’ll use InstaPy to build an Instagram bot that will automatically like, follow, and comment on different posts. First, you’ll need to install InstaPy:
$ python3 -m pip install instapy
This will install instapy
in your system.
Now you can rewrite the code above with InstaPy so that you can compare the two options. First, create another Python file and put the following code in it:
from instapy import InstaPy
InstaPy(username="<your_username>", password="<your_password>").login()
Replace the username and password with yours, run the script, and voilà! With just one line of code, you achieved the same result.
Even though your results are the same, you can see that the behavior isn’t exactly the same. In addition to simply logging in to your profile, InstaPy does some other things, such as checking your internet connection and the status of the Instagram servers. This can be observed directly on the browser or in the logs:
INFO [2019-12-17 22:03:19] [username] -- Connection Checklist [1/3] (Internet Connection Status)
INFO [2019-12-17 22:03:20] [username] - Internet Connection Status: ok
INFO [2019-12-17 22:03:20] [username] - Current IP is "17.283.46.379" and it's from "Germany/DE"
INFO [2019-12-17 22:03:20] [username] -- Connection Checklist [2/3] (Instagram Server Status)
INFO [2019-12-17 22:03:26] [username] - Instagram WebSite Status: Currently Up
Pretty good for one line of code, isn’t it? Now it’s time to make the script do more interesting things than just logging in.
For the purpose of this example, assume that your profile is all about cars, and that your bot is intended to interact with the profiles of people who are also interested in cars.
First, you can like some posts that are tagged #bmw
or #mercedes
using like_by_tags()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
Here, you gave the method a list of tags to like and the number of posts to like for each given tag. In this case, you instructed it to like ten posts, five for each of the two tags. But take a look at what happens after you run the script:
INFO [2019-12-17 22:15:58] [username] Tag [1/2]
INFO [2019-12-17 22:15:58] [username] --> b'bmw'
INFO [2019-12-17 22:16:07] [username] desired amount: 14 | top posts [disabled]: 9 | possible posts: 43726739
INFO [2019-12-17 22:16:13] [username] Like# [1/14]
INFO [2019-12-17 22:16:13] [username] https://www.instagram.com/p/B6MCcGcC3tU/
INFO [2019-12-17 22:16:15] [username] Image from: b'mattyproduction'
INFO [2019-12-17 22:16:15] [username] Link: b'https://www.instagram.com/p/B6MCcGcC3tU/'
INFO [2019-12-17 22:16:15] [username] Description: b'Mal etwas anderes \xf0\x9f\x91\x80\xe2\x98\xba\xef\xb8\x8f Bald ist das komplette Video auf YouTube zu finden (n\xc3\xa4here Infos werden folgen). Vielen Dank an @patrick_jwki @thehuthlife und @christic_ f\xc3\xbcr das bereitstellen der Autos \xf0\x9f\x94\xa5\xf0\x9f\x98\x8d#carporn#cars#tuning#bagged#bmw#m2#m2competition#focusrs#ford#mk3#e92#m3#panasonic#cinematic#gh5s#dji#roninm#adobe#videography#music#bimmer#fordperformance#night#shooting#'
INFO [2019-12-17 22:16:15] [username] Location: b'K\xc3\xb6ln, Germany'
INFO [2019-12-17 22:16:51] [username] --> Image Liked!
INFO [2019-12-17 22:16:56] [username] --> Not commented
INFO [2019-12-17 22:16:57] [username] --> Not following
INFO [2019-12-17 22:16:58] [username] Like# [2/14]
INFO [2019-12-17 22:16:58] [username] https://www.instagram.com/p/B6MDK1wJ-Kb/
INFO [2019-12-17 22:17:01] [username] Image from: b'davs0'
INFO [2019-12-17 22:17:01] [username] Link: b'https://www.instagram.com/p/B6MDK1wJ-Kb/'
INFO [2019-12-17 22:17:01] [username] Description: b'Someone said cloud? \xf0\x9f\xa4\x94\xf0\x9f\xa4\xad\xf0\x9f\x98\x88 \xe2\x80\xa2\n\xe2\x80\xa2\n\xe2\x80\xa2\n\xe2\x80\xa2\n#bmw #bmwrepost #bmwm4 #bmwm4gts #f82 #bmwmrepost #bmwmsport #bmwmperformance #bmwmpower #bmwm4cs #austinyellow #davs0 #mpower_official #bmw_world_ua #bimmerworld #bmwfans #bmwfamily #bimmers #bmwpost #ultimatedrivingmachine #bmwgang #m3f80 #m5f90 #m4f82 #bmwmafia #bmwcrew #bmwlifestyle'
INFO [2019-12-17 22:17:34] [username] --> Image Liked!
INFO [2019-12-17 22:17:37] [username] --> Not commented
INFO [2019-12-17 22:17:38] [username] --> Not following
By default, InstaPy will like the first nine top posts in addition to your amount
value. In this case, that brings the total number of likes per tag to fourteen (nine top posts plus the five you specified in amount
).
Also note that InstaPy logs every action it takes. As you can see above, it mentions which post it liked as well as its link, description, location, and whether the bot commented on the post or followed the author.
You may have noticed that there are delays after almost every action. That’s by design. It prevents your profile from getting banned on Instagram.
Now, you probably don’t want your bot liking inappropriate posts. To prevent that from happening, you can use set_dont_like()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
session.set_dont_like(["naked", "nsfw"])
With this change, posts that have the words naked
or nsfw
in their descriptions won’t be liked. You can flag any other words that you want your bot to avoid.
Next, you can tell the bot to not only like the posts but also to follow some of the authors of those posts. You can do that with set_do_follow()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
session.set_dont_like(["naked", "nsfw"])
session.set_do_follow(True, percentage=50)
If you run the script now, then the bot will follow fifty percent of the users whose posts it liked. As usual, every action will be logged.
You can also leave some comments on the posts. There are two things that you need to do. First, enable commenting with set_do_comment()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
session.set_dont_like(["naked", "nsfw"])
session.set_do_follow(True, percentage=50)
session.set_do_comment(True, percentage=50)
Next, tell the bot what comments to leave with set_comments()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
session.set_dont_like(["naked", "nsfw"])
session.set_do_follow(True, percentage=50)
session.set_do_comment(True, percentage=50)
session.set_comments(["Nice!", "Sweet!", "Beautiful :heart_eyes:"])
Run the script and the bot will leave one of those three comments on half the posts that it interacts with.
