Nat  Grady

Nat Grady

1624036560

8 Best Practices for REST API Design

Build Better REST APIs

1. Automate Caching

2. API Documentation

3. Don’t Return Plain Text

4. Use Plural Resource Nouns

5. Handle Trailing Slashes

6. 401 VS 403

7. Filtering and Pagination

8. Use CamelCase for Attribute Names

#web-development #javascript #coding #software-development

What is GEEK

Buddha Community

8 Best Practices for REST API Design

An API-First Approach For Designing Restful APIs | Hacker Noon

I’ve been working with Restful APIs for some time now and one thing that I love to do is to talk about APIs.

So, today I will show you how to build an API using the API-First approach and Design First with OpenAPI Specification.

First thing first, if you don’t know what’s an API-First approach means, it would be nice you stop reading this and check the blog post that I wrote to the Farfetchs blog where I explain everything that you need to know to start an API using API-First.

Preparing the ground

Before you get your hands dirty, let’s prepare the ground and understand the use case that will be developed.

Tools

If you desire to reproduce the examples that will be shown here, you will need some of those items below.

  • NodeJS
  • OpenAPI Specification
  • Text Editor (I’ll use VSCode)
  • Command Line

Use Case

To keep easy to understand, let’s use the Todo List App, it is a very common concept beyond the software development community.

#api #rest-api #openai #api-first-development #api-design #apis #restful-apis #restful-api

Adonis  Kerluke

Adonis Kerluke

1596509565

RESTful API Design Driven Approach

In this tutorial I will show you the fundamentals of designing a RESTful API specification by applying REST principles and best practices, then you’ll be ready to try my online tutorial: How to design a REST API with API Designer?

If you already know what is meant by API in the context of RESTful web services, you can skip to the next section. If not, read on.

Level-Set on API

The abbreviation API stands for Application Programming Interface this in itself, does not help us understand what it is, however in the context of web services, it can refer to one of two things:

  1. The RESTful API specification is written using a modeling language such as Open API specification or RAML (RESTful API Modeling Language) that defines a contract for how software components can interact with a service.
  2. The implementation of a web service or microservice whose contract is designed by REST principles that describe how other services must interact with it.

In this post, I will use the first understanding of this term. Even though both are correct, the most technically relevant for this post is the first: an API is a contract for how software applications talk to each other.

Level-Set on REST

The acronym REST stands for REpresentational State Transfer. It is an architectural style used to represent the transmission of data from one application component to another. In the context of web services, we are talking about the representation of resources (i.e. data) transferred over HTTP by calling a URI that represents the data and via an HTTP method that represents the action to perform against the given data.

What Is RESTful API design?

RESTful API design is the activity of describing the behavior of a web service in terms of its data structures and the actions you allow other application components to perform on its data by the principles of REST. Those principles are covered later in this blog.

Why Design a RESTful API?

Imagine that you are an Architect (the kind the design building) and you set out to build an office block without a blueprint. You turn up on the first day with a truck full of bricks and some cement. What are the chances that you’ll be successful and build a structure that conforms to code and more importantly, doesn’t fall? It’s about zero. Without a blueprint the chance of failure is high.

The same approach applies to web service development. You need a blueprint, or more appropriately, an API specification. This is necessary to evaluate the API design and solicit feedback before even starting to build the implementation.

In addition to providing a specification for the web service’s development, an API contract serves to document its expected behavior, data types, and security requirements.

You should now be satisfied that API design is necessary for a RESTful web service, and should start to wonder how is the best approach to actually designing an API specification.

API Design Tooling

The tooling chosen by an API designer has substantial influence over the designer’s productivity. Highly productive tools such as the Anypoint API Designer from MuleSoft is perfect for designing APIs with OAS (swagger) or RAML.

#integration #api #rest #rest api #restful #api design #raml #rest api design

Wilford  Pagac

Wilford Pagac

1594289280

What is REST API? An Overview | Liquid Web

What is REST?

