1660220640
Conductor.jl is a WIP. If the idea of a Julia-based neuronal network simulator engine sounds exciting to you, please feel free to reach out
Conductor.jl aims to be a platform for quickly and flexibly building high-performance, multi-scale neuronal network models in Julia. Under the hood it's being built on top of ModelingToolkit.jl--so all the tools available in the SciML and DiffEq ecosystem are (or soon will be) useable and composable with the neuronal models built here.
To install, tagged releases are available through the public registry:
# From Julia REPL
]add Conductor
While Conductor.jl is still in early development, you can get a feel for what's going on by looking in the demo
directory of this repository. Clone the repository:
git clone https://github.com/wsphillips/Conductor.jl
Then from a Julia REPL:
cd("/path/to/Conductor.jl/demo")
using Pkg; Pkg.activate("."); Pkg.instantiate()
You should then be able to open and step through the various demo script examples.
Conductor.jl is based on the acausal component modeling paradigm in ModelingToolkit.jl. The initial draft of Conductor.jl was derived from an implementation of a stomatogastric ganglion (STG) model, which was written in Julia by Dhruva Raman, and based on published works by Astrid Prinz et al.
The original Julia/ModelingToolkit STG model template: NeuronBuilder.jl
STG model papers:
Prinz et al. 2003 The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons J. Neuroscience
Prinz et al. 2003 Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons J. Neurophysiology
Prinz et al. 2004 Similar network activity from disparate circuit parameters Nature Neuroscience
Thanks also to Srinivas Gorur-Shandilya for advice and contributions related to model implementation.
Author: wsphillips
Source Code: https://github.com/wsphillips/Conductor.jl
License: MIT license
1660220640
Conductor.jl is a WIP. If the idea of a Julia-based neuronal network simulator engine sounds exciting to you, please feel free to reach out
Conductor.jl aims to be a platform for quickly and flexibly building high-performance, multi-scale neuronal network models in Julia. Under the hood it's being built on top of ModelingToolkit.jl--so all the tools available in the SciML and DiffEq ecosystem are (or soon will be) useable and composable with the neuronal models built here.
To install, tagged releases are available through the public registry:
# From Julia REPL
]add Conductor
While Conductor.jl is still in early development, you can get a feel for what's going on by looking in the demo
directory of this repository. Clone the repository:
git clone https://github.com/wsphillips/Conductor.jl
Then from a Julia REPL:
cd("/path/to/Conductor.jl/demo")
using Pkg; Pkg.activate("."); Pkg.instantiate()
You should then be able to open and step through the various demo script examples.
Conductor.jl is based on the acausal component modeling paradigm in ModelingToolkit.jl. The initial draft of Conductor.jl was derived from an implementation of a stomatogastric ganglion (STG) model, which was written in Julia by Dhruva Raman, and based on published works by Astrid Prinz et al.
The original Julia/ModelingToolkit STG model template: NeuronBuilder.jl
STG model papers:
Prinz et al. 2003 The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons J. Neuroscience
Prinz et al. 2003 Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons J. Neurophysiology
Prinz et al. 2004 Similar network activity from disparate circuit parameters Nature Neuroscience
Thanks also to Srinivas Gorur-Shandilya for advice and contributions related to model implementation.
Author: wsphillips
Source Code: https://github.com/wsphillips/Conductor.jl
License: MIT license
1625397103
Ibiza - anuncios clasificados de empleos - conductor, reparto y mensajero
Ibiza, conductor, chofer, furgoneta, conductor particular, mensajero, repartidor
Haga clic aquí para más información ---------------
https://ibiza.bedpage.es/DriverJobs/
https://www.bedpage.es/
las acciones que tomó y el resultado de sus acciones. Los entrevistadores deben evaluar cada respuesta citando indicadores de comportamiento que verifiquen cómo el candidato mostró previamente comportamientos que lo llevaron al éxito.
Como reclutador, es difícil predecir exactamente qué pueden preguntar los conductores, pero prepare respuestas para preguntas comunes. Esto probablemente incluirá preguntas sobre el tiempo en casa, el pago, los beneficios y el equipo, entre otras cosas. Antes de terminar la conversación, asegúrese de que el conductor tenga clara la oferta de trabajo. La transparencia inicial respalda la retención a largo plazo.
Las preguntas de la entrevista para conductores de camiones son una oportunidad para conocer candidatos potenciales y centrarse en los conductores que impulsarán la retención. Cada tipo de pregunta extraerá información sobre los candidatos a conductores y funcionará bien en una entrevista conversacional. Cuando los conductores y los transportistas se conectan de forma transparente en un trabajo que se adapta mutuamente, el tiempo de la entrevista bien vale la pena la inversión.