Now that you’re done with the basic settings, it’s a good idea to end the session with end()
:
from instapy import InstaPy
session = InstaPy(username="<your_username>", password="<your_password>")
session.login()
session.like_by_tags(["bmw", "mercedes"], amount=5)
session.set_dont_like(["naked", "nsfw"])
session.set_do_follow(True, percentage=50)
session.set_do_comment(True, percentage=50)
session.set_comments(["Nice!", "Sweet!", "Beautiful :heart_eyes:"])
session.end()
This will close the browser, save the logs, and prepare a report that you can see in the console output.
InstaPy is a sizable project that has a lot of thoroughly documented features. The good news is that if you’re feeling comfortable with the features you used above, then the rest should feel pretty similar. This section will outline some of the more useful features of InstaPy.
You can’t scrape Instagram all day, every day. The service will quickly notice that you’re running a bot and will ban some of its actions. That’s why it’s a good idea to set quotas on some of your bot’s actions. Take the following for example:
session.set_quota_supervisor(enabled=True, peak_comments_daily=240, peak_comments_hourly=21)
The bot will keep commenting until it reaches its hourly and daily limits. It will resume commenting after the quota period has passed.
This feature allows you to run your bot without the GUI of the browser. This is super useful if you want to deploy your bot to a server where you may not have or need the graphical interface. It’s also less CPU intensive, so it improves performance. You can use it like so:
session = InstaPy(username='test', password='test', headless_browser=True)
Note that you set this flag when you initialize the InstaPy
object.
Earlier you saw how to ignore posts that contain inappropriate words in their descriptions. What if the description is good but the image itself is inappropriate? You can integrate your InstaPy bot with ClarifAI, which offers image and video recognition services:
session.set_use_clarifai(enabled=True, api_key='<your_api_key>')
session.clarifai_check_img_for(['nsfw'])
Now your bot won’t like or comment on any image that ClarifAI considers NSFW. You get 5,000 free API-calls per month.
It’s often a waste of time to interact with posts by people who have a lot of followers. In such cases, it’s a good idea to set some relationship bounds so that your bot doesn’t waste your precious computing resources:
session.set_relationship_bounds(enabled=True, max_followers=8500)
With this, your bot won’t interact with posts by users who have more than 8,500 followers.
For many more features and configurations in InstaPy, check out the documentation.
InstaPy allows you to automate your Instagram activities with minimal fuss and effort. It’s a very flexible tool with a lot of useful features.
In this tutorial, you learned:
Read the InstaPy documentation and experiment with your bot a little bit. Soon you’ll start getting new followers and likes with a minimal amount of effort. I gained a few new followers myself while writing this tutorial.
Maybe some of you do not agree it is a good way to grow your IG page by using follow for follow method but after a lot of researching I found the proper way to use this method.
I have done and used this strategy for a while and my page visits also followers started growing.
The majority of people failing because they randomly targeting the followers and as a result, they are not coming back to your page. So, the key is to find people those have same interests with you.
If you have a programming page go and search for IG pages which have big programming community and once you find one, don’t send follow requests to followers of this page. Because some of them are not active even maybe fake accounts. So, in order to gain active followers, go the last post of this page and find people who liked the post.
In order to query data from Instagram I am going to use the very cool, yet unofficial, Instagram API written by Pasha Lev.
**Note:**Before you test it make sure you verified your phone number in your IG account.
The program works pretty well so far but in case of any problems I have to put disclaimer statement here:
Disclaimer: This post published educational purposes only as well as to give general information about Instagram API. I am not responsible for any actions and you are taking your own risk.
Let’s start by installing and then logging in with API.
pip install InstagramApi
from InstagramAPI import InstagramAPI
api = InstagramAPI("username", "password")
api.login()
Once you run the program you will see “Login success!” in your console.
We are going to search for some username (your target page) then get most recent post from this user. Then, get users who liked this post. Unfortunately, I can’t find solution how to paginate users so right now it gets about last 500 user.
users_list = []
def get_likes_list(username):
api.login()
api.searchUsername(username)
result = api.LastJson
username_id = result['user']['pk'] # Get user ID
user_posts = api.getUserFeed(username_id) # Get user feed
result = api.LastJson
media_id = result['items'][0]['id'] # Get most recent post
api.getMediaLikers(media_id) # Get users who liked
users = api.LastJson['users']
for user in users: # Push users to list
users_list.append({'pk':user['pk'], 'username':user['username']})
Once we get the users list, it is time to follow these users.
IMPORTANT NOTE: set time limit as much as you can to avoid automation detection.
from time import sleep
following_users = []
def follow_users(users_list):
api.login()
api.getSelfUsersFollowing() # Get users which you are following
result = api.LastJson
for user in result['users']:
following_users.append(user['pk'])
for user in users_list:
if not user['pk'] in following_users: # if new user is not in your following users
print('Following @' + user['username'])
api.follow(user['pk'])
# after first test set this really long to avoid from suspension
sleep(20)
else:
print('Already following @' + user['username'])
sleep(10)
This function will look users which you are following then it will check if this user follows you as well. If user not following you then you are unfollowing as well.