The REST acronym is defined as a “REpresentational State Transfer” and is designed to take advantage of existing HTTP protocols when used for Web APIs. It is very flexible in that it is not tied to resources or methods and has the ability to handle different calls and data formats. Because REST API is not constrained to an XML format like SOAP, it can return multiple other formats depending on what is needed. If a service adheres to this style, it is considered a “RESTful” application. REST allows components to access and manage functions within another application.

REST was initially defined in a dissertation by Roy Fielding’s twenty years ago. He proposed these standards as an alternative to SOAP (The Simple Object Access Protocol is a simple standard for accessing objects and exchanging structured messages within a distributed computing environment). REST (or RESTful) defines the general rules used to regulate the interactions between web apps utilizing the HTTP protocol for CRUD (create, retrieve, update, delete) operations.

What is an API?

An API (or Application Programming Interface) provides a method of interaction between two systems.

What is a RESTful API?

A RESTful API (or application program interface) uses HTTP requests to GET, PUT, POST, and DELETE data following the REST standards. This allows two pieces of software to communicate with each other. In essence, REST API is a set of remote calls using standard methods to return data in a specific format.

The systems that interact in this manner can be very different. Each app may use a unique programming language, operating system, database, etc. So, how do we create a system that can easily communicate and understand other apps?? This is where the Rest API is used as an interaction system.

When using a RESTful API, we should determine in advance what resources we want to expose to the outside world. Typically, the RESTful API service is implemented, keeping the following ideas in mind:

  • Format: There should be no restrictions on the data exchange format
  • Implementation: REST is based entirely on HTTP
  • Service Definition: Because REST is very flexible, API can be modified to ensure the application understands the request/response format.
  • The RESTful API focuses on resources and how efficiently you perform operations with it using HTTP.

The features of the REST API design style state:

  • Each entity must have a unique identifier.
  • Standard methods should be used to read and modify data.
  • It should provide support for different types of resources.
  • The interactions should be stateless.

For REST to fit this model, we must adhere to the following rules:

  • Client-Server Architecture: The interface is separate from the server-side data repository. This affords flexibility and the development of components independently of each other.
  • Detachment: The client connections are not stored on the server between requests.
  • Cacheability: It must be explicitly stated whether the client can store responses.
  • Multi-level: The API should work whether it interacts directly with a server or through an additional layer, like a load balancer.

#tutorials #api #application #application programming interface #crud #http #json #programming #protocols #representational state transfer #rest #rest api #rest api graphql #rest api json #rest api xml #restful #soap #xml #yaml

Top 10 API Security Threats Every API Team Should Know

As more and more data is exposed via APIs either as API-first companies or for the explosion of single page apps/JAMStack, API security can no longer be an afterthought. The hard part about APIs is that it provides direct access to large amounts of data while bypassing browser precautions. Instead of worrying about SQL injection and XSS issues, you should be concerned about the bad actor who was able to paginate through all your customer records and their data.

Typical prevention mechanisms like Captchas and browser fingerprinting won’t work since APIs by design need to handle a very large number of API accesses even by a single customer. So where do you start? The first thing is to put yourself in the shoes of a hacker and then instrument your APIs to detect and block common attacks along with unknown unknowns for zero-day exploits. Some of these are on the OWASP Security API list, but not all.

Insecure pagination and resource limits

Most APIs provide access to resources that are lists of entities such as /users or /widgets. A client such as a browser would typically filter and paginate through this list to limit the number items returned to a client like so:

First Call: GET /items?skip=0&take=10 
Second Call: GET /items?skip=10&take=10

However, if that entity has any PII or other information, then a hacker could scrape that endpoint to get a dump of all entities in your database. This could be most dangerous if those entities accidently exposed PII or other sensitive information, but could also be dangerous in providing competitors or others with adoption and usage stats for your business or provide scammers with a way to get large email lists. See how Venmo data was scraped

A naive protection mechanism would be to check the take count and throw an error if greater than 100 or 1000. The problem with this is two-fold:

  1. For data APIs, legitimate customers may need to fetch and sync a large number of records such as via cron jobs. Artificially small pagination limits can force your API to be very chatty decreasing overall throughput. Max limits are to ensure memory and scalability requirements are met (and prevent certain DDoS attacks), not to guarantee security.
  2. This offers zero protection to a hacker that writes a simple script that sleeps a random delay between repeated accesses.
skip = 0
while True:    response = requests.post('https://api.acmeinc.com/widgets?take=10&skip=' + skip),                      headers={'Authorization': 'Bearer' + ' ' + sys.argv[1]})    print("Fetched 10 items")    sleep(randint(100,1000))    skip += 10

How to secure against pagination attacks

To secure against pagination attacks, you should track how many items of a single resource are accessed within a certain time period for each user or API key rather than just at the request level. By tracking API resource access at the user level, you can block a user or API key once they hit a threshold such as “touched 1,000,000 items in a one hour period”. This is dependent on your API use case and can even be dependent on their subscription with you. Like a Captcha, this can slow down the speed that a hacker can exploit your API, like a Captcha if they have to create a new user account manually to create a new API key.

Insecure API key generation

Most APIs are protected by some sort of API key or JWT (JSON Web Token). This provides a natural way to track and protect your API as API security tools can detect abnormal API behavior and block access to an API key automatically. However, hackers will want to outsmart these mechanisms by generating and using a large pool of API keys from a large number of users just like a web hacker would use a large pool of IP addresses to circumvent DDoS protection.

How to secure against API key pools

The easiest way to secure against these types of attacks is by requiring a human to sign up for your service and generate API keys. Bot traffic can be prevented with things like Captcha and 2-Factor Authentication. Unless there is a legitimate business case, new users who sign up for your service should not have the ability to generate API keys programmatically. Instead, only trusted customers should have the ability to generate API keys programmatically. Go one step further and ensure any anomaly detection for abnormal behavior is done at the user and account level, not just for each API key.

Accidental key exposure

APIs are used in a way that increases the probability credentials are leaked:

  1. APIs are expected to be accessed over indefinite time periods, which increases the probability that a hacker obtains a valid API key that’s not expired. You save that API key in a server environment variable and forget about it. This is a drastic contrast to a user logging into an interactive website where the session expires after a short duration.
  2. The consumer of an API has direct access to the credentials such as when debugging via Postman or CURL. It only takes a single developer to accidently copy/pastes the CURL command containing the API key into a public forum like in GitHub Issues or Stack Overflow.
  3. API keys are usually bearer tokens without requiring any other identifying information. APIs cannot leverage things like one-time use tokens or 2-factor authentication.

If a key is exposed due to user error, one may think you as the API provider has any blame. However, security is all about reducing surface area and risk. Treat your customer data as if it’s your own and help them by adding guards that prevent accidental key exposure.

How to prevent accidental key exposure

The easiest way to prevent key exposure is by leveraging two tokens rather than one. A refresh token is stored as an environment variable and can only be used to generate short lived access tokens. Unlike the refresh token, these short lived tokens can access the resources, but are time limited such as in hours or days.

The customer will store the refresh token with other API keys. Then your SDK will generate access tokens on SDK init or when the last access token expires. If a CURL command gets pasted into a GitHub issue, then a hacker would need to use it within hours reducing the attack vector (unless it was the actual refresh token which is low probability)

Exposure to DDoS attacks

APIs open up entirely new business models where customers can access your API platform programmatically. However, this can make DDoS protection tricky. Most DDoS protection is designed to absorb and reject a large number of requests from bad actors during DDoS attacks but still need to let the good ones through. This requires fingerprinting the HTTP requests to check against what looks like bot traffic. This is much harder for API products as all traffic looks like bot traffic and is not coming from a browser where things like cookies are present.

Stopping DDoS attacks

The magical part about APIs is almost every access requires an API Key. If a request doesn’t have an API key, you can automatically reject it which is lightweight on your servers (Ensure authentication is short circuited very early before later middleware like request JSON parsing). So then how do you handle authenticated requests? The easiest is to leverage rate limit counters for each API key such as to handle X requests per minute and reject those above the threshold with a 429 HTTP response. There are a variety of algorithms to do this such as leaky bucket and fixed window counters.