Muchas empresas, ya sea de forma intencionada o inadvertida, incentivan a los reclutadores de conductores a priorizar las contrataciones por encima de todo. En algunos casos, esta es una solución eficaz a corto plazo pero, a menudo, no mantiene a las empresas en una buena posición a largo plazo. En su lugar, reclute para la retención. Reducir la rotación de conductores puede ahorrar drásticamente los costos de contratación porque hay menos conductores que reemplazar. La fuerte retención de conductores también mejora la cultura de la empresa y la satisfacción de los conductores. Si bien pueden ocupar diferentes elementos de línea en el presupuesto, la contratación y la retención son puntos a lo largo del mismo espectro. En su flota, tome medidas concretas para incentivar a los reclutadores de conductores a reclutar para retención.
Analiza tu estructura actual
reclutador de camioneros
El primer paso para incentivar a los reclutadores de conductores a reclutar para la retención es evaluar su programa existente. Con frecuencia, se incentiva a los reclutadores para contrataciones rápidas. Las bonificaciones basadas en lograr un número determinado de contrataciones en un período de tiempo específico o las recompensas basadas puramente en las cifras de contratación son solo eso. Cuando los reclutadores están sujetos a plazos extremadamente ajustados, esto agrava el problema. Es probable que los reclutadores obtengan muchos conductores por la puerta, pero eso no significa necesariamente que esos conductores estén altamente calificados o que probablemente se queden.
#ibiza, conductor, chofer, furgoneta, conductor particular, mensajero, repartidor
1660627020
JSONTables.jl
A package that provides a JSON integration with the Tables.jl interface, that is, it provides the jsontable
function as a way to treat a JSON object of arrays, or a JSON array of objects, as a Tables.jl-compatible source. This allows, among other things, loading JSON "tabular" data into a DataFrame
, or a JuliaDB.jl table, or written out directly as a csv file.
JSONTables.jl also provides two "write" functions, objecttable
and arraytable
, for taking any Tables.jl-comptabile source (e.g. DataFrame
, CSV.File
, etc.) and writing the table out either as a JSON object of arrays, or array of objects, respectively.
So in short:
# treat a json object of arrays or array of objects as a "table"
jtable = jsontable(json_source)
# turn json table into DataFrame
df = DataFrame(jtable)
# turn DataFrame back into json object of arrays
objecttable(df)
# turn DataFrame back into json array of objects
arraytable(df)
Author: JuliaData
Source Code: https://github.com/JuliaData/JSONTables.jl
License: MIT license
1664261640
UnitfulChainRules.jl
adds support for differentiating through scalar Unitful.Quantity
construction and arithmetic. The arithmetic rules are drawn from the existing ChainRules.jl
scalar rules, so this package provides the Quantity
autodiff rules and utilities.
Right now, this includes rrule, frule
implementations for the Quantity
construction and the ProjectTo
utility. We implement projection onto Quantity
s and projection of Quantity
s onto Real, Complex
numbers.
To import the rules, all that is required is importing UnitfulChainRules.jl
in addition to Unitful.jl
.
using Unitful: W, μm, ms
using UnitfulChainRules
using Zygote
Zygote.gradient((x,y) -> (x*W)/(y*μm)/ms, 3.0*W, 2.0*μm)
# (0.5 W μm^-2 ms^-1, -0.75 W^2 μm^-3 ms^-1)
Zygote.gradient((x,y) -> (x*ms + 9*y*ms)/μm, 2.0*W, 3.0*W)
# (1.0 ms μm^-1, 9.0 ms μm^-1)
This package does not yet include compatibility for operations between arrays of Unitful.Quantity
s, like most LinearAlgebra
ops. An issue is open for discussing how to best add array rules.
Author: SBuercklin
Source Code: https://github.com/SBuercklin/UnitfulChainRules.jl
License: MIT license
1661225640
UnitfulRecipes.jl
for plotting data with units seamlessly in Julia
UnitfulRecipes.jl makes it easy to plot data with units.
It works by providing recipes for the Plots.jl package that can deal with units from Unitful.jl. For a quick example,
using Unitful, UnitfulRecipes, Plots
const a = 1u"m/s^2"
v(t) = a * t
x(t) = a/2 * t^2
t = (0:0.01:100)*u"s"
plot(x.(t), v.(t), xlabel="position", ylabel="speed")
should give something like
Head over to the documentation for more examples!
Inspired by UnitfulPlots.jl.
Author: jw3126
Source Code: https://github.com/jw3126/UnitfulRecipes.jl
License: MIT license