follower_users = []
def unfollow_users():
api.login()
api.getSelfUserFollowers() # Get your followers
result = api.LastJson
for user in result['users']:
follower_users.append({'pk':user['pk'], 'username':user['username']})
api.getSelfUsersFollowing() # Get users which you are following
result = api.LastJson
for user in result['users']:
following_users.append({'pk':user['pk'],'username':user['username']})
for user in following_users:
if not user['pk'] in follower_users: # if the user not follows you
print('Unfollowing @' + user['username'])
api.unfollow(user['pk'])
# set this really long to avoid from suspension
sleep(20)
Here is the full code of this automation
import pprint
from time import sleep
from InstagramAPI import InstagramAPI
import pandas as pd
users_list = []
following_users = []
follower_users = []
class InstaBot:
def __init__(self):
self.api = InstagramAPI("your_username", "your_password")
def get_likes_list(self,username):
api = self.api
api.login()
api.searchUsername(username) #Gets most recent post from user
result = api.LastJson
username_id = result['user']['pk']
user_posts = api.getUserFeed(username_id)
result = api.LastJson
media_id = result['items'][0]['id']
api.getMediaLikers(media_id)
users = api.LastJson['users']
for user in users:
users_list.append({'pk':user['pk'], 'username':user['username']})
bot.follow_users(users_list)
def follow_users(self,users_list):
api = self.api
api.login()
api.getSelfUsersFollowing()
result = api.LastJson
for user in result['users']:
following_users.append(user['pk'])
for user in users_list:
if not user['pk'] in following_users:
print('Following @' + user['username'])
api.follow(user['pk'])
# set this really long to avoid from suspension
sleep(20)
else:
print('Already following @' + user['username'])
sleep(10)
def unfollow_users(self):
api = self.api
api.login()
api.getSelfUserFollowers()
result = api.LastJson
for user in result['users']:
follower_users.append({'pk':user['pk'], 'username':user['username']})
api.getSelfUsersFollowing()
result = api.LastJson
for user in result['users']:
following_users.append({'pk':user['pk'],'username':user['username']})
for user in following_users:
if not user['pk'] in [user['pk'] for user in follower_users]:
print('Unfollowing @' + user['username'])
api.unfollow(user['pk'])
# set this really long to avoid from suspension
sleep(20)
bot = InstaBot()
# To follow users run the function below
# change the username ('instagram') to your target username
bot.get_likes_list('instagram')
# To unfollow users uncomment and run the function below
# bot.unfollow_users()
it will look like this:
some extra functions to play with API:
def get_my_profile_details():
api.login()
api.getSelfUsernameInfo()
result = api.LastJson
username = result['user']['username']
full_name = result['user']['full_name']
profile_pic_url = result['user']['profile_pic_url']
followers = result['user']['follower_count']
following = result['user']['following_count']
media_count = result['user']['media_count']
df_profile = pd.DataFrame(
{'username':username,
'full name': full_name,
'profile picture URL':profile_pic_url,
'followers':followers,
'following':following,
'media count': media_count,
}, index=[0])
df_profile.to_csv('profile.csv', sep='\t', encoding='utf-8')
def get_my_feed():
image_urls = []
api.login()
api.getSelfUserFeed()
result = api.LastJson
# formatted_json_str = pprint.pformat(result)
# print(formatted_json_str)
if 'items' in result.keys():
for item in result['items'][0:5]:
if 'image_versions2' in item.keys():
image_url = item['image_versions2']['candidates'][1]['url']
image_urls.append(image_url)
df_feed = pd.DataFrame({
'image URL':image_urls
})
df_feed.to_csv('feed.csv', sep='\t', encoding='utf-8')
Let’s build an Instagram bot to gain more followers! — I know, I know. That doesn’t sound very ethical, does it? But it’s all justified for educational purposes.
Coding is a super power — we can all agree. That’s why I’ll leave it up to you to not abuse this power. And I trust you’re here to learn how it works. Otherwise, you’d be on GitHub cloning one of the countless Instagram bots there, right?
You’re convinced? — Alright, now let’s go back to unethical practices.
So here’s the deal, we want to build a bot in Python and Selenium that goes on the hashtags we specify, likes random posts, then follows the posters. It does that enough — we get follow backs. Simple as that.
Here’s a pretty twisted detail though: we want to keep track of the users we follow so the bot can unfollow them after the number of days we specify.
So first things first, I want to use a database to keep track of the username and the date added. You might as well save/load from/to a file, but we want this to be ready for more features in case we felt inspired in the future.
So make sure you create a database (I named mine instabot — but you can name it anything you like) and create a table called followed_users within the database with two fields (username, date_added)
Remember the installation path. You’ll need it.
You’ll also need the following python packages:
Alright, so first thing we’ll be doing is creating settings.json. Simply a .json file that will hold all of our settings so we don’t have to dive into the code every time we want to change something.
settings.json:
{
"db": {
"host": "localhost",
"user": "root",
"pass": "",
"database": "instabot"
},
"instagram": {
"user": "",
"pass": ""
},
"config": {
"days_to_unfollow": 1,
"likes_over": 150,
"check_followers_every": 3600,
"hashtags": []
}
}
As you can see, under “db”, we specify the database information. As I mentioned, I used “instabot”, but feel free to use whatever name you want.
You’ll also need to fill Instagram info under “instagram” so the bot can login into your account.
“config” is for our bot’s settings. Here’s what the fields mean:
days_to_unfollow: number of days before unfollowing users
likes_over: ignore posts if the number of likes is above this number
check_followers_every: number of seconds before checking if it’s time to unfollow any of the users
hashtags: a list of strings with the hashtag names the bot should be active on
Now, we want to take these settings and have them inside our code as constants.
Create Constants.py:
import json
INST_USER= INST_PASS= USER= PASS= HOST= DATABASE= POST_COMMENTS= ''
LIKES_LIMIT= DAYS_TO_UNFOLLOW= CHECK_FOLLOWERS_EVERY= 0
HASHTAGS= []
def init():
global INST_USER, INST_PASS, USER, PASS, HOST, DATABASE, LIKES_LIMIT, DAYS_TO_UNFOLLOW, CHECK_FOLLOWERS_EVERY, HASHTAGS
# read file
data = None
with open('settings.json', 'r') as myfile:
data = myfile.read()
obj = json.loads(data)
INST_USER = obj['instagram']['user']
INST_PASS = obj['instagram']['pass']
USER = obj['db']['user']
HOST = obj['db']['host']
PASS = obj['db']['pass']
DATABASE = obj['db']['database']
LIKES_LIMIT = obj['config']['likes_over']
CHECK_FOLLOWERS_EVERY = obj['config']['check_followers_every']
HASHTAGS = obj['config']['hashtags']
DAYS_TO_UNFOLLOW = obj['config']['days_to_unfollow']
the init() function we created reads the data from settings.json and feeds them into the constants we declared.
Alright, time for some architecture. Our bot will mainly operate from a python script with an init and update methods. Create BotEngine.py:
import Constants
def init(webdriver):
return
def update(webdriver):
return
We’ll be back later to put the logic here, but for now, we need an entry point.