Incorrect server security

APIs are no different than web servers when it comes to good server hygiene. Data can be leaked due to misconfigured SSL certificate or allowing non-HTTPS traffic. For modern applications, there is very little reason to accept non-HTTPS requests, but a customer could mistakenly issue a non HTTP request from their application or CURL exposing the API key. APIs do not have the protection of a browser so things like HSTS or redirect to HTTPS offer no protection.

How to ensure proper SSL

Test your SSL implementation over at Qualys SSL Test or similar tool. You should also block all non-HTTP requests which can be done within your load balancer. You should also remove any HTTP headers scrub any error messages that leak implementation details. If your API is used only by your own apps or can only be accessed server-side, then review Authoritative guide to Cross-Origin Resource Sharing for REST APIs

Incorrect caching headers

APIs provide access to dynamic data that’s scoped to each API key. Any caching implementation should have the ability to scope to an API key to prevent cross-pollution. Even if you don’t cache anything in your infrastructure, you could expose your customers to security holes. If a customer with a proxy server was using multiple API keys such as one for development and one for production, then they could see cross-pollinated data.

#api management #api security #api best practices #api providers #security analytics #api management policies #api access tokens #api access #api security risks #api access keys

Security Best Practices for REST APIs

In the modern era, REST APIs become an integral part of the applications. By adopting the REST APIs, you can expose your services to web applications or mobile applications and all other digital platforms.

REST APIs must be built as a stateless service. REST API best practices deserve a separate article. This article primarily focuses only on security best practices for REST APIs.

Below are the key concepts that should be considered while designing the REST APIs.

  • Authentication/authorization
  • Input validations and sanitization
  • Defining content-types
  • Output encoding
  • Rate limiters
  • Security for data in transit and storage
  • Responding with appropriate status codes to avoid the ambiguity

Before delving into details let us first understand authentication and authorization.

  • Authentication: Authentication is the process of identifying whether the credentials passed along with the request are valid or not. here credentials can be passed as user id and password or a token assigned for the user session.
  • Authorization: Authorization is the process of identifying whether the received request is allowed to access the requested endpoint or method.

In the request processing pipeline, authentication comes first and authorization comes next. Authorization occurs only after successful authentication of the request.

Below are the most widely used authentication types when dealing with Remote APIs (REST APIs / Web Services).

Basic Auth is the simplest way of dealing with Authentication when compared to other methodologies.

In the Basic Auth, the user has to send the user id and password in the format of userid:password encoded in base64 format. This method is preferred only over the https protocol only. This is highly discouraged to use over HTTP as your credentials are transferring in plain format.

Plain Text

1

Authorization: Basic base64(userid:password)

Bearer Token Authentication is also known as Token-based Authentication. When the user logs into an application using the credentials, the Authorization server generates a cryptographic token to uniquely identifies the user. the applications can use the token to identify the user after a successful login. i.e. The application is required to send this token when accessing protected resources.

Similar to Basic Authentication, Bearer tokens are only recommended to send over HTTPS only.

Authorization Bearer <your token>API Tokens are widely used in the web services/REST APIs security before the evaluation of Client-side frameworks. Still, many organizations use the API Tokens as a security measure for the APIs. This is the simplest way of implementing the security in REST APIs.

This is recommended when providing the communication between server to server requests. It is recommended to use the IP Address registration as well when using the API keys. i.e. API Token is uniquely identified along with the IP Address. This is not recommended to use as a methodology for end-user authentication and Authorization.

The API Key key can be sent as part of the query string or _Authorization token _or custom header or as part of the data.

OAuth2.0 is an authorization framework that allows users to grant a third-party website or application to access the user’s protected resources without revealing their credentials or identity. For that purpose, an OAuth 2.0 server issues access tokens that the client applications can use to access protected resources on behalf of the resource owner.