Create our entry point, InstaBot.py:
from selenium import webdriver
import BotEngine
chromedriver_path = 'YOUR CHROMEDRIVER PATH'
webdriver = webdriver.Chrome(executable_path=chromedriver_path)
BotEngine.init(webdriver)
BotEngine.update(webdriver)
webdriver.close()
chromedriver_path = ‘YOUR CHROMEDRIVER PATH’ webdriver = webdriver.Chrome(executable_path=chromedriver_path)
BotEngine.init(webdriver)
BotEngine.update(webdriver)
webdriver.close()
Of course, you’ll need to swap “YOUR CHROMEDRIVER PATH” with your actual ChromeDriver path.
We need to create a helper script that will help us calculate elapsed days since a certain date (so we know if we should unfollow user)
Create TimeHelper.py:
import datetime
def days_since_date(n):
diff = datetime.datetime.now().date() - n
return diff.days
Create DBHandler.py. It’ll contain a class that handles connecting to the Database for us.
import mysql.connector
import Constants
class DBHandler:
def __init__(self):
DBHandler.HOST = Constants.HOST
DBHandler.USER = Constants.USER
DBHandler.DBNAME = Constants.DATABASE
DBHandler.PASSWORD = Constants.PASS
HOST = Constants.HOST
USER = Constants.USER
DBNAME = Constants.DATABASE
PASSWORD = Constants.PASS
@staticmethod
def get_mydb():
if DBHandler.DBNAME == '':
Constants.init()
db = DBHandler()
mydb = db.connect()
return mydb
def connect(self):
mydb = mysql.connector.connect(
host=DBHandler.HOST,
user=DBHandler.USER,
passwd=DBHandler.PASSWORD,
database = DBHandler.DBNAME
)
return mydb
As you can see, we’re using the constants we defined.
The class contains a static method get_mydb() that returns a database connection we can use.
Now, let’s define a DB user script that contains the DB operations we need to perform on the user.
Create DBUsers.py:
import datetime, TimeHelper
from DBHandler import *
import Constants
#delete user by username
def delete_user(username):
mydb = DBHandler.get_mydb()
cursor = mydb.cursor()
sql = "DELETE FROM followed_users WHERE username = '{0}'".format(username)
cursor.execute(sql)
mydb.commit()
#add new username
def add_user(username):
mydb = DBHandler.get_mydb()
cursor = mydb.cursor()
now = datetime.datetime.now().date()
cursor.execute("INSERT INTO followed_users(username, date_added) VALUES(%s,%s)",(username, now))
mydb.commit()
#check if any user qualifies to be unfollowed
def check_unfollow_list():
mydb = DBHandler.get_mydb()
cursor = mydb.cursor()
cursor.execute("SELECT * FROM followed_users")
results = cursor.fetchall()
users_to_unfollow = []
for r in results:
d = TimeHelper.days_since_date(r[1])
if d > Constants.DAYS_TO_UNFOLLOW:
users_to_unfollow.append(r[0])
return users_to_unfollow
#get all followed users
def get_followed_users():
users = []
mydb = DBHandler.get_mydb()
cursor = mydb.cursor()
cursor.execute("SELECT * FROM followed_users")
results = cursor.fetchall()
for r in results:
users.append(r[0])
return users
Alright, we’re about to start our bot. We’re creating a script called AccountAgent.py that will contain the agent behavior.
Import some modules, some of which we need for later and write a login function that will make use of our webdriver.
Notice that we have to keep calling the sleep function between actions. If we send too many requests quickly, the Instagram servers will be alarmed and will deny any requests you send.
from time import sleep
import datetime
import DBUsers, Constants
import traceback
import random
def login(webdriver):
#Open the instagram login page
webdriver.get('https://www.instagram.com/accounts/login/?source=auth_switcher')
#sleep for 3 seconds to prevent issues with the server
sleep(3)
#Find username and password fields and set their input using our constants
username = webdriver.find_element_by_name('username')
username.send_keys(Constants.INST_USER)
password = webdriver.find_element_by_name('password')
password.send_keys(Constants.INST_PASS)
#Get the login button
try:
button_login = webdriver.find_element_by_xpath(
'//*[@id="react-root"]/section/main/div/article/div/div[1]/div/form/div[4]/button')
except:
button_login = webdriver.find_element_by_xpath(
'//*[@id="react-root"]/section/main/div/article/div/div[1]/div/form/div[6]/button/div')
#sleep again
sleep(2)
#click login
button_login.click()
sleep(3)
#In case you get a popup after logging in, press not now.
#If not, then just return
try:
notnow = webdriver.find_element_by_css_selector(
'body > div.RnEpo.Yx5HN > div > div > div.mt3GC > button.aOOlW.HoLwm')
notnow.click()
except:
return
Also note how we’re getting elements with their xpath. To do so, right click on the element, click “Inspect”, then right click on the element again inside the inspector, and choose Copy->Copy XPath.
Another important thing to be aware of is that element hierarchy change with the page’s layout when you resize or stretch the window. That’s why we’re checking for two different xpaths for the login button.
Now go back to BotEngine.py, we’re ready to login.
Add more imports that we’ll need later and fill in the init function
import AccountAgent, DBUsers
import Constants
import datetime
def init(webdriver):
Constants.init()
AccountAgent.login(webdriver)
def update(webdriver):
return
If you run our entry script now (InstaBot.py) you’ll see the bot logging in.
Perfect, now let’s add a method that will allow us to follow people to AccountAgent.py:
def follow_people(webdriver):
#all the followed user
prev_user_list = DBUsers.get_followed_users()
#a list to store newly followed users
new_followed = []
#counters
followed = 0
likes = 0
#Iterate theough all the hashtags from the constants
for hashtag in Constants.HASHTAGS:
#Visit the hashtag
webdriver.get('https://www.instagram.com/explore/tags/' + hashtag+ '/')
sleep(5)
#Get the first post thumbnail and click on it
first_thumbnail = webdriver.find_element_by_xpath(
'//*[@id="react-root"]/section/main/article/div[1]/div/div/div[1]/div[1]/a/div')
first_thumbnail.click()
sleep(random.randint(1,3))
try:
#iterate over the first 200 posts in the hashtag
for x in range(1,200):
t_start = datetime.datetime.now()
#Get the poster's username
username = webdriver.find_element_by_xpath('/html/body/div[3]/div[2]/div/article/header/div[2]/div[1]/div[1]/h2/a').text
likes_over_limit = False
try:
#get number of likes and compare it to the maximum number of likes to ignore post
likes = int(webdriver.find_element_by_xpath(
'/html/body/div[3]/div[2]/div/article/div[2]/section[2]/div/div/button/span').text)
if likes > Constants.LIKES_LIMIT:
print("likes over {0}".format(Constants.LIKES_LIMIT))
likes_over_limit = True
print("Detected: {0}".format(username))
#If username isn't stored in the database and the likes are in the acceptable range
if username not in prev_user_list and not likes_over_limit:
#Don't press the button if the text doesn't say follow
if webdriver.find_element_by_xpath('/html/body/div[3]/div[2]/div/article/header/div[2]/div[1]/div[2]/button').text == 'Follow':
#Use DBUsers to add the new user to the database
DBUsers.add_user(username)
#Click follow
webdriver.find_element_by_xpath('/html/body/div[3]/div[2]/div/article/header/div[2]/div[1]/div[2]/button').click()
followed += 1
print("Followed: {0}, #{1}".format(username, followed))
new_followed.append(username)
# Liking the picture
button_like = webdriver.find_element_by_xpath(
'/html/body/div[3]/div[2]/div/article/div[2]/section[1]/span[1]/button')
button_like.click()
likes += 1
print("Liked {0}'s post, #{1}".format(username, likes))
sleep(random.randint(5, 18))
# Next picture
webdriver.find_element_by_link_text('Next').click()
sleep(random.randint(20, 30))
except:
traceback.print_exc()
continue
t_end = datetime.datetime.now()
#calculate elapsed time
t_elapsed = t_end - t_start
print("This post took {0} seconds".format(t_elapsed.total_seconds()))
except:
traceback.print_exc()
continue
#add new list to old list
for n in range(0, len(new_followed)):
prev_user_list.append(new_followed[n])
print('Liked {} photos.'.format(likes))
print('Followed {} new people.'.format(followed))
It’s pretty long, but generally here’s the steps of the algorithm:
For every hashtag in the hashtag constant list:
Now we might as well implement the unfollow method, hopefully the engine will be feeding us the usernames to unfollow in a list:
def unfollow_people(webdriver, people):
#if only one user, append in a list
if not isinstance(people, (list,)):
p = people
people = []
people.append(p)
for user in people:
try:
webdriver.get('https://www.instagram.com/' + user + '/')
sleep(5)
unfollow_xpath = '//*[@id="react-root"]/section/main/div/header/section/div[1]/div[1]/span/span[1]/button'
unfollow_confirm_xpath = '/html/body/div[3]/div/div/div[3]/button[1]'
if webdriver.find_element_by_xpath(unfollow_xpath).text == "Following":
sleep(random.randint(4, 15))
webdriver.find_element_by_xpath(unfollow_xpath).click()
sleep(2)
webdriver.find_element_by_xpath(unfollow_confirm_xpath).click()
sleep(4)
DBUsers.delete_user(user)
except Exception:
traceback.print_exc()
continue
Now we can finally go back and finish the bot by implementing the rest of BotEngine.py:
import AccountAgent, DBUsers
import Constants
import datetime
def init(webdriver):
Constants.init()
AccountAgent.login(webdriver)
def update(webdriver):
#Get start of time to calculate elapsed time later
start = datetime.datetime.now()
#Before the loop, check if should unfollow anyone
_check_follow_list(webdriver)
while True:
#Start following operation
AccountAgent.follow_people(webdriver)
#Get the time at the end
end = datetime.datetime.now()
#How much time has passed?
elapsed = end - start
#If greater than our constant to check on
#followers, check on followers
if elapsed.total_seconds() >= Constants.CHECK_FOLLOWERS_EVERY:
#reset the start variable to now
start = datetime.datetime.now()
#check on followers
_check_follow_list(webdriver)
def _check_follow_list(webdriver):
print("Checking for users to unfollow")
#get the unfollow list
users = DBUsers.check_unfollow_list()
#if there's anyone in the list, start unfollowing operation
if len(users) > 0:
AccountAgent.unfollow_people(webdriver, users)
And that’s it — now you have yourself a fully functional Instagram bot built with Python and Selenium. There are many possibilities for you to explore now, so make sure you’re using this newly gained skill to solve real life problems!
You can get the source code for the whole project from this GitHub repository.
Here we build a simple bot using some simple Python which beginner to intermediate coders can follow.
Here’s the code on GitHub
https://github.com/aj-4/ig-followers
Source Code: https://github.com/jg-fisher/instagram-bot
How to Get Instagram Followers/Likes Using Python
In this video I show you how to program your own Instagram Bot using Python and Selenium.