You probably see this option in the form of ‘Login using Google’, ‘Login using Facebook’, ‘Login using Github’ etc.

By default, OAuth generates the access tokens in the format of JWT (JSON web tokens). JWTs contain three parts: a header, a payload, and a signature.

  • Header: metadata about the token like cryptographic algorithms used to generate the token.
  • Payload: payload contains the Subject (usually identifier of the user), claims (also known as permissions or grants), and other information like audience and expiration time, etc.
  • Signature: used to validate the token is trustworthy and has not been tampered with.
  • Below are the OAuth roles you must aware of when dealing OAuth2.0
  • Resource Owner: the entity that can grant access to a protected resource. Typically this is the end-user.
  • Resource Server: The server that is hosting the protected resources
  • Client: the app requesting access to a protected resource on behalf of the Resource Owner.
  • Authorization Server: the server that authenticates the Resource Owner, and issues Access Tokens after getting proper authorization.

OAuth2.0 provides various flows or grant types suitable for different types of API clients. Grant Types are out of scope for this article.

OIDC is a simple identity layer built on top of the OAuth2.0. OIDC defines a sign-in flow that enables a client application to authenticate a user, and to obtain information (or “claims”) about that user, such as the user name, email, and so on. User identity information is encoded in a secure JSON Web Token (JWT), called ID token.

In the Open ID Connect, Request flow will happen as below.

  1. user will be navigated to the Authorization server from the client app
  2. The user enters the credentials to identify the user
  3. Upon successful authentication, Server sends back the user to client along with authorization code
  4. Client app requests the Authorization server for tokens (Access Token and Id Token) using the authorization code (we can use nonce here to incorporated additional security)
  5. Authorization server responds back with tokens.

Input validation should be applied to both syntactical and semantic levels.

  • **Syntactical: **should enforce correct syntax of structured fields (e.g. SSN, date, currency symbol).
  • **Semantic: **should enforce correctness of their values in the specific business context (e.g. start date is before the end date, price is within expected range).

Basic Input validation guidelines

  • Define an implicit input validation by using strong types like numbers, booleans, dates, times, or fixed data ranges in API parameters.
  • Constrain string inputs with regular expressions.
  • Use whitelisting and blacklisting techniques
  • Define min and maximum lengths as a mandatory
  • Enforce Input validations on client-side and server-side
  • Reject unexpected/illegal content with valid error messages

We must define the allowed content types explicitly. It is always good practice to define the valid content types and share them with the required shareholders. Upon receiving an unexpected or missing content-type header, API must respond with HTTP response status 406 Unacceptable or 415 Unsupported Media Type.

Content of given resources must be interpreted correctly by the browser, the server should always send the Content-Type header with the correct Content-Type, and preferably the Content-Type header should include a charset.

JSON encoders must be used when dealing with JSON Data.

Rate limiters allow you to secure your APIs from the DDoS attacks. When exposing your API to publicly you must define the rate limiters. If you are opt-in for any cloud provider tools, they explicitly provide the rate-limiting capabilities to the public faced resources. you must adjust the configurations accordingly to your needs.

Ensure data is sent over HTTPS only. if any user tries to access over HTTP, you should upgrade it HTTPS and handle the request

Data in storage must be protected using best security practices. All the cloud providers provide you the inbuilt security (Encryption)for your backups.

Below are few common status codes used along with REST APIs

  • 201 - Created
  • 200 - OK
  • 202 - Accepted and queued for processing
  • 204 - No Content
  • 304 - Not Modified
  • 400 - Bad Request
  • 401 - UnAuthorized
  • 403 - Forbidden
  • 404 - Not Found
  • 405 - Method Not Allowed
  • 406 - Not Acceptable (Used with Content Types)
  • 415 - Unsupported Media Type
  • 429 - Two Many requests

Please share your thoughts in the comments box to improve it further.

If you found this helpful please share it on Twitter, Facebook, LinkedIn, and your favorite forums. Big thanks for reading!

#rest api #microservice architecture #api security #security best practices #rest api security #architecture and design