https://www.youtube.com/watch?v=BGU2X5lrz9M
Code Link:
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import time
import random
import sys
def print_same_line(text):
sys.stdout.write('\r')
sys.stdout.flush()
sys.stdout.write(text)
sys.stdout.flush()
class InstagramBot:
def __init__(self, username, password):
self.username = username
self.password = password
self.driver = webdriver.Chrome()
def closeBrowser(self):
self.driver.close()
def login(self):
driver = self.driver
driver.get("https://www.instagram.com/")
time.sleep(2)
login_button = driver.find_element_by_xpath("//a[@href='/accounts/login/?source=auth_switcher']")
login_button.click()
time.sleep(2)
user_name_elem = driver.find_element_by_xpath("//input[@name='username']")
user_name_elem.clear()
user_name_elem.send_keys(self.username)
passworword_elem = driver.find_element_by_xpath("//input[@name='password']")
passworword_elem.clear()
passworword_elem.send_keys(self.password)
passworword_elem.send_keys(Keys.RETURN)
time.sleep(2)
def like_photo(self, hashtag):
driver = self.driver
driver.get("https://www.instagram.com/explore/tags/" + hashtag + "/")
time.sleep(2)
# gathering photos
pic_hrefs = []
for i in range(1, 7):
try:
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(2)
# get tags
hrefs_in_view = driver.find_elements_by_tag_name('a')
# finding relevant hrefs
hrefs_in_view = [elem.get_attribute('href') for elem in hrefs_in_view
if '.com/p/' in elem.get_attribute('href')]
# building list of unique photos
[pic_hrefs.append(href) for href in hrefs_in_view if href not in pic_hrefs]
# print("Check: pic href length " + str(len(pic_hrefs)))
except Exception:
continue
# Liking photos
unique_photos = len(pic_hrefs)
for pic_href in pic_hrefs:
driver.get(pic_href)
time.sleep(2)
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
try:
time.sleep(random.randint(2, 4))
like_button = lambda: driver.find_element_by_xpath('//span[@aria-label="Like"]').click()
like_button().click()
for second in reversed(range(0, random.randint(18, 28))):
print_same_line("#" + hashtag + ': unique photos left: ' + str(unique_photos)
+ " | Sleeping " + str(second))
time.sleep(1)
except Exception as e:
time.sleep(2)
unique_photos -= 1
if __name__ == "__main__":
username = "USERNAME"
password = "PASSWORD"
ig = InstagramBot(username, password)
ig.login()
hashtags = ['amazing', 'beautiful', 'adventure', 'photography', 'nofilter',
'newyork', 'artsy', 'alumni', 'lion', 'best', 'fun', 'happy',
'art', 'funny', 'me', 'followme', 'follow', 'cinematography', 'cinema',
'love', 'instagood', 'instagood', 'followme', 'fashion', 'sun', 'scruffy',
'street', 'canon', 'beauty', 'studio', 'pretty', 'vintage', 'fierce']
while True:
try:
# Choose a random tag from the list of tags
tag = random.choice(hashtags)
ig.like_photo(tag)
except Exception:
ig.closeBrowser()
time.sleep(60)
ig = InstagramBot(username, password)
ig.login()
Build An INSTAGRAM Bot With Python That Gets You Followers
Instagram Automation Using Python
How to Create an Instagram Bot | Get More Followers
Building a simple Instagram Influencer Bot with Python tutorial
#python #chatbot #web-development
1662480600
In any programming language, we need to deal with data. Now, one of the most fundamental things that we need to work with the data is to store, manage, and access it efficiently in an organized way so it can be utilized whenever required for our purposes. Data Structures are used to take care of all our needs.
Data Structures are fundamental building blocks of a programming language. It aims to provide a systematic approach to fulfill all the requirements mentioned previously in the article. The data structures in Python are List, Tuple, Dictionary, and Set. They are regarded as implicit or built-in Data Structures in Python. We can use these data structures and apply numerous methods to them to manage, relate, manipulate and utilize our data.
We also have custom Data Structures that are user-defined namely Stack, Queue, Tree, Linked List, and Graph. They allow users to have full control over their functionality and use them for advanced programming purposes. However, we will be focussing on the built-in Data Structures for this article.
Implicit Data Structures Python
Lists help us to store our data sequentially with multiple data types. They are comparable to arrays with the exception that they can store different data types like strings and numbers at the same time. Every item or element in a list has an assigned index. Since Python uses 0-based indexing, the first element has an index of 0 and the counting goes on. The last element of a list starts with -1 which can be used to access the elements from the last to the first. To create a list we have to write the items inside the square brackets.
One of the most important things to remember about lists is that they are Mutable. This simply means that we can change an element in a list by accessing it directly as part of the assignment statement using the indexing operator. We can also perform operations on our list to get desired output. Let’s go through the code to gain a better understanding of list and list operations.
1. Creating a List
#creating the list
my_list = ['p', 'r', 'o', 'b', 'e']
print(my_list)
Output
['p', 'r', 'o', 'b', 'e']
2. Accessing items from the List
#accessing the list
#accessing the first item of the list
my_list[0]
Output
'p'
#accessing the third item of the list
my_list[2]
'o'
3. Adding new items to the list
#adding item to the list
my_list + ['k']
Output
['p', 'r', 'o', 'b', 'e', 'k']
4. Removing Items
#removing item from the list
#Method 1:
#Deleting list items
my_list = ['p', 'r', 'o', 'b', 'l', 'e', 'm']
# delete one item
del my_list[2]
print(my_list)
# delete multiple items
del my_list[1:5]
print(my_list)
Output
['p', 'r', 'b', 'l', 'e', 'm']
['p', 'm']
#Method 2:
#with remove fucntion
my_list = ['p','r','o','k','l','y','m']
my_list.remove('p')
print(my_list)
#Method 3:
#with pop function
print(my_list.pop(1))
# Output: ['r', 'k', 'l', 'y', 'm']
print(my_list)
Output
['r', 'o', 'k', 'l', 'y', 'm']
o
['r', 'k', 'l', 'y', 'm']
5. Sorting List
#sorting of list in ascending order
my_list.sort()
print(my_list)
Output
['k', 'l', 'm', 'r', 'y']
#sorting of list in descending order
my_list.sort(reverse=True)
print(my_list)
Output
['y', 'r', 'm', 'l', 'k']
6. Finding the length of a List
#finding the length of list
len(my_list)
Output
5
Tuples are very similar to lists with a key difference that a tuple is IMMUTABLE, unlike a list. Once we create a tuple or have a tuple, we are not allowed to change the elements inside it. However, if we have an element inside a tuple, which is a list itself, only then we can access or change within that list. To create a tuple, we have to write the items inside the parenthesis. Like the lists, we have similar methods which can be used with tuples. Let’s go through some code snippets to understand using tuples.
1. Creating a Tuple
#creating of tuple
my_tuple = ("apple", "banana", "guava")
print(my_tuple)
Output
('apple', 'banana', 'guava')
2. Accessing items from a Tuple
#accessing first element in tuple
my_tuple[1]
Output
'banana'
3. Length of a Tuple
#for finding the lenght of tuple
len(my_tuple)
Output
3
4. Converting a Tuple to List
#converting tuple into a list
my_tuple_list = list(my_tuple)
type(my_tuple_list)
Output
list
5. Reversing a Tuple
#Reversing a tuple
tuple(sorted(my_tuple, reverse=True))
Output
('guava', 'banana', 'apple')
6. Sorting a Tuple
#sorting tuple in ascending order
tuple(sorted(my_tuple))
Output
('apple', 'banana', 'guava')
7. Removing elements from Tuple
For removing elements from the tuple, we first converted the tuple into a list as we did in one of our methods above( Point No. 4) then followed the same process of the list, and explicitly removed an entire tuple, just using the del statement.
Dictionary is a collection which simply means that it is used to store a value with some key and extract the value given the key. We can think of it as a set of key: value pairs and every key in a dictionary is supposed to be unique so that we can access the corresponding values accordingly.
A dictionary is denoted by the use of curly braces { } containing the key: value pairs. Each of the pairs in a dictionary is comma separated. The elements in a dictionary are un-ordered the sequence does not matter while we are accessing or storing them.
They are MUTABLE which means that we can add, delete or update elements in a dictionary. Here are some code examples to get a better understanding of a dictionary in python.
An important point to note is that we can’t use a mutable object as a key in the dictionary. So, a list is not allowed as a key in the dictionary.
1. Creating a Dictionary
#creating a dictionary
my_dict = {
1:'Delhi',
2:'Patna',
3:'Bangalore'
}
print(my_dict)
Output
{1: 'Delhi', 2: 'Patna', 3: 'Bangalore'}
Here, integers are the keys of the dictionary and the city name associated with integers are the values of the dictionary.
2. Accessing items from a Dictionary
#access an item
print(my_dict[1])
Output
'Delhi'
3. Length of a Dictionary
#length of the dictionary
len(my_dict)
Output
3
4. Sorting a Dictionary
#sorting based on the key
Print(sorted(my_dict.items()))
#sorting based on the values of dictionary
print(sorted(my_dict.values()))
Output
[(1, 'Delhi'), (2, 'Bangalore'), (3, 'Patna')]
['Bangalore', 'Delhi', 'Patna']
5. Adding elements in Dictionary
#adding a new item in dictionary
my_dict[4] = 'Lucknow'
print(my_dict)
Output
{1: 'Delhi', 2: 'Patna', 3: 'Bangalore', 4: 'Lucknow'}
6. Removing elements from Dictionary
#for deleting an item from dict using the specific key
my_dict.pop(4)
print(my_dict)
#for deleting last item from the list
my_dict.popitem()
#for clearing the dictionary
my_dict.clear()
print(my_dict)
Output
{1: 'Delhi', 2: 'Patna', 3: 'Bangalore'}
(3, 'Bangalore')
{}
Set is another data type in python which is an unordered collection with no duplicate elements. Common use cases for a set are to remove duplicate values and to perform membership testing. Curly braces or the set()
function can be used to create sets. One thing to keep in mind is that while creating an empty set, we have to use set()
, and not { }
. The latter creates an empty dictionary.
Here are some code examples to get a better understanding of sets in python.
1. Creating a Set
#creating set
my_set = {"apple", "mango", "strawberry", "apple"}
print(my_set)
Output
{'apple', 'strawberry', 'mango'}
2. Accessing items from a Set
#to test for an element inside the set
"apple" in my_set
Output
True
3. Length of a Set
print(len(my_set))
Output
3
4. Sorting a Set
print(sorted(my_set))
Output
['apple', 'mango', 'strawberry']
5. Adding elements in Set
my_set.add("guava")
print(my_set)
Output
{'apple', 'guava', 'mango', 'strawberry'}
6. Removing elements from Set
my_set.remove("mango")
print(my_set)
Output
{'apple', 'guava', 'strawberry'}
In this article, we went through the most commonly used data structures in python and also saw various methods associated with them.
Link: https://www.askpython.com/python/data
#python #datastructures
1662358320
В любом языке программирования нам нужно иметь дело с данными. Теперь одной из самых фундаментальных вещей, которые нам нужны для работы с данными, является эффективное хранение, управление и доступ к ним организованным образом, чтобы их можно было использовать всякий раз, когда это необходимо для наших целей. Структуры данных используются для удовлетворения всех наших потребностей.
Структуры данных являются фундаментальными строительными блоками языка программирования. Он направлен на обеспечение системного подхода для выполнения всех требований, упомянутых ранее в статье. Структуры данных в Python — это List, Tuple, Dictionary и Set . Они считаются неявными или встроенными структурами данных в Python . Мы можем использовать эти структуры данных и применять к ним многочисленные методы для управления, связывания, манипулирования и использования наших данных.
У нас также есть пользовательские структуры данных, определяемые пользователем, а именно Stack , Queue , Tree , Linked List и Graph . Они позволяют пользователям полностью контролировать их функциональность и использовать их для расширенных целей программирования. Однако в этой статье мы сосредоточимся на встроенных структурах данных.
Неявные структуры данных Python
Списки помогают нам хранить наши данные последовательно с несколькими типами данных. Они сопоставимы с массивами за исключением того, что они могут одновременно хранить разные типы данных, такие как строки и числа. Каждый элемент или элемент в списке имеет назначенный индекс. Поскольку Python использует индексацию на основе 0, первый элемент имеет индекс 0, и подсчет продолжается. Последний элемент списка начинается с -1, что можно использовать для доступа к элементам от последнего к первому. Чтобы создать список, мы должны написать элементы внутри квадратных скобок .
Одна из самых важных вещей, которые нужно помнить о списках , это то, что они изменяемы . Это просто означает, что мы можем изменить элемент в списке, обратившись к нему напрямую как часть оператора присваивания с помощью оператора индексации. Мы также можем выполнять операции в нашем списке, чтобы получить желаемый результат. Давайте рассмотрим код, чтобы лучше понять список и операции со списками.
1. Создание списка
#creating the list
my_list = ['p', 'r', 'o', 'b', 'e']
print(my_list)
Выход
['p', 'r', 'o', 'b', 'e']
2. Доступ к элементам из списка
#accessing the list
#accessing the first item of the list
my_list[0]
Выход
'p'
#accessing the third item of the list
my_list[2]
'o'
3. Добавление новых элементов в список
#adding item to the list
my_list + ['k']
Выход
['p', 'r', 'o', 'b', 'e', 'k']
4. Удаление элементов
#removing item from the list
#Method 1:
#Deleting list items
my_list = ['p', 'r', 'o', 'b', 'l', 'e', 'm']
# delete one item
del my_list[2]
print(my_list)
# delete multiple items
del my_list[1:5]
print(my_list)
Выход
['p', 'r', 'b', 'l', 'e', 'm']
['p', 'm']
#Method 2:
#with remove fucntion
my_list = ['p','r','o','k','l','y','m']
my_list.remove('p')
print(my_list)
#Method 3:
#with pop function
print(my_list.pop(1))
# Output: ['r', 'k', 'l', 'y', 'm']
print(my_list)
Выход
['r', 'o', 'k', 'l', 'y', 'm']
o
['r', 'k', 'l', 'y', 'm']
5. Список сортировки
#sorting of list in ascending order
my_list.sort()
print(my_list)
Выход
['k', 'l', 'm', 'r', 'y']
#sorting of list in descending order
my_list.sort(reverse=True)
print(my_list)
Выход
['y', 'r', 'm', 'l', 'k']
6. Нахождение длины списка
#finding the length of list
len(my_list)
Выход
5
Кортежи очень похожи на списки с той ключевой разницей, что кортеж является IMMUTABLE , в отличие от списка. Как только мы создаем кортеж или имеем кортеж, нам не разрешается изменять элементы внутри него. Однако если у нас есть элемент внутри кортежа, который сам является списком, только тогда мы можем получить доступ к этому списку или изменить его. Чтобы создать кортеж, мы должны написать элементы внутри круглых скобок . Как и со списками, у нас есть аналогичные методы, которые можно использовать с кортежами. Давайте рассмотрим некоторые фрагменты кода, чтобы понять, как использовать кортежи.
1. Создание кортежа
#creating of tuple
my_tuple = ("apple", "banana", "guava")
print(my_tuple)
Выход
('apple', 'banana', 'guava')
2. Доступ к элементам из кортежа
#accessing first element in tuple
my_tuple[1]
Выход
'banana'
3. Длина кортежа
#for finding the lenght of tuple
len(my_tuple)
Выход
3
4. Преобразование кортежа в список
#converting tuple into a list
my_tuple_list = list(my_tuple)
type(my_tuple_list)
Выход
list
5. Реверс кортежа
#Reversing a tuple
tuple(sorted(my_tuple, reverse=True))
Выход
('guava', 'banana', 'apple')
6. Сортировка кортежа
#sorting tuple in ascending order
tuple(sorted(my_tuple))
Выход
('apple', 'banana', 'guava')
7. Удаление элементов из кортежа
Для удаления элементов из кортежа мы сначала преобразовали кортеж в список, как мы сделали в одном из наших методов выше (пункт № 4), затем следовали тому же процессу списка и явно удалили весь кортеж, просто используя del заявление .
Словарь — это коллекция, которая просто означает, что она используется для хранения значения с некоторым ключом и извлечения значения по данному ключу. Мы можем думать об этом как о наборе пар ключ: значение, и каждый ключ в словаре должен быть уникальным , чтобы мы могли получить соответствующий доступ к соответствующим значениям .
Словарь обозначается фигурными скобками { } , содержащими пары ключ: значение. Каждая из пар в словаре разделена запятой. Элементы в словаре неупорядочены , последовательность не имеет значения, пока мы обращаемся к ним или сохраняем их.
Они ИЗМЕНЯЕМЫ , что означает, что мы можем добавлять, удалять или обновлять элементы в словаре. Вот несколько примеров кода, чтобы лучше понять словарь в Python.
Важно отметить, что мы не можем использовать изменяемый объект в качестве ключа в словаре. Таким образом, список не допускается в качестве ключа в словаре.
1. Создание словаря
#creating a dictionary
my_dict = {
1:'Delhi',
2:'Patna',
3:'Bangalore'
}
print(my_dict)
Выход
{1: 'Delhi', 2: 'Patna', 3: 'Bangalore'}
Здесь целые числа — это ключи словаря, а название города, связанное с целыми числами, — это значения словаря.
2. Доступ к элементам из словаря
#access an item
print(my_dict[1])
Выход
'Delhi'
3. Длина словаря
#length of the dictionary
len(my_dict)
Выход
3
4. Сортировка словаря
#sorting based on the key
Print(sorted(my_dict.items()))
#sorting based on the values of dictionary
print(sorted(my_dict.values()))
Выход
[(1, 'Delhi'), (2, 'Bangalore'), (3, 'Patna')]
['Bangalore', 'Delhi', 'Patna']
5. Добавление элементов в Словарь
#adding a new item in dictionary
my_dict[4] = 'Lucknow'
print(my_dict)
Выход
{1: 'Delhi', 2: 'Patna', 3: 'Bangalore', 4: 'Lucknow'}
6. Удаление элементов из словаря
#for deleting an item from dict using the specific key
my_dict.pop(4)
print(my_dict)
#for deleting last item from the list
my_dict.popitem()
#for clearing the dictionary
my_dict.clear()
print(my_dict)
Выход
{1: 'Delhi', 2: 'Patna', 3: 'Bangalore'}
(3, 'Bangalore')
{}
Set — это еще один тип данных в python, представляющий собой неупорядоченную коллекцию без повторяющихся элементов. Общие варианты использования набора — удаление повторяющихся значений и проверка принадлежности. Фигурные скобки или set()функция могут использоваться для создания наборов. Следует иметь в виду, что при создании пустого набора мы должны использовать set(), и . Последний создает пустой словарь. not { }
Вот несколько примеров кода, чтобы лучше понять наборы в python.
1. Создание набора
#creating set
my_set = {"apple", "mango", "strawberry", "apple"}
print(my_set)
Выход
{'apple', 'strawberry', 'mango'}
2. Доступ к элементам из набора
#to test for an element inside the set
"apple" in my_set
Выход
True
3. Длина набора
print(len(my_set))
Выход
3
4. Сортировка набора
print(sorted(my_set))
Выход
['apple', 'mango', 'strawberry']
5. Добавление элементов в Set
my_set.add("guava")
print(my_set)
Выход
{'apple', 'guava', 'mango', 'strawberry'}
6. Удаление элементов из Set
my_set.remove("mango")
print(my_set)
Выход
{'apple', 'guava', 'strawberry'}
В этой статье мы рассмотрели наиболее часто используемые структуры данных в Python, а также рассмотрели различные связанные с ними методы.
Ссылка: https://www.askpython.com/python/data
#python #datastructures